File size: 1,483 Bytes
019ac30
 
 
 
 
 
 
 
 
ec5c834
019ac30
ec5c834
 
019ac30
 
 
 
 
a18da1f
 
 
 
019ac30
a18da1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
dataset_info:
  features:
  - name: utterance
    dtype: string
  - name: label
    sequence: int64
  splits:
  - name: train
    num_bytes: 396298199
    num_examples: 55000
  download_size: 165889261
  dataset_size: 396298199
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- text-classification
language:
- en
---

# eurlex

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).

## Usage

It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset

eurlex = Dataset.from_datasets("AutoIntent/eurlex")
```

## Source

This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from datasets import load_dataset
from autointent import Dataset

eurlex = load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
def transform(example: dict):
    return {"utterance": example["text"], "label": example["labels"]}

multilabel_eurlex = eurlex["train"].map(transform, remove_columns=eurlex["train"].features.keys())
eurlex_converted = Dataset.from_dict({"train": multilabel_eurlex.to_list()})
```