import os import librosa import numpy as np from pydub import AudioSegment def clean_audio(audio_path, output_path, min_silence_len=1000, silence_thresh=-40, keep_silence=100): # Load the audio file audio_segment = AudioSegment.from_file(audio_path) # Convert to mono audio_segment = audio_segment.set_channels(1) # Split on silence chunks = split_on_silence( audio_segment, min_silence_len=min_silence_len, silence_thresh=silence_thresh, keep_silence=keep_silence, ) # Find the main speaker based on total duration main_speaker_chunk = max(chunks, key=lambda chunk: len(chunk)) # Export the main speaker's audio main_speaker_chunk.export(output_path, format="wav") def split_on_silence(audio_segment, min_silence_len=1000, silence_thresh=-40, keep_silence=100): """ Splits an AudioSegment on silent sections. """ chunks = [] start_idx = 0 while start_idx < len(audio_segment): silence_start = audio_segment.find_silence( min_silence_len=min_silence_len, silence_thresh=silence_thresh, start_sec=start_idx / 1000.0, ) if silence_start is None: chunks.append(audio_segment[start_idx:]) break silence_end = silence_start + min_silence_len keep_silence_time = min(keep_silence, silence_end - silence_start) silence_end -= keep_silence_time chunks.append(audio_segment[start_idx:silence_end]) start_idx = silence_end + keep_silence_time return chunks # Usage example audio_path = "francine-master.wav" output_path = "franclean-master.wav" clean_audio(audio_path, output_path)