Create MANTRAGSC.py
Browse files- MANTRAGSC.py +284 -0
MANTRAGSC.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# pip install xmltodict
|
17 |
+
|
18 |
+
import random
|
19 |
+
from pathlib import Path
|
20 |
+
from itertools import product
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Dict, List, Tuple
|
23 |
+
|
24 |
+
import xmltodict
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
_CITATION = """\
|
30 |
+
@article{10.1093/jamia/ocv037,
|
31 |
+
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
32 |
+
Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich},
|
33 |
+
title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}",
|
34 |
+
journal = {Journal of the American Medical Informatics Association},
|
35 |
+
volume = {22},
|
36 |
+
number = {5},
|
37 |
+
pages = {948-956},
|
38 |
+
year = {2015},
|
39 |
+
month = {05},
|
40 |
+
abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials
|
41 |
+
and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels,
|
42 |
+
biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language
|
43 |
+
independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and
|
44 |
+
covering a wide range of semantic groups. To reduce the annotation workload, automatically generated
|
45 |
+
preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and
|
46 |
+
cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final
|
47 |
+
annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are
|
48 |
+
similar to those between individual annotators and the gold standard. The automatically generated harmonized
|
49 |
+
annotation set for each language performed equally well as the best annotator for that language.Discussion The use
|
50 |
+
of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation
|
51 |
+
efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance
|
52 |
+
of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for
|
53 |
+
biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety
|
54 |
+
of semantic groups that are being covered, and the diversity of text genres that were annotated.}",
|
55 |
+
issn = {1067-5027},
|
56 |
+
doi = {10.1093/jamia/ocv037},
|
57 |
+
url = {https://doi.org/10.1093/jamia/ocv037},
|
58 |
+
eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf},
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
_DESCRIPTION = """\
|
63 |
+
We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims)
|
64 |
+
in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical
|
65 |
+
concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups.
|
66 |
+
"""
|
67 |
+
|
68 |
+
_HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc"
|
69 |
+
|
70 |
+
_LICENSE = "CC_BY_4p0"
|
71 |
+
|
72 |
+
_URL = "https://files.ifi.uzh.ch/cl/mantra/gsc/GSC-v1.1.zip"
|
73 |
+
|
74 |
+
_LANGUAGES_2 = {
|
75 |
+
"es": "Spanish",
|
76 |
+
"fr": "French",
|
77 |
+
"de": "German",
|
78 |
+
"nl": "Dutch",
|
79 |
+
"en": "English",
|
80 |
+
}
|
81 |
+
|
82 |
+
_DATASET_TYPES = {
|
83 |
+
"emea": "EMEA",
|
84 |
+
"medline": "Medline",
|
85 |
+
"patents": "Patent",
|
86 |
+
}
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class DrBenchmarkConfig(datasets.BuilderConfig):
|
90 |
+
name: str = None
|
91 |
+
version: datasets.Version = None
|
92 |
+
description: str = None
|
93 |
+
schema: str = None
|
94 |
+
subset_id: str = None
|
95 |
+
|
96 |
+
class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
97 |
+
|
98 |
+
SOURCE_VERSION = datasets.Version("1.0.0")
|
99 |
+
|
100 |
+
BUILDER_CONFIGS = []
|
101 |
+
|
102 |
+
for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES):
|
103 |
+
|
104 |
+
if dataset_type == "patents" and language in ["nl", "es"]:
|
105 |
+
continue
|
106 |
+
|
107 |
+
BUILDER_CONFIGS.append(
|
108 |
+
DrBenchmarkConfig(
|
109 |
+
name=f"{language}_{dataset_type}",
|
110 |
+
version=SOURCE_VERSION,
|
111 |
+
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema",
|
112 |
+
schema="source",
|
113 |
+
subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}",
|
114 |
+
)
|
115 |
+
)
|
116 |
+
|
117 |
+
DEFAULT_CONFIG_NAME = "fr_medline"
|
118 |
+
|
119 |
+
def _info(self):
|
120 |
+
|
121 |
+
if self.config.name.find("emea") != -1:
|
122 |
+
names = ['B-ANAT', 'I-ANAT', 'I-PHEN', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'B-PHYS', 'I-DEVI', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-LIVB', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
|
123 |
+
elif self.config.name.find("medline") != -1:
|
124 |
+
names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-GEOG', 'B-DEVI', 'O', 'B-PHYS', 'I-LIVB', 'B-OBJC', 'I-DISO', 'I-DEVI', 'B-PHEN', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
|
125 |
+
elif self.config.name.find("patents") != -1:
|
126 |
+
names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'I-LIVB', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-PROC', 'B-DISO', 'I-DEVI', 'B-LIVB', 'B-CHEM', 'B-PHYS']
|
127 |
+
|
128 |
+
features = datasets.Features(
|
129 |
+
{
|
130 |
+
"id": datasets.Value("string"),
|
131 |
+
"tokens": [datasets.Value("string")],
|
132 |
+
"ner_tags": datasets.Sequence(
|
133 |
+
datasets.features.ClassLabel(
|
134 |
+
names = names,
|
135 |
+
)
|
136 |
+
),
|
137 |
+
}
|
138 |
+
)
|
139 |
+
|
140 |
+
return datasets.DatasetInfo(
|
141 |
+
description=_DESCRIPTION,
|
142 |
+
features=features,
|
143 |
+
homepage=_HOMEPAGE,
|
144 |
+
license=str(_LICENSE),
|
145 |
+
citation=_CITATION,
|
146 |
+
)
|
147 |
+
|
148 |
+
def _split_generators(self, dl_manager):
|
149 |
+
|
150 |
+
language, dataset_type = self.config.name.split("_")
|
151 |
+
|
152 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
153 |
+
data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"
|
154 |
+
|
155 |
+
return [
|
156 |
+
datasets.SplitGenerator(
|
157 |
+
name=datasets.Split.TRAIN,
|
158 |
+
gen_kwargs={
|
159 |
+
"data_dir": data_dir,
|
160 |
+
"split": "train",
|
161 |
+
},
|
162 |
+
),
|
163 |
+
datasets.SplitGenerator(
|
164 |
+
name=datasets.Split.VALIDATION,
|
165 |
+
gen_kwargs={
|
166 |
+
"data_dir": data_dir,
|
167 |
+
"split": "validation",
|
168 |
+
},
|
169 |
+
),
|
170 |
+
datasets.SplitGenerator(
|
171 |
+
name=datasets.Split.TEST,
|
172 |
+
gen_kwargs={
|
173 |
+
"data_dir": data_dir,
|
174 |
+
"split": "test",
|
175 |
+
},
|
176 |
+
),
|
177 |
+
]
|
178 |
+
|
179 |
+
def _generate_examples(self, data_dir, split):
|
180 |
+
|
181 |
+
with open(data_dir) as fd:
|
182 |
+
doc = xmltodict.parse(fd.read())
|
183 |
+
|
184 |
+
all_res = []
|
185 |
+
|
186 |
+
for d in doc["Corpus"]["document"]:
|
187 |
+
|
188 |
+
if type(d["unit"]) != type(list()):
|
189 |
+
d["unit"] = [d["unit"]]
|
190 |
+
|
191 |
+
for u in d["unit"]:
|
192 |
+
|
193 |
+
text = u["text"]
|
194 |
+
|
195 |
+
if "e" in u.keys():
|
196 |
+
|
197 |
+
if type(u["e"]) != type(list()):
|
198 |
+
u["e"] = [u["e"]]
|
199 |
+
|
200 |
+
tags = [{
|
201 |
+
"label": current["@grp"].upper(),
|
202 |
+
"offset_start": int(current["@offset"]),
|
203 |
+
"offset_end": int(current["@offset"]) + int(current["@len"]),
|
204 |
+
} for current in u["e"]]
|
205 |
+
|
206 |
+
else:
|
207 |
+
tags = []
|
208 |
+
|
209 |
+
_tokens = text.split(" ")
|
210 |
+
tokens = []
|
211 |
+
for i, t in enumerate(_tokens):
|
212 |
+
|
213 |
+
concat = " ".join(_tokens[0:i+1])
|
214 |
+
|
215 |
+
offset_start = len(concat) - len(t)
|
216 |
+
offset_end = len(concat)
|
217 |
+
|
218 |
+
tokens.append({
|
219 |
+
"token": t,
|
220 |
+
"offset_start": offset_start,
|
221 |
+
"offset_end": offset_end,
|
222 |
+
})
|
223 |
+
|
224 |
+
ner_tags = [["O", 0] for o in tokens]
|
225 |
+
|
226 |
+
for tag in tags:
|
227 |
+
|
228 |
+
cpt = 0
|
229 |
+
|
230 |
+
for idx, token in enumerate(tokens):
|
231 |
+
|
232 |
+
rtok = range(token["offset_start"], token["offset_end"]+1)
|
233 |
+
rtag = range(tag["offset_start"], tag["offset_end"]+1)
|
234 |
+
|
235 |
+
# Check if the ranges are overlapping
|
236 |
+
if bool(set(rtok) & set(rtag)):
|
237 |
+
|
238 |
+
# if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
|
239 |
+
# print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
|
240 |
+
|
241 |
+
if ner_tags[idx][0] == "O":
|
242 |
+
cpt += 1
|
243 |
+
ner_tags[idx][0] = tag["label"]
|
244 |
+
ner_tags[idx][1] = cpt
|
245 |
+
|
246 |
+
for i in range(len(ner_tags)):
|
247 |
+
|
248 |
+
tag = ner_tags[i][0]
|
249 |
+
|
250 |
+
if tag == "O":
|
251 |
+
continue
|
252 |
+
elif tag != "O" and ner_tags[i][1] == 1:
|
253 |
+
ner_tags[i][0] = "B-" + tag
|
254 |
+
elif tag != "O" and ner_tags[i][1] != 1:
|
255 |
+
ner_tags[i][0] = "I-" + tag
|
256 |
+
|
257 |
+
obj = {
|
258 |
+
"id": u["@id"],
|
259 |
+
"tokens": [t["token"] for t in tokens],
|
260 |
+
"ner_tags": [n[0] for n in ner_tags],
|
261 |
+
}
|
262 |
+
|
263 |
+
all_res.append(obj)
|
264 |
+
|
265 |
+
ids = [r["id"] for r in all_res]
|
266 |
+
|
267 |
+
random.seed(4)
|
268 |
+
random.shuffle(ids)
|
269 |
+
random.shuffle(ids)
|
270 |
+
random.shuffle(ids)
|
271 |
+
|
272 |
+
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
|
273 |
+
|
274 |
+
if split == "train":
|
275 |
+
allowed_ids = list(train)
|
276 |
+
elif split == "validation":
|
277 |
+
allowed_ids = list(validation)
|
278 |
+
elif split == "test":
|
279 |
+
allowed_ids = list(test)
|
280 |
+
|
281 |
+
for r in all_res:
|
282 |
+
identifier = r["id"]
|
283 |
+
if identifier in allowed_ids:
|
284 |
+
yield identifier, r
|