# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pip install xmltodict import random from pathlib import Path from itertools import product from dataclasses import dataclass from typing import Dict, List, Tuple import xmltodict import numpy as np import datasets _CITATION = """\ @article{10.1093/jamia/ocv037, author = {Kors, Jan A and Clematide, Simon and Akhondi, Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich}, title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}", journal = {Journal of the American Medical Informatics Association}, volume = {22}, number = {5}, pages = {948-956}, year = {2015}, month = {05}, abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups. To reduce the annotation workload, automatically generated preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are similar to those between individual annotators and the gold standard. The automatically generated harmonized annotation set for each language performed equally well as the best annotator for that language.Discussion The use of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety of semantic groups that are being covered, and the diversity of text genres that were annotated.}", issn = {1067-5027}, doi = {10.1093/jamia/ocv037}, url = {https://doi.org/10.1093/jamia/ocv037}, eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf}, } """ _DESCRIPTION = """\ We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups. """ _HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc" _LICENSE = "CC_BY_4p0" _URL = "https://files.ifi.uzh.ch/cl/mantra/gsc/GSC-v1.1.zip" _LANGUAGES_2 = { "es": "Spanish", "fr": "French", "de": "German", "nl": "Dutch", "en": "English", } _DATASET_TYPES = { "emea": "EMEA", "medline": "Medline", "patents": "Patent", } class StringIndex: def __init__(self, vocab): self.vocab_struct = {} print("Start building the index!") for t in vocab: if len(t) == 0: continue # Index terms by their first letter and length key = (t[0], len(t)) if (key in self.vocab_struct) == False: self.vocab_struct[key] = [] self.vocab_struct[key].append(t) print("Finished building the index!") def find(self, t): if len(t) <= 0: return "is_not_oov" key = (t[0], len(t)) if (key in self.vocab_struct) == False: return "is_oov" return "is_not_oov" if t in self.vocab_struct[key] else "is_oov" _VOCAB = StringIndex(vocab=open("./vocabulary_nachos_lowercased.txt","r").read().split("\n")) @dataclass class DrBenchmarkConfig(datasets.BuilderConfig): name: str = None version: datasets.Version = None description: str = None schema: str = None subset_id: str = None class MANTRAGSC(datasets.GeneratorBasedBuilder): SOURCE_VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [] for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES): if dataset_type == "patents" and language in ["nl", "es"]: continue BUILDER_CONFIGS.append( DrBenchmarkConfig( name=f"{language}_{dataset_type}", version=SOURCE_VERSION, description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema", schema="source", subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}", ) ) DEFAULT_CONFIG_NAME = "fr_medline" def _info(self): if self.config.name.find("emea") != -1: names = ['B-ANAT', 'I-ANAT', 'I-PHEN', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'B-PHYS', 'I-DEVI', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-LIVB', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC'] elif self.config.name.find("medline") != -1: names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-GEOG', 'B-DEVI', 'O', 'B-PHYS', 'I-LIVB', 'B-OBJC', 'I-DISO', 'I-DEVI', 'B-PHEN', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC'] elif self.config.name.find("patents") != -1: names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'I-LIVB', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-PROC', 'B-DISO', 'I-DEVI', 'B-LIVB', 'B-CHEM', 'B-PHYS'] features = datasets.Features( { "id": datasets.Value("string"), "tokens": [datasets.Value("string")], "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names = names, ) ), "is_oov": datasets.Sequence( datasets.features.ClassLabel( names=['is_not_oov', 'is_oov'], ), ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager): language, dataset_type = self.config.name.split("_") data_dir = dl_manager.download_and_extract(_URL) data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": data_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_dir": data_dir, "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_dir": data_dir, "split": "test", }, ), ] def _generate_examples(self, data_dir, split): with open(data_dir) as fd: doc = xmltodict.parse(fd.read()) all_res = [] for d in doc["Corpus"]["document"]: if type(d["unit"]) != type(list()): d["unit"] = [d["unit"]] for u in d["unit"]: text = u["text"] if "e" in u.keys(): if type(u["e"]) != type(list()): u["e"] = [u["e"]] tags = [{ "label": current["@grp"].upper(), "offset_start": int(current["@offset"]), "offset_end": int(current["@offset"]) + int(current["@len"]), } for current in u["e"]] else: tags = [] _tokens = text.split(" ") tokens = [] for i, t in enumerate(_tokens): concat = " ".join(_tokens[0:i+1]) offset_start = len(concat) - len(t) offset_end = len(concat) tokens.append({ "token": t, "offset_start": offset_start, "offset_end": offset_end, }) ner_tags = [["O", 0] for o in tokens] for tag in tags: cpt = 0 for idx, token in enumerate(tokens): rtok = range(token["offset_start"], token["offset_end"]+1) rtag = range(tag["offset_start"], tag["offset_end"]+1) # Check if the ranges are overlapping if bool(set(rtok) & set(rtag)): # if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']: # print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}") if ner_tags[idx][0] == "O": cpt += 1 ner_tags[idx][0] = tag["label"] ner_tags[idx][1] = cpt for i in range(len(ner_tags)): tag = ner_tags[i][0] if tag == "O": continue elif tag != "O" and ner_tags[i][1] == 1: ner_tags[i][0] = "B-" + tag elif tag != "O" and ner_tags[i][1] != 1: ner_tags[i][0] = "I-" + tag obj = { "id": u["@id"], "tokens": [t["token"] for t in tokens], "ner_tags": [n[0] for n in ner_tags], "is_oov": [_VOCAB.find(t["token"].lower()) for t in tokens], } all_res.append(obj) ids = [r["id"] for r in all_res] random.seed(4) random.shuffle(ids) random.shuffle(ids) random.shuffle(ids) train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)]) if split == "train": allowed_ids = list(train) elif split == "validation": allowed_ids = list(validation) elif split == "test": allowed_ids = list(test) for r in all_res: identifier = r["id"] if identifier in allowed_ids: yield identifier, r