anonuser7251
commited on
Commit
•
246fca2
1
Parent(s):
cef86a0
Add dataset
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- GBI-16-2D-Legacy.py +130 -0
- README.md +123 -0
- baseline_results_2d.csv +19 -0
- data/INT/int20040906_00421872_img0.fits +3 -0
- data/INT/int20040906_00421881_img0.fits +3 -0
- data/INT/int20040907_00422050_img0.fits +3 -0
- data/INT/int20040907_00422051_img0.fits +3 -0
- data/INT/int20041111_00431536_img0.fits +3 -0
- data/INT/int20041111_00431542_img0.fits +3 -0
- data/INT/int20041114_00431600_img0.fits +3 -0
- data/INT/int20041114_00431659_img0.fits +3 -0
- data/INT/int20041115_00431706_img0.fits +3 -0
- data/INT/int20041115_00431714_img0.fits +3 -0
- data/INT/int20041116_00431811_img0.fits +3 -0
- data/INT/int20060531_00504820_img0.fits +3 -0
- data/INT/int20060709_00512710_img0.fits +3 -0
- data/INT/int20070714_00575769_img0.fits +3 -0
- data/INT/int20070715_00576093_img0.fits +3 -0
- data/INT/int20070715_00576095_img0.fits +3 -0
- data/INT/int20080811_00631845_img0.fits +3 -0
- data/INT/int20080811_00631848_img0.fits +3 -0
- data/INT/int20080919_00639522_img0.fits +3 -0
- data/INT/int20100601_00735654_img0.fits +3 -0
- data/INT/int20100602_00735918_img0.fits +3 -0
- data/INT/int20100604_00736409_img0.fits +3 -0
- data/INT/int20100604_00736444_img0.fits +3 -0
- data/INT/int20100703_00743221_img0.fits +3 -0
- data/INT/int20120731_00922404_img0.fits +3 -0
- data/INT/int20121204_00951952_img0.fits +3 -0
- data/INT/int20121204_00951960_img0.fits +3 -0
- data/INT/int20121204_00951986_img0.fits +3 -0
- data/INT/int20121204_00951992_img0.fits +3 -0
- data/INT/int20121204_00951998_img0.fits +3 -0
- data/INT/int20121204_00952025_img0.fits +3 -0
- data/INT/int20121204_00952038_img0.fits +3 -0
- data/INT/int20121204_00952041_img0.fits +3 -0
- data/INT/int20121205_00952277_img0.fits +3 -0
- data/INT/int20130929_01017171_img0.fits +3 -0
- data/INT/int20130929_01017179_img0.fits +3 -0
- data/INT/int20141225_01103342_img0.fits +3 -0
- data/INT/int20141225_01103343_img0.fits +3 -0
- data/INT/int20141225_01103344_img0.fits +3 -0
- data/INT/int20141225_01103345_img0.fits +3 -0
- data/JKT/jkt19980403_00032950_img0.fits +3 -0
- data/JKT/jkt19990925_00100583_img0.fits +3 -0
- data/JKT/jkt19991228_00108612_img0.fits +3 -0
- data/JKT/jkt20000619_00124825_img0.fits +3 -0
- data/JKT/jkt20001112_00149462_img0.fits +3 -0
- data/JKT/jkt20001112_00149466_img0.fits +3 -0
.gitattributes
CHANGED
@@ -56,3 +56,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
56 |
# Video files - compressed
|
57 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
58 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
59 |
+
*.fits filter=lfs diff=lfs merge=lfs -text
|
GBI-16-2D-Legacy.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from glob import glob
|
4 |
+
import json
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
|
8 |
+
from astropy.io import fits
|
9 |
+
import datasets
|
10 |
+
from datasets import DownloadManager
|
11 |
+
from fsspec.core import url_to_fs
|
12 |
+
|
13 |
+
_DESCRIPTION = (
|
14 |
+
"GBI-16-2D-Legacy is a Huggingface `dataset` wrapper around a compression "
|
15 |
+
"dataset assembled by Maireles-González et al. (Publications of the "
|
16 |
+
"Astronomical Society of the Pacific, 135:094502, 2023 September; doi: "
|
17 |
+
"[https://doi.org/10.1088/1538-3873/acf6e0](https://doi.org/10.1088/1538-3873/"
|
18 |
+
"acf6e0)). It contains 226 FITS images from 5 different ground-based "
|
19 |
+
"telescope/cameras with a varying amount of entropy per image."
|
20 |
+
)
|
21 |
+
|
22 |
+
_HOMEPAGE = "https://google.github.io/AstroCompress"
|
23 |
+
|
24 |
+
_LICENSE = "CC BY 4.0"
|
25 |
+
|
26 |
+
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-2D-Legacy/resolve/main/"
|
27 |
+
|
28 |
+
_URLS = {
|
29 |
+
"tiny": {
|
30 |
+
"train": "./splits/tiny_train.jsonl",
|
31 |
+
"test": "./splits/tiny_test.jsonl",
|
32 |
+
},
|
33 |
+
"full": {
|
34 |
+
"train": "./splits/full_train.jsonl",
|
35 |
+
"test": "./splits/full_test.jsonl",
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
_REPO_ID = "AstroCompress/GBI-16-2D-Legacy"
|
40 |
+
|
41 |
+
class GBI_16_2D_Legacy(datasets.GeneratorBasedBuilder):
|
42 |
+
"""GBI-16-2D-Legacy Dataset"""
|
43 |
+
|
44 |
+
VERSION = datasets.Version("1.0.1")
|
45 |
+
|
46 |
+
BUILDER_CONFIGS = [
|
47 |
+
datasets.BuilderConfig(
|
48 |
+
name="tiny",
|
49 |
+
version=VERSION,
|
50 |
+
description="A small subset of the data, to test downsteam workflows.",
|
51 |
+
),
|
52 |
+
datasets.BuilderConfig(
|
53 |
+
name="full",
|
54 |
+
version=VERSION,
|
55 |
+
description="The full dataset",
|
56 |
+
),
|
57 |
+
]
|
58 |
+
|
59 |
+
DEFAULT_CONFIG_NAME = "tiny"
|
60 |
+
|
61 |
+
def __init__(self, **kwargs):
|
62 |
+
super().__init__(version=self.VERSION, **kwargs)
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
return datasets.DatasetInfo(
|
66 |
+
description=_DESCRIPTION,
|
67 |
+
features=datasets.Features(
|
68 |
+
{
|
69 |
+
# Images are variable size across the dataset
|
70 |
+
# so use the Image type here, returning as
|
71 |
+
# numpy uint16
|
72 |
+
"image": datasets.Image(decode=True, mode="I;16"),
|
73 |
+
"telescope": datasets.Value("string"),
|
74 |
+
"image_id": datasets.Value("string"),
|
75 |
+
}
|
76 |
+
),
|
77 |
+
supervised_keys=None,
|
78 |
+
homepage=_HOMEPAGE,
|
79 |
+
license=_LICENSE,
|
80 |
+
citation="TBD",
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
84 |
+
|
85 |
+
ret = []
|
86 |
+
base_path = dl_manager._base_path
|
87 |
+
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
|
88 |
+
_, path = url_to_fs(base_path)
|
89 |
+
|
90 |
+
for split in ["train", "test"]:
|
91 |
+
if locally_run:
|
92 |
+
split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
|
93 |
+
split_file = dl_manager.download_and_extract(split_file_location)
|
94 |
+
else:
|
95 |
+
split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset")
|
96 |
+
with open(split_file, encoding="utf-8") as f:
|
97 |
+
data_filenames = []
|
98 |
+
data_metadata = []
|
99 |
+
for line in f:
|
100 |
+
item = json.loads(line)
|
101 |
+
data_filenames.append(item["image"])
|
102 |
+
data_metadata.append({"telescope": item["telescope"],
|
103 |
+
"image_id": item["image_id"]})
|
104 |
+
if locally_run:
|
105 |
+
data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
|
106 |
+
data_files = [dl_manager.download(data_url) for data_url in data_urls]
|
107 |
+
else:
|
108 |
+
data_urls = data_filenames
|
109 |
+
data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls]
|
110 |
+
ret.append(
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
|
113 |
+
gen_kwargs={"filepaths": data_files,
|
114 |
+
"split_file": split_file,
|
115 |
+
"split": split,
|
116 |
+
"data_metadata": data_metadata},
|
117 |
+
),
|
118 |
+
)
|
119 |
+
return ret
|
120 |
+
|
121 |
+
def _generate_examples(self, filepaths, split_file, split, data_metadata):
|
122 |
+
"""Generate GBI-16-2D-Legacy examples"""
|
123 |
+
|
124 |
+
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
|
125 |
+
task_instance_key = f"{self.config.name}-{split}-{idx}"
|
126 |
+
with fits.open(filepath, memmap=False) as hdul:
|
127 |
+
# this data is natively formatted like (1, 4200, 2154)
|
128 |
+
# just use the 2D image
|
129 |
+
image_data = hdul[0].data[0,:,:].tolist()
|
130 |
+
yield task_instance_key, {**{"image": image_data}, **item}
|
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
pretty_name: Ground-based 2d images assembled in Maireles-González et al.
|
4 |
+
tags:
|
5 |
+
- astronomy
|
6 |
+
- compression
|
7 |
+
- images
|
8 |
+
dataset_info:
|
9 |
+
- config_name: full
|
10 |
+
features:
|
11 |
+
- name: image
|
12 |
+
dtype:
|
13 |
+
image:
|
14 |
+
mode: I;16
|
15 |
+
- name: telescope
|
16 |
+
dtype: string
|
17 |
+
- name: image_id
|
18 |
+
dtype: string
|
19 |
+
splits:
|
20 |
+
- name: train
|
21 |
+
num_bytes: 3509045373
|
22 |
+
num_examples: 120
|
23 |
+
- name: test
|
24 |
+
num_bytes: 970120060
|
25 |
+
num_examples: 32
|
26 |
+
download_size: 2240199274
|
27 |
+
dataset_size: 4479165433
|
28 |
+
- config_name: tiny
|
29 |
+
features:
|
30 |
+
- name: image
|
31 |
+
dtype:
|
32 |
+
image:
|
33 |
+
mode: I;16
|
34 |
+
- name: telescope
|
35 |
+
dtype: string
|
36 |
+
- name: image_id
|
37 |
+
dtype: string
|
38 |
+
splits:
|
39 |
+
- name: train
|
40 |
+
num_bytes: 307620695
|
41 |
+
num_examples: 10
|
42 |
+
- name: test
|
43 |
+
num_bytes: 168984698
|
44 |
+
num_examples: 5
|
45 |
+
download_size: 238361934
|
46 |
+
dataset_size: 476605393
|
47 |
+
---
|
48 |
+
|
49 |
+
# GBI-16-2D-Legacy Dataset
|
50 |
+
|
51 |
+
GBI-16-2D-Legacy is a Huggingface `dataset` wrapper around a compression dataset assembled by Maireles-González et al. (Publications of the Astronomical Society of the Pacific, 135:094502, 2023 September; doi: [https://doi.org/10.1088/1538-3873/acf6e0](https://doi.org/10.1088/1538-3873/acf6e0)). It contains 226 FITS images from 5 different ground-based telescope/cameras with a varying amount of entropy per image.
|
52 |
+
|
53 |
+
# Usage
|
54 |
+
|
55 |
+
You first need to install the `datasets` and `astropy` packages:
|
56 |
+
|
57 |
+
```bash
|
58 |
+
pip install datasets astropy PIL
|
59 |
+
```
|
60 |
+
|
61 |
+
There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 5 2D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
|
62 |
+
|
63 |
+
## Local Use (RECOMMENDED)
|
64 |
+
|
65 |
+
You can clone this repo and use directly without connecting to hf:
|
66 |
+
|
67 |
+
```bash
|
68 |
+
git clone https://huggingface.co/datasets/AstroCompress/GBI-16-2D-Legacy
|
69 |
+
```
|
70 |
+
|
71 |
+
```bash
|
72 |
+
git lfs pull
|
73 |
+
```
|
74 |
+
|
75 |
+
Then `cd GBI-16-2D-Legacy` and start python like:
|
76 |
+
|
77 |
+
```python
|
78 |
+
from datasets import load_dataset
|
79 |
+
dataset = load_dataset("./GBI-16-2D-Legacy.py", "tiny", data_dir="./data/", writer_batch_size=1, trust_remote_code=True)
|
80 |
+
ds = dataset.with_format("np")
|
81 |
+
```
|
82 |
+
|
83 |
+
Now you should be able to use the `ds` variable like:
|
84 |
+
|
85 |
+
```python
|
86 |
+
ds["test"][0]["image"].shape # -> (4200, 2154)
|
87 |
+
```
|
88 |
+
|
89 |
+
Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk. If you run into issues with downloading the `full` dataset, try changing `num_proc` in `load_dataset` to >1 (e.g. 5). You can also set the `writer_batch_size` to ~10-20.
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
## Use from Huggingface Directly
|
94 |
+
|
95 |
+
This method may only be an option when trying to access the "tiny" version of the dataset.
|
96 |
+
|
97 |
+
To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
|
98 |
+
|
99 |
+
```bash
|
100 |
+
huggingface-cli login
|
101 |
+
```
|
102 |
+
|
103 |
+
or
|
104 |
+
|
105 |
+
```
|
106 |
+
import huggingface_hub
|
107 |
+
huggingface_hub.login(token=token)
|
108 |
+
```
|
109 |
+
|
110 |
+
Then in your python script:
|
111 |
+
|
112 |
+
```python
|
113 |
+
from datasets import load_dataset
|
114 |
+
dataset = load_dataset("AstroCompress/GBI-16-2D-Legacy", "tiny", writer_batch_size=1, trust_remote_code=True)
|
115 |
+
ds = dataset.with_format("np")
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
## Demo Colab Notebook
|
120 |
+
We provide a demo collab notebook to get started on using the dataset [here](https://colab.research.google.com/drive/1SuFBPZiYZg9LH4pqypc_v8Sp99lShJqZ?usp=sharing).
|
121 |
+
|
122 |
+
## Utils scripts
|
123 |
+
Note that utils scripts such as `eval_baselines.py` must be run from the parent directory of `utils`, i.e. `python utils/eval_baselines.py`.
|
baseline_results_2d.csv
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,JPEG_XL_MAX_EFFORT_BPD,JPEG_XL_MAX_EFFORT_WRITE_RUNTIME,JPEG_XL_MAX_EFFORT_READ_RUNTIME,JPEG_XL_BPD,JPEG_XL_WRITE_RUNTIME,JPEG_XL_READ_RUNTIME,JPEG_2K_BPD,JPEG_2K_WRITE_RUNTIME,JPEG_2K_READ_RUNTIME,JPEG_LS_BPD,JPEG_LS_WRITE_RUNTIME,JPEG_LS_READ_RUNTIME,RICE_BPD,RICE_WRITE_RUNTIME,RICE_READ_RUNTIME
|
2 |
+
./data/LCO/ogg2m001.fits,,,,,,,,,,,,,,,
|
3 |
+
./data/LCO/coj0m403.fits,,,,,,,,,,,,,,,
|
4 |
+
./data/LCO/lsc0m409.fits,,,,,,,,,,,,,,,
|
5 |
+
./data/LCO/cpt0m407.fits,,,,,,,,,,,,,,,
|
6 |
+
./data/LCO/ogg0m404.fits,,,,,,,,,,,,,,,
|
7 |
+
./data/LCO/coj2m002.fits,,,,,,,,,,,,,,,
|
8 |
+
./data/LCO/coj0m405.fits,,,,,,,,,,,,,,,
|
9 |
+
./data/LCO/lsc0m412.fits,,,,,,,,,,,,,,,
|
10 |
+
./data/LCO/elp0m411.fits,,,,,,,,,,,,,,,
|
11 |
+
./data/LCO/ogg2m001.fits_hdu0,0.7228008563701923,38.97266483306885,0.5288991928100586,0.7646298922025241,0.4440128803253174,0.30240345001220703,0.7561227651742789,0.8938534259796143,0.662376880645752,0.7517606295072116,0.13510465621948242,0.10557126998901367,0.8046292818509615,0.0588533878326416,0.04409217834472656
|
12 |
+
./data/LCO/coj0m403.fits_hdu0,0.6845067483669605,62.80998182296753,0.7949681282043457,0.7279621187963822,0.8048989772796631,0.518756628036499,0.7265686903312462,1.2398710250854492,1.0729033946990967,0.7221424525065708,0.25426721572875977,0.22037935256958008,0.763859698709029,0.106903076171875,0.07623457908630371
|
13 |
+
./data/LCO/lsc0m409.fits_hdu0,0.6610539990143784,51.19105768203735,0.685356855392456,0.7128655617076376,0.7473225593566895,0.4433445930480957,0.7006576245555041,1.1074719429016113,0.9230437278747559,0.7085028880160018,0.21909785270690918,0.1813819408416748,0.7456735623937075,0.086578369140625,0.06737279891967773
|
14 |
+
./data/LCO/cpt0m407.fits_hdu0,0.6880637730944651,49.86274790763855,0.8803353309631348,0.7368511324984539,0.791924238204956,0.5607116222381592,0.7296890702303649,1.196800708770752,1.13450288772583,0.7261818701202072,0.23211431503295898,0.18094325065612793,0.7707059030998763,0.08548331260681152,0.06668448448181152
|
15 |
+
./data/LCO/ogg0m404.fits_hdu0,0.7123647488114564,57.634791135787964,0.5582947731018066,0.7629273744298856,0.6791362762451172,0.45233964920043945,0.7612617223736086,1.3741166591644287,1.0464346408843994,0.7506706695462276,0.20768284797668457,0.16320323944091797,0.797979143717146,0.09054827690124512,0.07115888595581055
|
16 |
+
./data/LCO/coj2m002.fits_hdu0,0.48990149864783655,36.07459783554077,0.4525723457336426,0.5265641432542068,0.38028979301452637,0.2625997066497803,0.5202474740835337,0.5612707138061523,0.46169424057006836,0.5321988619290865,0.11610913276672363,0.09262537956237793,0.5791156475360577,0.05453372001647949,0.04210400581359863
|
17 |
+
./data/LCO/coj0m405.fits_hdu0,0.7249306682900433,62.591997146606445,1.0271177291870117,0.772575383136209,0.8154196739196777,0.5006818771362305,0.7651275087449753,1.2067930698394775,1.1785037517547607,0.758441196080705,0.2289750576019287,0.17831897735595703,0.8085132756938003,0.0945277214050293,0.07159924507141113
|
18 |
+
./data/LCO/lsc0m412.fits_hdu0,0.695435702690167,60.37032628059387,0.762854814529419,0.7426116131822047,0.6952474117279053,0.5152549743652344,0.7424180520929963,1.1946804523468018,1.1025896072387695,0.7327258051658163,0.4584157466888428,0.2643771171569824,0.7762316041473407,0.17229866981506348,0.16986966133117676
|
19 |
+
./data/LCO/elp0m411.fits_hdu0,0.6570708983167131,49.1509850025177,0.6957509517669678,0.7090616786487323,0.6933269500732422,0.4518740177154541,0.706205973156308,1.1690149307250977,0.9747042655944824,0.7069195220701917,0.23010897636413574,0.1935582160949707,0.7434930559581787,0.0862727165222168,0.06721353530883789
|
data/INT/int20040906_00421872_img0.fits
ADDED
Git LFS Details
|
data/INT/int20040906_00421881_img0.fits
ADDED
Git LFS Details
|
data/INT/int20040907_00422050_img0.fits
ADDED
Git LFS Details
|
data/INT/int20040907_00422051_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041111_00431536_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041111_00431542_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041114_00431600_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041114_00431659_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041115_00431706_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041115_00431714_img0.fits
ADDED
Git LFS Details
|
data/INT/int20041116_00431811_img0.fits
ADDED
Git LFS Details
|
data/INT/int20060531_00504820_img0.fits
ADDED
Git LFS Details
|
data/INT/int20060709_00512710_img0.fits
ADDED
Git LFS Details
|
data/INT/int20070714_00575769_img0.fits
ADDED
Git LFS Details
|
data/INT/int20070715_00576093_img0.fits
ADDED
Git LFS Details
|
data/INT/int20070715_00576095_img0.fits
ADDED
Git LFS Details
|
data/INT/int20080811_00631845_img0.fits
ADDED
Git LFS Details
|
data/INT/int20080811_00631848_img0.fits
ADDED
Git LFS Details
|
data/INT/int20080919_00639522_img0.fits
ADDED
Git LFS Details
|
data/INT/int20100601_00735654_img0.fits
ADDED
Git LFS Details
|
data/INT/int20100602_00735918_img0.fits
ADDED
Git LFS Details
|
data/INT/int20100604_00736409_img0.fits
ADDED
Git LFS Details
|
data/INT/int20100604_00736444_img0.fits
ADDED
Git LFS Details
|
data/INT/int20100703_00743221_img0.fits
ADDED
Git LFS Details
|
data/INT/int20120731_00922404_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00951952_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00951960_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00951986_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00951992_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00951998_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00952025_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00952038_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121204_00952041_img0.fits
ADDED
Git LFS Details
|
data/INT/int20121205_00952277_img0.fits
ADDED
Git LFS Details
|
data/INT/int20130929_01017171_img0.fits
ADDED
Git LFS Details
|
data/INT/int20130929_01017179_img0.fits
ADDED
Git LFS Details
|
data/INT/int20141225_01103342_img0.fits
ADDED
Git LFS Details
|
data/INT/int20141225_01103343_img0.fits
ADDED
Git LFS Details
|
data/INT/int20141225_01103344_img0.fits
ADDED
Git LFS Details
|
data/INT/int20141225_01103345_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt19980403_00032950_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt19990925_00100583_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt19991228_00108612_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt20000619_00124825_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt20001112_00149462_img0.fits
ADDED
Git LFS Details
|
data/JKT/jkt20001112_00149466_img0.fits
ADDED
Git LFS Details
|