|
import os |
|
import random |
|
import requests |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
_CITATION = """\ |
|
@misc{ |
|
dalloux, |
|
title={Datasets – Clément Dalloux}, |
|
url={http://clementdalloux.fr/?page_id=28}, |
|
journal={Clément Dalloux}, |
|
author={Dalloux, Clément} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We manually annotated two corpora from the biomedical field. The ESSAI corpus \ |
|
contains clinical trial protocols in French. They were mainly obtained from the \ |
|
National Cancer Institute The typical protocol consists of two parts: the \ |
|
summary of the trial, which indicates the purpose of the trial and the methods \ |
|
applied; and a detailed description of the trial with the inclusion and \ |
|
exclusion criteria. The CAS corpus contains clinical cases published in \ |
|
scientific literature and training material. They are published in different \ |
|
journals from French-speaking countries (France, Belgium, Switzerland, Canada, \ |
|
African countries, tropical countries) and are related to various medical \ |
|
specialties (cardiology, urology, oncology, obstetrics, pulmonology, \ |
|
gastro-enterology). The purpose of clinical cases is to describe clinical \ |
|
situations of patients. Hence, their content is close to the content of clinical \ |
|
narratives (description of diagnoses, treatments or procedures, evolution, \ |
|
family history, expected audience, etc.). In clinical cases, the negation is \ |
|
frequently used for describing the patient signs, symptoms, and diagnosis. \ |
|
Speculation is present as well but less frequently. |
|
|
|
This version only contain the annotated ESSAI corpus |
|
""" |
|
|
|
_HOMEPAGE = "https://clementdalloux.fr/?page_id=28" |
|
|
|
_LICENSE = 'Data User Agreement' |
|
|
|
class StringIndex: |
|
|
|
def __init__(self, vocab): |
|
|
|
self.vocab_struct = {} |
|
|
|
print("Start building the index!") |
|
for t in vocab: |
|
|
|
if len(t) == 0: |
|
continue |
|
|
|
|
|
key = (t[0], len(t)) |
|
|
|
if (key in self.vocab_struct) == False: |
|
self.vocab_struct[key] = [] |
|
|
|
self.vocab_struct[key].append(t) |
|
|
|
print("Finished building the index!") |
|
|
|
def find(self, t): |
|
|
|
key = (t[0], len(t)) |
|
|
|
if (key in self.vocab_struct) == False: |
|
return "is_oov" |
|
|
|
return "is_not_oov" if t in self.vocab_struct[key] else "is_oov" |
|
|
|
_VOCAB = StringIndex(vocab=requests.get("https://huggingface.co/datasets/BioMedTok/vocabulary_nachos_lowercased/resolve/main/vocabulary_nachos_lowercased.txt").text.split("\n")) |
|
|
|
class ESSAI(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG_NAME = "pos_spec" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="pos", version="1.0.0", description="The ESSAI corpora - POS Speculation task"), |
|
|
|
datasets.BuilderConfig(name="cls", version="1.0.0", description="The ESSAI corpora - CLS Negation / Speculation task"), |
|
|
|
datasets.BuilderConfig(name="ner_spec", version="1.0.0", description="The ESSAI corpora - NER Speculation task"), |
|
datasets.BuilderConfig(name="ner_neg", version="1.0.0", description="The ESSAI corpora - NER Negation task"), |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.name.find("pos") != -1: |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"lemmas": [datasets.Value("string")], |
|
"pos_tags": [datasets.features.ClassLabel( |
|
names = ['B-INT', 'B-PRO:POS', 'B-PRP', 'B-SENT', 'B-PRO', 'B-ABR', 'B-VER:pres', 'B-KON', 'B-SYM', 'B-DET:POS', 'B-VER:', 'B-PRO:IND', 'B-NAM', 'B-ADV', 'B-PRO:DEM', 'B-NN', 'B-PRO:PER', 'B-VER:pper', 'B-VER:ppre', 'B-PUN', 'B-VER:simp', 'B-PREF', 'B-NUM', 'B-VER:futu', 'B-NOM', 'B-VER:impf', 'B-VER:subp', 'B-VER:infi', 'B-DET:ART', 'B-PUN:cit', 'B-ADJ', 'B-PRP:det', 'B-PRO:REL', 'B-VER:cond', 'B-VER:subi'], |
|
)], |
|
"is_oov": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['is_not_oov', 'is_oov'], |
|
), |
|
), |
|
} |
|
) |
|
|
|
elif self.config.name.find("cls") != -1: |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"label": datasets.features.ClassLabel( |
|
names = ['negation_speculation', 'negation', 'neutral', 'speculation'], |
|
), |
|
} |
|
) |
|
|
|
elif self.config.name.find("ner") != -1: |
|
|
|
if self.config.name.find("_spec") != -1: |
|
names = ['O', 'B_cue_spec', 'B_scope_spec', 'I_scope_spec'] |
|
elif self.config.name.find("_neg") != -1: |
|
names = ['O', 'B_cue_neg', 'B_scope_neg', 'I_scope_neg'] |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"lemmas": [datasets.Value("string")], |
|
"ner_tags": [datasets.features.ClassLabel( |
|
names = names, |
|
)], |
|
"is_oov": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['is_not_oov', 'is_oov'], |
|
), |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
|
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"datadir": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"datadir": data_dir, |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"datadir": data_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, datadir, split): |
|
|
|
all_res = [] |
|
|
|
key = 0 |
|
|
|
subset = self.config.name.split("_")[-1] |
|
|
|
unique_id_doc = [] |
|
|
|
if self.config.name.find("ner") != -1: |
|
docs = [f"ESSAI_{subset}.txt"] |
|
else: |
|
docs = ["ESSAI_neg.txt", "ESSAI_spec.txt"] |
|
|
|
for file in docs: |
|
|
|
filename = os.path.join(datadir, file) |
|
|
|
if self.config.name.find("pos") != -1: |
|
|
|
id_docs = [] |
|
id_words = [] |
|
words = [] |
|
lemmas = [] |
|
POS_tags = [] |
|
|
|
with open(filename) as f: |
|
|
|
for line in f.readlines(): |
|
|
|
splitted = line.split("\t") |
|
|
|
if len(splitted) < 5: |
|
continue |
|
|
|
id_doc, id_word, word, lemma, tag = splitted[0:5] |
|
if len(splitted) >= 8: |
|
tag = splitted[6] |
|
|
|
if tag == "@card@": |
|
print(splitted) |
|
|
|
if word == "@card@": |
|
print(splitted) |
|
|
|
if lemma == "000" and tag == "@card@": |
|
tag = "NUM" |
|
word = "100 000" |
|
lemma = "100 000" |
|
elif lemma == "45" and tag == "@card@": |
|
tag = "NUM" |
|
|
|
|
|
|
|
|
|
id_docs.append(id_doc) |
|
id_words.append(id_word) |
|
words.append(word) |
|
lemmas.append(lemma) |
|
POS_tags.append('B-'+tag) |
|
|
|
dic = { |
|
"id_docs": np.array(list(map(int, id_docs))), |
|
"id_words": id_words, |
|
"words": words, |
|
"lemmas": lemmas, |
|
"POS_tags": POS_tags, |
|
} |
|
|
|
for doc_id in set(dic["id_docs"]): |
|
|
|
indexes = np.argwhere(dic["id_docs"] == doc_id)[:, 0] |
|
tokens = [dic["words"][id] for id in indexes] |
|
text_lemmas = [dic["lemmas"][id] for id in indexes] |
|
pos_tags = [dic["POS_tags"][id] for id in indexes] |
|
|
|
if doc_id not in unique_id_doc: |
|
|
|
all_res.append({ |
|
"id": str(doc_id), |
|
"document_id": doc_id, |
|
"tokens": [tok.lower() for tok in tokens], |
|
"lemmas": text_lemmas, |
|
"pos_tags": pos_tags, |
|
"is_oov": [_VOCAB.find(tt.lower()) for tt in tokens], |
|
}) |
|
unique_id_doc.append(doc_id) |
|
|
|
|
|
|
|
elif self.config.name.find("ner") != -1: |
|
|
|
id_docs = [] |
|
id_words = [] |
|
words = [] |
|
lemmas = [] |
|
ner_tags = [] |
|
|
|
with open(filename) as f: |
|
|
|
for line in f.readlines(): |
|
|
|
if len(line.split("\t")) < 5: |
|
continue |
|
|
|
id_doc, id_word, word, lemma, _ = line.split("\t")[0:5] |
|
tag = line.replace("\n","").split("\t")[-1] |
|
|
|
if tag == "***" or tag == "_": |
|
tag = "O" |
|
elif tag == "v": |
|
tag = "I_scope_spec" |
|
elif tag == "z": |
|
tag = "O" |
|
elif tag == "I_scope_spec_": |
|
tag = "I_scope_spec" |
|
|
|
id_docs.append(id_doc) |
|
id_words.append(id_word) |
|
words.append(word) |
|
lemmas.append(lemma) |
|
ner_tags.append(tag) |
|
|
|
dic = { |
|
"id_docs": np.array(list(map(int, id_docs))), |
|
"id_words": id_words, |
|
"words": words, |
|
"lemmas": lemmas, |
|
"ner_tags": ner_tags, |
|
} |
|
|
|
for doc_id in set(dic["id_docs"]): |
|
|
|
indexes = np.argwhere(dic["id_docs"] == doc_id)[:, 0] |
|
tokens = [dic["words"][id] for id in indexes] |
|
text_lemmas = [dic["lemmas"][id] for id in indexes] |
|
ner_tags = [dic["ner_tags"][id] for id in indexes] |
|
|
|
all_res.append({ |
|
"id": key, |
|
"document_id": doc_id, |
|
"tokens": [tok.lower() for tok in tokens], |
|
"lemmas": text_lemmas, |
|
"ner_tags": ner_tags, |
|
"is_oov": [_VOCAB.find(tt.lower()) for tt in tokens], |
|
}) |
|
|
|
key += 1 |
|
|
|
elif self.config.name.find("cls") != -1: |
|
|
|
f_in = open(filename, "r") |
|
conll = [ |
|
[b.split("\t") for b in a.split("\n")] |
|
for a in f_in.read().split("\n\n") |
|
] |
|
f_in.close() |
|
|
|
classe = "negation" if filename.find("_neg") != -1 else "speculation" |
|
|
|
for document in conll: |
|
|
|
if document == [""]: |
|
continue |
|
|
|
identifier = document[0][0] |
|
|
|
unique = list(set([w[-1] for w in document])) |
|
tokens = [sent[2] for sent in document if len(sent) > 1] |
|
|
|
if "***" in unique: |
|
l = "neutral" |
|
elif "_" in unique: |
|
l = classe |
|
|
|
if identifier in unique_id_doc and l == 'neutral': |
|
continue |
|
|
|
elif identifier in unique_id_doc and l != 'neutral': |
|
|
|
index_l = unique_id_doc.index(identifier) |
|
|
|
if all_res[index_l]["label"] != "neutral": |
|
l = "negation_speculation" |
|
|
|
all_res[index_l] = { |
|
"id": str(identifier), |
|
"document_id": identifier, |
|
"tokens": [tok.lower() for tok in tokens], |
|
"label": l, |
|
} |
|
|
|
else: |
|
|
|
all_res.append({ |
|
"id": str(identifier), |
|
"document_id": identifier, |
|
"tokens": [tok.lower() for tok in tokens], |
|
"label": l, |
|
}) |
|
|
|
unique_id_doc.append(identifier) |
|
|
|
ids = [r["id"] for r in all_res] |
|
|
|
random.seed(4) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
random.shuffle(ids) |
|
|
|
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)]) |
|
|
|
if split == "train": |
|
allowed_ids = list(train) |
|
elif split == "validation": |
|
allowed_ids = list(validation) |
|
elif split == "test": |
|
allowed_ids = list(test) |
|
|
|
for r in all_res: |
|
if r["id"] in allowed_ids: |
|
yield r["id"], r |