Datasets:
File size: 1,483 Bytes
019ac30 ec5c834 019ac30 ec5c834 019ac30 a18da1f 019ac30 a18da1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
dataset_info:
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 396298199
num_examples: 55000
download_size: 165889261
dataset_size: 396298199
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- text-classification
language:
- en
---
# eurlex
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
## Usage
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
from autointent import Dataset
eurlex = Dataset.from_datasets("AutoIntent/eurlex")
```
## Source
This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
from datasets import load_dataset
from autointent import Dataset
eurlex = load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True)
def transform(example: dict):
return {"utterance": example["text"], "label": example["labels"]}
multilabel_eurlex = eurlex["train"].map(transform, remove_columns=eurlex["train"].features.keys())
eurlex_converted = Dataset.from_dict({"train": multilabel_eurlex.to_list()})
```
|