File size: 7,817 Bytes
e25c52f b42b8c7 e25c52f 67a185d 04740c6 67a185d 04740c6 67a185d 04740c6 67a185d ea71857 67a185d 04740c6 67a185d ea376e1 05bdd9d 04740c6 05bdd9d ea71857 b9cdf5d ea71857 b9cdf5d 67a185d b42b8c7 f754903 e25c52f 67a185d e25c52f 67a185d e25c52f 3ffab66 e25c52f b149d9d e25c52f 67a185d e25c52f 67a185d e25c52f 67a185d e25c52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# pip install bs4 syntok
import os
import random
import requests
import datasets
import numpy as np
from bs4 import BeautifulSoup, ResultSet
from syntok.tokenizer import Tokenizer
tokenizer = Tokenizer()
_CITATION = """\
@InProceedings{Kocabiyikoglu2022,
author = "Alican Kocabiyikoglu and Fran{\c c}ois Portet and Prudence Gibert and Hervé Blanchon and Jean-Marc Babouchkine and Gaëtan Gavazzi",
title = "A Spoken Drug Prescription Dataset in French for Spoken Language Understanding",
booktitle = "13th Language Resources and Evaluation Conference (LREC 2022)",
year = "2022",
location = "Marseille, France"
}
"""
_DESCRIPTION = """\
PxSLU is to the best of our knowledge, the first spoken medical drug prescriptions corpus to be distributed. It contains 4 hours of transcribed
and annotated dialogues of drug prescriptions in French acquired through an experiment with 55 participants experts and non-experts in drug prescriptions.
The automatic transcriptions were verified by human effort and aligned with semantic labels to allow training of NLP models. The data acquisition
protocol was reviewed by medical experts and permit free distribution without breach of privacy and regulation.
Overview of the Corpus
The experiment has been performed in wild conditions with naive participants and medical experts. In total, the dataset includes 1981 recordings
of 55 participants (38% non-experts, 25% doctors, 36% medical practitioners), manually transcribed and semantically annotated.
"""
_URL = "https://zenodo.org/record/6524162/files/pxslu.zip?download=1"
class StringIndex:
def __init__(self, vocab):
self.vocab_struct = {}
print("Start building the index!")
for t in vocab:
if len(t) == 0:
continue
# Index terms by their first letter and length
key = (t[0], len(t))
if (key in self.vocab_struct) == False:
self.vocab_struct[key] = []
self.vocab_struct[key].append(t)
print("Finished building the index!")
def find(self, t):
key = (t[0], len(t))
if (key in self.vocab_struct) == False:
return "is_oov"
return "is_not_oov" if t in self.vocab_struct[key] else "is_oov"
_VOCAB = StringIndex(vocab=requests.get("https://huggingface.co/datasets/BioMedTok/vocabulary_nachos_lowercased/resolve/main/vocabulary_nachos_lowercased.txt").text.split("\n"))
class PxCorpus(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"PxCorpus data"),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=["medical_prescription", "negate", "none", "replace"],
),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
),
),
"is_oov": datasets.Sequence(
datasets.features.ClassLabel(
names=['is_not_oov', 'is_oov'],
),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
citation=_CITATION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
print(data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath_1": os.path.join(data_dir, "seq.in"),
"filepath_2": os.path.join(data_dir, "seq.label"),
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
"split": "test",
},
),
]
def getTokenTags(self, document):
tokens = []
ner_tags = []
is_oov = []
for pair in document.split("\n"):
if len(pair) <= 0:
continue
text, label = pair.split("\t")
tokens.append(text.lower())
ner_tags.append(label)
is_oov.append(_VOCAB.find(text.lower()))
return tokens, ner_tags, is_oov
def _generate_examples(self, filepath_1, filepath_2, filepath_3, split):
key = 0
all_res = []
f_seq_in = open(filepath_1, "r")
seq_in = f_seq_in.read().split("\n")
f_seq_in.close()
f_seq_label = open(filepath_2, "r")
seq_label = f_seq_label.read().split("\n")
f_seq_label.close()
f_in_ner = open(filepath_3, "r")
docs = f_in_ner.read().split("\n\n")
f_in_ner.close()
for idx, doc in enumerate(docs):
text = seq_in[idx]
label = seq_label[idx]
tokens, ner_tags, is_oov = self.getTokenTags(docs[idx])
if len(text) <= 0 or len(label) <= 0:
continue
all_res.append({
"id": key,
"text": text,
"label": label,
"tokens": tokens,
"ner_tags": ner_tags,
"is_oov": is_oov,
})
key += 1
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
elif split == "test":
allowed_ids = list(test)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r |