Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
ArXiv:
Upload dataloading script and README.md
Browse files- README.md +855 -0
- cross_ner.py +223 -0
README.md
ADDED
@@ -0,0 +1,855 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license: []
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
pretty_name: CrossNER is a cross-domain dataset for named entity recognition
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- extended|conll2003
|
16 |
+
tags:
|
17 |
+
- cross domain
|
18 |
+
- ai
|
19 |
+
- news
|
20 |
+
- music
|
21 |
+
- literature
|
22 |
+
- politics
|
23 |
+
- science
|
24 |
+
task_categories:
|
25 |
+
- token-classification
|
26 |
+
task_ids:
|
27 |
+
- named-entity-recognition
|
28 |
+
dataset_info:
|
29 |
+
- config_name: ai
|
30 |
+
features:
|
31 |
+
- name: id
|
32 |
+
dtype: string
|
33 |
+
- name: tokens
|
34 |
+
sequence: string
|
35 |
+
- name: ner_tags
|
36 |
+
sequence:
|
37 |
+
class_label:
|
38 |
+
names:
|
39 |
+
'0': O
|
40 |
+
'1': B-academicjournal
|
41 |
+
'2': I-academicjournal
|
42 |
+
'3': B-album
|
43 |
+
'4': I-album
|
44 |
+
'5': B-algorithm
|
45 |
+
'6': I-algorithm
|
46 |
+
'7': B-astronomicalobject
|
47 |
+
'8': I-astronomicalobject
|
48 |
+
'9': B-award
|
49 |
+
'10': I-award
|
50 |
+
'11': B-band
|
51 |
+
'12': I-band
|
52 |
+
'13': B-book
|
53 |
+
'14': I-book
|
54 |
+
'15': B-chemicalcompound
|
55 |
+
'16': I-chemicalcompound
|
56 |
+
'17': B-chemicalelement
|
57 |
+
'18': I-chemicalelement
|
58 |
+
'19': B-conference
|
59 |
+
'20': I-conference
|
60 |
+
'21': B-country
|
61 |
+
'22': I-country
|
62 |
+
'23': B-discipline
|
63 |
+
'24': I-discipline
|
64 |
+
'25': B-election
|
65 |
+
'26': I-election
|
66 |
+
'27': B-enzyme
|
67 |
+
'28': I-enzyme
|
68 |
+
'29': B-event
|
69 |
+
'30': I-event
|
70 |
+
'31': B-field
|
71 |
+
'32': I-field
|
72 |
+
'33': B-literarygenre
|
73 |
+
'34': I-literarygenre
|
74 |
+
'35': B-location
|
75 |
+
'36': I-location
|
76 |
+
'37': B-magazine
|
77 |
+
'38': I-magazine
|
78 |
+
'39': B-metrics
|
79 |
+
'40': I-metrics
|
80 |
+
'41': B-misc
|
81 |
+
'42': I-misc
|
82 |
+
'43': B-musicalartist
|
83 |
+
'44': I-musicalartist
|
84 |
+
'45': B-musicalinstrument
|
85 |
+
'46': I-musicalinstrument
|
86 |
+
'47': B-musicgenre
|
87 |
+
'48': I-musicgenre
|
88 |
+
'49': B-organisation
|
89 |
+
'50': I-organisation
|
90 |
+
'51': B-person
|
91 |
+
'52': I-person
|
92 |
+
'53': B-poem
|
93 |
+
'54': I-poem
|
94 |
+
'55': B-politicalparty
|
95 |
+
'56': I-politicalparty
|
96 |
+
'57': B-politician
|
97 |
+
'58': I-politician
|
98 |
+
'59': B-product
|
99 |
+
'60': I-product
|
100 |
+
'61': B-programlang
|
101 |
+
'62': I-programlang
|
102 |
+
'63': B-protein
|
103 |
+
'64': I-protein
|
104 |
+
'65': B-researcher
|
105 |
+
'66': I-researcher
|
106 |
+
'67': B-scientist
|
107 |
+
'68': I-scientist
|
108 |
+
'69': B-song
|
109 |
+
'70': I-song
|
110 |
+
'71': B-task
|
111 |
+
'72': I-task
|
112 |
+
'73': B-theory
|
113 |
+
'74': I-theory
|
114 |
+
'75': B-university
|
115 |
+
'76': I-university
|
116 |
+
'77': B-writer
|
117 |
+
'78': I-writer
|
118 |
+
splits:
|
119 |
+
- name: train
|
120 |
+
num_bytes: 65080
|
121 |
+
num_examples: 100
|
122 |
+
- name: validation
|
123 |
+
num_bytes: 189453
|
124 |
+
num_examples: 350
|
125 |
+
- name: test
|
126 |
+
num_bytes: 225691
|
127 |
+
num_examples: 431
|
128 |
+
download_size: 289173
|
129 |
+
dataset_size: 480224
|
130 |
+
- config_name: literature
|
131 |
+
features:
|
132 |
+
- name: id
|
133 |
+
dtype: string
|
134 |
+
- name: tokens
|
135 |
+
sequence: string
|
136 |
+
- name: ner_tags
|
137 |
+
sequence:
|
138 |
+
class_label:
|
139 |
+
names:
|
140 |
+
'0': O
|
141 |
+
'1': B-academicjournal
|
142 |
+
'2': I-academicjournal
|
143 |
+
'3': B-album
|
144 |
+
'4': I-album
|
145 |
+
'5': B-algorithm
|
146 |
+
'6': I-algorithm
|
147 |
+
'7': B-astronomicalobject
|
148 |
+
'8': I-astronomicalobject
|
149 |
+
'9': B-award
|
150 |
+
'10': I-award
|
151 |
+
'11': B-band
|
152 |
+
'12': I-band
|
153 |
+
'13': B-book
|
154 |
+
'14': I-book
|
155 |
+
'15': B-chemicalcompound
|
156 |
+
'16': I-chemicalcompound
|
157 |
+
'17': B-chemicalelement
|
158 |
+
'18': I-chemicalelement
|
159 |
+
'19': B-conference
|
160 |
+
'20': I-conference
|
161 |
+
'21': B-country
|
162 |
+
'22': I-country
|
163 |
+
'23': B-discipline
|
164 |
+
'24': I-discipline
|
165 |
+
'25': B-election
|
166 |
+
'26': I-election
|
167 |
+
'27': B-enzyme
|
168 |
+
'28': I-enzyme
|
169 |
+
'29': B-event
|
170 |
+
'30': I-event
|
171 |
+
'31': B-field
|
172 |
+
'32': I-field
|
173 |
+
'33': B-literarygenre
|
174 |
+
'34': I-literarygenre
|
175 |
+
'35': B-location
|
176 |
+
'36': I-location
|
177 |
+
'37': B-magazine
|
178 |
+
'38': I-magazine
|
179 |
+
'39': B-metrics
|
180 |
+
'40': I-metrics
|
181 |
+
'41': B-misc
|
182 |
+
'42': I-misc
|
183 |
+
'43': B-musicalartist
|
184 |
+
'44': I-musicalartist
|
185 |
+
'45': B-musicalinstrument
|
186 |
+
'46': I-musicalinstrument
|
187 |
+
'47': B-musicgenre
|
188 |
+
'48': I-musicgenre
|
189 |
+
'49': B-organisation
|
190 |
+
'50': I-organisation
|
191 |
+
'51': B-person
|
192 |
+
'52': I-person
|
193 |
+
'53': B-poem
|
194 |
+
'54': I-poem
|
195 |
+
'55': B-politicalparty
|
196 |
+
'56': I-politicalparty
|
197 |
+
'57': B-politician
|
198 |
+
'58': I-politician
|
199 |
+
'59': B-product
|
200 |
+
'60': I-product
|
201 |
+
'61': B-programlang
|
202 |
+
'62': I-programlang
|
203 |
+
'63': B-protein
|
204 |
+
'64': I-protein
|
205 |
+
'65': B-researcher
|
206 |
+
'66': I-researcher
|
207 |
+
'67': B-scientist
|
208 |
+
'68': I-scientist
|
209 |
+
'69': B-song
|
210 |
+
'70': I-song
|
211 |
+
'71': B-task
|
212 |
+
'72': I-task
|
213 |
+
'73': B-theory
|
214 |
+
'74': I-theory
|
215 |
+
'75': B-university
|
216 |
+
'76': I-university
|
217 |
+
'77': B-writer
|
218 |
+
'78': I-writer
|
219 |
+
splits:
|
220 |
+
- name: train
|
221 |
+
num_bytes: 63181
|
222 |
+
num_examples: 100
|
223 |
+
- name: validation
|
224 |
+
num_bytes: 244076
|
225 |
+
num_examples: 400
|
226 |
+
- name: test
|
227 |
+
num_bytes: 270092
|
228 |
+
num_examples: 416
|
229 |
+
download_size: 334380
|
230 |
+
dataset_size: 577349
|
231 |
+
- config_name: music
|
232 |
+
features:
|
233 |
+
- name: id
|
234 |
+
dtype: string
|
235 |
+
- name: tokens
|
236 |
+
sequence: string
|
237 |
+
- name: ner_tags
|
238 |
+
sequence:
|
239 |
+
class_label:
|
240 |
+
names:
|
241 |
+
'0': O
|
242 |
+
'1': B-academicjournal
|
243 |
+
'2': I-academicjournal
|
244 |
+
'3': B-album
|
245 |
+
'4': I-album
|
246 |
+
'5': B-algorithm
|
247 |
+
'6': I-algorithm
|
248 |
+
'7': B-astronomicalobject
|
249 |
+
'8': I-astronomicalobject
|
250 |
+
'9': B-award
|
251 |
+
'10': I-award
|
252 |
+
'11': B-band
|
253 |
+
'12': I-band
|
254 |
+
'13': B-book
|
255 |
+
'14': I-book
|
256 |
+
'15': B-chemicalcompound
|
257 |
+
'16': I-chemicalcompound
|
258 |
+
'17': B-chemicalelement
|
259 |
+
'18': I-chemicalelement
|
260 |
+
'19': B-conference
|
261 |
+
'20': I-conference
|
262 |
+
'21': B-country
|
263 |
+
'22': I-country
|
264 |
+
'23': B-discipline
|
265 |
+
'24': I-discipline
|
266 |
+
'25': B-election
|
267 |
+
'26': I-election
|
268 |
+
'27': B-enzyme
|
269 |
+
'28': I-enzyme
|
270 |
+
'29': B-event
|
271 |
+
'30': I-event
|
272 |
+
'31': B-field
|
273 |
+
'32': I-field
|
274 |
+
'33': B-literarygenre
|
275 |
+
'34': I-literarygenre
|
276 |
+
'35': B-location
|
277 |
+
'36': I-location
|
278 |
+
'37': B-magazine
|
279 |
+
'38': I-magazine
|
280 |
+
'39': B-metrics
|
281 |
+
'40': I-metrics
|
282 |
+
'41': B-misc
|
283 |
+
'42': I-misc
|
284 |
+
'43': B-musicalartist
|
285 |
+
'44': I-musicalartist
|
286 |
+
'45': B-musicalinstrument
|
287 |
+
'46': I-musicalinstrument
|
288 |
+
'47': B-musicgenre
|
289 |
+
'48': I-musicgenre
|
290 |
+
'49': B-organisation
|
291 |
+
'50': I-organisation
|
292 |
+
'51': B-person
|
293 |
+
'52': I-person
|
294 |
+
'53': B-poem
|
295 |
+
'54': I-poem
|
296 |
+
'55': B-politicalparty
|
297 |
+
'56': I-politicalparty
|
298 |
+
'57': B-politician
|
299 |
+
'58': I-politician
|
300 |
+
'59': B-product
|
301 |
+
'60': I-product
|
302 |
+
'61': B-programlang
|
303 |
+
'62': I-programlang
|
304 |
+
'63': B-protein
|
305 |
+
'64': I-protein
|
306 |
+
'65': B-researcher
|
307 |
+
'66': I-researcher
|
308 |
+
'67': B-scientist
|
309 |
+
'68': I-scientist
|
310 |
+
'69': B-song
|
311 |
+
'70': I-song
|
312 |
+
'71': B-task
|
313 |
+
'72': I-task
|
314 |
+
'73': B-theory
|
315 |
+
'74': I-theory
|
316 |
+
'75': B-university
|
317 |
+
'76': I-university
|
318 |
+
'77': B-writer
|
319 |
+
'78': I-writer
|
320 |
+
splits:
|
321 |
+
- name: train
|
322 |
+
num_bytes: 65077
|
323 |
+
num_examples: 100
|
324 |
+
- name: validation
|
325 |
+
num_bytes: 259702
|
326 |
+
num_examples: 380
|
327 |
+
- name: test
|
328 |
+
num_bytes: 327195
|
329 |
+
num_examples: 465
|
330 |
+
download_size: 414065
|
331 |
+
dataset_size: 651974
|
332 |
+
- config_name: conll2003
|
333 |
+
features:
|
334 |
+
- name: id
|
335 |
+
dtype: string
|
336 |
+
- name: tokens
|
337 |
+
sequence: string
|
338 |
+
- name: ner_tags
|
339 |
+
sequence:
|
340 |
+
class_label:
|
341 |
+
names:
|
342 |
+
'0': O
|
343 |
+
'1': B-academicjournal
|
344 |
+
'2': I-academicjournal
|
345 |
+
'3': B-album
|
346 |
+
'4': I-album
|
347 |
+
'5': B-algorithm
|
348 |
+
'6': I-algorithm
|
349 |
+
'7': B-astronomicalobject
|
350 |
+
'8': I-astronomicalobject
|
351 |
+
'9': B-award
|
352 |
+
'10': I-award
|
353 |
+
'11': B-band
|
354 |
+
'12': I-band
|
355 |
+
'13': B-book
|
356 |
+
'14': I-book
|
357 |
+
'15': B-chemicalcompound
|
358 |
+
'16': I-chemicalcompound
|
359 |
+
'17': B-chemicalelement
|
360 |
+
'18': I-chemicalelement
|
361 |
+
'19': B-conference
|
362 |
+
'20': I-conference
|
363 |
+
'21': B-country
|
364 |
+
'22': I-country
|
365 |
+
'23': B-discipline
|
366 |
+
'24': I-discipline
|
367 |
+
'25': B-election
|
368 |
+
'26': I-election
|
369 |
+
'27': B-enzyme
|
370 |
+
'28': I-enzyme
|
371 |
+
'29': B-event
|
372 |
+
'30': I-event
|
373 |
+
'31': B-field
|
374 |
+
'32': I-field
|
375 |
+
'33': B-literarygenre
|
376 |
+
'34': I-literarygenre
|
377 |
+
'35': B-location
|
378 |
+
'36': I-location
|
379 |
+
'37': B-magazine
|
380 |
+
'38': I-magazine
|
381 |
+
'39': B-metrics
|
382 |
+
'40': I-metrics
|
383 |
+
'41': B-misc
|
384 |
+
'42': I-misc
|
385 |
+
'43': B-musicalartist
|
386 |
+
'44': I-musicalartist
|
387 |
+
'45': B-musicalinstrument
|
388 |
+
'46': I-musicalinstrument
|
389 |
+
'47': B-musicgenre
|
390 |
+
'48': I-musicgenre
|
391 |
+
'49': B-organisation
|
392 |
+
'50': I-organisation
|
393 |
+
'51': B-person
|
394 |
+
'52': I-person
|
395 |
+
'53': B-poem
|
396 |
+
'54': I-poem
|
397 |
+
'55': B-politicalparty
|
398 |
+
'56': I-politicalparty
|
399 |
+
'57': B-politician
|
400 |
+
'58': I-politician
|
401 |
+
'59': B-product
|
402 |
+
'60': I-product
|
403 |
+
'61': B-programlang
|
404 |
+
'62': I-programlang
|
405 |
+
'63': B-protein
|
406 |
+
'64': I-protein
|
407 |
+
'65': B-researcher
|
408 |
+
'66': I-researcher
|
409 |
+
'67': B-scientist
|
410 |
+
'68': I-scientist
|
411 |
+
'69': B-song
|
412 |
+
'70': I-song
|
413 |
+
'71': B-task
|
414 |
+
'72': I-task
|
415 |
+
'73': B-theory
|
416 |
+
'74': I-theory
|
417 |
+
'75': B-university
|
418 |
+
'76': I-university
|
419 |
+
'77': B-writer
|
420 |
+
'78': I-writer
|
421 |
+
splits:
|
422 |
+
- name: train
|
423 |
+
num_bytes: 3561081
|
424 |
+
num_examples: 14041
|
425 |
+
- name: validation
|
426 |
+
num_bytes: 891431
|
427 |
+
num_examples: 3250
|
428 |
+
- name: test
|
429 |
+
num_bytes: 811470
|
430 |
+
num_examples: 3453
|
431 |
+
download_size: 2694794
|
432 |
+
dataset_size: 5263982
|
433 |
+
- config_name: politics
|
434 |
+
features:
|
435 |
+
- name: id
|
436 |
+
dtype: string
|
437 |
+
- name: tokens
|
438 |
+
sequence: string
|
439 |
+
- name: ner_tags
|
440 |
+
sequence:
|
441 |
+
class_label:
|
442 |
+
names:
|
443 |
+
'0': O
|
444 |
+
'1': B-academicjournal
|
445 |
+
'2': I-academicjournal
|
446 |
+
'3': B-album
|
447 |
+
'4': I-album
|
448 |
+
'5': B-algorithm
|
449 |
+
'6': I-algorithm
|
450 |
+
'7': B-astronomicalobject
|
451 |
+
'8': I-astronomicalobject
|
452 |
+
'9': B-award
|
453 |
+
'10': I-award
|
454 |
+
'11': B-band
|
455 |
+
'12': I-band
|
456 |
+
'13': B-book
|
457 |
+
'14': I-book
|
458 |
+
'15': B-chemicalcompound
|
459 |
+
'16': I-chemicalcompound
|
460 |
+
'17': B-chemicalelement
|
461 |
+
'18': I-chemicalelement
|
462 |
+
'19': B-conference
|
463 |
+
'20': I-conference
|
464 |
+
'21': B-country
|
465 |
+
'22': I-country
|
466 |
+
'23': B-discipline
|
467 |
+
'24': I-discipline
|
468 |
+
'25': B-election
|
469 |
+
'26': I-election
|
470 |
+
'27': B-enzyme
|
471 |
+
'28': I-enzyme
|
472 |
+
'29': B-event
|
473 |
+
'30': I-event
|
474 |
+
'31': B-field
|
475 |
+
'32': I-field
|
476 |
+
'33': B-literarygenre
|
477 |
+
'34': I-literarygenre
|
478 |
+
'35': B-location
|
479 |
+
'36': I-location
|
480 |
+
'37': B-magazine
|
481 |
+
'38': I-magazine
|
482 |
+
'39': B-metrics
|
483 |
+
'40': I-metrics
|
484 |
+
'41': B-misc
|
485 |
+
'42': I-misc
|
486 |
+
'43': B-musicalartist
|
487 |
+
'44': I-musicalartist
|
488 |
+
'45': B-musicalinstrument
|
489 |
+
'46': I-musicalinstrument
|
490 |
+
'47': B-musicgenre
|
491 |
+
'48': I-musicgenre
|
492 |
+
'49': B-organisation
|
493 |
+
'50': I-organisation
|
494 |
+
'51': B-person
|
495 |
+
'52': I-person
|
496 |
+
'53': B-poem
|
497 |
+
'54': I-poem
|
498 |
+
'55': B-politicalparty
|
499 |
+
'56': I-politicalparty
|
500 |
+
'57': B-politician
|
501 |
+
'58': I-politician
|
502 |
+
'59': B-product
|
503 |
+
'60': I-product
|
504 |
+
'61': B-programlang
|
505 |
+
'62': I-programlang
|
506 |
+
'63': B-protein
|
507 |
+
'64': I-protein
|
508 |
+
'65': B-researcher
|
509 |
+
'66': I-researcher
|
510 |
+
'67': B-scientist
|
511 |
+
'68': I-scientist
|
512 |
+
'69': B-song
|
513 |
+
'70': I-song
|
514 |
+
'71': B-task
|
515 |
+
'72': I-task
|
516 |
+
'73': B-theory
|
517 |
+
'74': I-theory
|
518 |
+
'75': B-university
|
519 |
+
'76': I-university
|
520 |
+
'77': B-writer
|
521 |
+
'78': I-writer
|
522 |
+
splits:
|
523 |
+
- name: train
|
524 |
+
num_bytes: 143507
|
525 |
+
num_examples: 200
|
526 |
+
- name: validation
|
527 |
+
num_bytes: 422760
|
528 |
+
num_examples: 541
|
529 |
+
- name: test
|
530 |
+
num_bytes: 472690
|
531 |
+
num_examples: 651
|
532 |
+
download_size: 724168
|
533 |
+
dataset_size: 1038957
|
534 |
+
- config_name: science
|
535 |
+
features:
|
536 |
+
- name: id
|
537 |
+
dtype: string
|
538 |
+
- name: tokens
|
539 |
+
sequence: string
|
540 |
+
- name: ner_tags
|
541 |
+
sequence:
|
542 |
+
class_label:
|
543 |
+
names:
|
544 |
+
'0': O
|
545 |
+
'1': B-academicjournal
|
546 |
+
'2': I-academicjournal
|
547 |
+
'3': B-album
|
548 |
+
'4': I-album
|
549 |
+
'5': B-algorithm
|
550 |
+
'6': I-algorithm
|
551 |
+
'7': B-astronomicalobject
|
552 |
+
'8': I-astronomicalobject
|
553 |
+
'9': B-award
|
554 |
+
'10': I-award
|
555 |
+
'11': B-band
|
556 |
+
'12': I-band
|
557 |
+
'13': B-book
|
558 |
+
'14': I-book
|
559 |
+
'15': B-chemicalcompound
|
560 |
+
'16': I-chemicalcompound
|
561 |
+
'17': B-chemicalelement
|
562 |
+
'18': I-chemicalelement
|
563 |
+
'19': B-conference
|
564 |
+
'20': I-conference
|
565 |
+
'21': B-country
|
566 |
+
'22': I-country
|
567 |
+
'23': B-discipline
|
568 |
+
'24': I-discipline
|
569 |
+
'25': B-election
|
570 |
+
'26': I-election
|
571 |
+
'27': B-enzyme
|
572 |
+
'28': I-enzyme
|
573 |
+
'29': B-event
|
574 |
+
'30': I-event
|
575 |
+
'31': B-field
|
576 |
+
'32': I-field
|
577 |
+
'33': B-literarygenre
|
578 |
+
'34': I-literarygenre
|
579 |
+
'35': B-location
|
580 |
+
'36': I-location
|
581 |
+
'37': B-magazine
|
582 |
+
'38': I-magazine
|
583 |
+
'39': B-metrics
|
584 |
+
'40': I-metrics
|
585 |
+
'41': B-misc
|
586 |
+
'42': I-misc
|
587 |
+
'43': B-musicalartist
|
588 |
+
'44': I-musicalartist
|
589 |
+
'45': B-musicalinstrument
|
590 |
+
'46': I-musicalinstrument
|
591 |
+
'47': B-musicgenre
|
592 |
+
'48': I-musicgenre
|
593 |
+
'49': B-organisation
|
594 |
+
'50': I-organisation
|
595 |
+
'51': B-person
|
596 |
+
'52': I-person
|
597 |
+
'53': B-poem
|
598 |
+
'54': I-poem
|
599 |
+
'55': B-politicalparty
|
600 |
+
'56': I-politicalparty
|
601 |
+
'57': B-politician
|
602 |
+
'58': I-politician
|
603 |
+
'59': B-product
|
604 |
+
'60': I-product
|
605 |
+
'61': B-programlang
|
606 |
+
'62': I-programlang
|
607 |
+
'63': B-protein
|
608 |
+
'64': I-protein
|
609 |
+
'65': B-researcher
|
610 |
+
'66': I-researcher
|
611 |
+
'67': B-scientist
|
612 |
+
'68': I-scientist
|
613 |
+
'69': B-song
|
614 |
+
'70': I-song
|
615 |
+
'71': B-task
|
616 |
+
'72': I-task
|
617 |
+
'73': B-theory
|
618 |
+
'74': I-theory
|
619 |
+
'75': B-university
|
620 |
+
'76': I-university
|
621 |
+
'77': B-writer
|
622 |
+
'78': I-writer
|
623 |
+
splits:
|
624 |
+
- name: train
|
625 |
+
num_bytes: 121928
|
626 |
+
num_examples: 200
|
627 |
+
- name: validation
|
628 |
+
num_bytes: 276118
|
629 |
+
num_examples: 450
|
630 |
+
- name: test
|
631 |
+
num_bytes: 334181
|
632 |
+
num_examples: 543
|
633 |
+
download_size: 485191
|
634 |
+
dataset_size: 732227
|
635 |
+
---
|
636 |
+
# Dataset Card for CrossRE
|
637 |
+
## Table of Contents
|
638 |
+
- [Table of Contents](#table-of-contents)
|
639 |
+
- [Dataset Description](#dataset-description)
|
640 |
+
- [Dataset Summary](#dataset-summary)
|
641 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
642 |
+
- [Languages](#languages)
|
643 |
+
- [Dataset Structure](#dataset-structure)
|
644 |
+
- [Data Instances](#data-instances)
|
645 |
+
- [Data Fields](#data-fields)
|
646 |
+
- [Data Splits](#data-splits)
|
647 |
+
- [Dataset Creation](#dataset-creation)
|
648 |
+
- [Curation Rationale](#curation-rationale)
|
649 |
+
- [Source Data](#source-data)
|
650 |
+
- [Annotations](#annotations)
|
651 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
652 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
653 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
654 |
+
- [Discussion of Biases](#discussion-of-biases)
|
655 |
+
- [Other Known Limitations](#other-known-limitations)
|
656 |
+
- [Additional Information](#additional-information)
|
657 |
+
- [Dataset Curators](#dataset-curators)
|
658 |
+
- [Licensing Information](#licensing-information)
|
659 |
+
- [Citation Information](#citation-information)
|
660 |
+
- [Contributions](#contributions)
|
661 |
+
|
662 |
+
## Dataset Description
|
663 |
+
- **Repository:** [CrossNER](https://github.com/zliucr/CrossNER)
|
664 |
+
- **Paper:** [CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373)
|
665 |
+
|
666 |
+
### Dataset Summary
|
667 |
+
CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains
|
668 |
+
(Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for
|
669 |
+
different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five
|
670 |
+
domains.
|
671 |
+
|
672 |
+
For details, see the paper:
|
673 |
+
[CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373)
|
674 |
+
|
675 |
+
### Supported Tasks and Leaderboards
|
676 |
+
|
677 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
678 |
+
|
679 |
+
### Languages
|
680 |
+
|
681 |
+
The language data in CrossNER is in English (BCP-47 en)
|
682 |
+
|
683 |
+
## Dataset Structure
|
684 |
+
|
685 |
+
### Data Instances
|
686 |
+
|
687 |
+
#### conll2003
|
688 |
+
- **Size of downloaded dataset files:** 2.69 MB
|
689 |
+
- **Size of the generated dataset:** 5.26 MB
|
690 |
+
|
691 |
+
An example of 'train' looks as follows:
|
692 |
+
```json
|
693 |
+
{
|
694 |
+
"id": "0",
|
695 |
+
"tokens": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."],
|
696 |
+
"ner_tags": [49, 0, 41, 0, 0, 0, 41, 0, 0]
|
697 |
+
}
|
698 |
+
```
|
699 |
+
|
700 |
+
#### politics
|
701 |
+
- **Size of downloaded dataset files:** 0.72 MB
|
702 |
+
- **Size of the generated dataset:** 1.04 MB
|
703 |
+
|
704 |
+
An example of 'train' looks as follows:
|
705 |
+
```json
|
706 |
+
{
|
707 |
+
"id": "0",
|
708 |
+
"tokens": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."],
|
709 |
+
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 55, 56, 0, 0, 0, 0, 0, 55, 56, 56, 56, 56, 56, 0, 55, 56, 56, 56, 56, 0]
|
710 |
+
}
|
711 |
+
```
|
712 |
+
|
713 |
+
#### science
|
714 |
+
- **Size of downloaded dataset files:** 0.49 MB
|
715 |
+
- **Size of the generated dataset:** 0.73 MB
|
716 |
+
|
717 |
+
An example of 'train' looks as follows:
|
718 |
+
```json
|
719 |
+
{
|
720 |
+
"id": "0",
|
721 |
+
"tokens": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."],
|
722 |
+
"ner_tags": [0, 0, 0, 0, 15, 16, 0, 15, 16, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
723 |
+
}
|
724 |
+
```
|
725 |
+
|
726 |
+
#### music
|
727 |
+
- **Size of downloaded dataset files:** 0.41 MB
|
728 |
+
- **Size of the generated dataset:** 0.65 MB
|
729 |
+
|
730 |
+
An example of 'train' looks as follows:
|
731 |
+
```json
|
732 |
+
{
|
733 |
+
"id": "0",
|
734 |
+
"tokens": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."],
|
735 |
+
"ner_tags": [0, 0, 0, 0, 35, 36, 36, 0, 0, 0, 0, 0, 0, 29, 30, 30, 30, 30, 0]
|
736 |
+
}
|
737 |
+
```
|
738 |
+
|
739 |
+
#### literature
|
740 |
+
- **Size of downloaded dataset files:** 0.33 MB
|
741 |
+
- **Size of the generated dataset:** 0.58 MB
|
742 |
+
|
743 |
+
An example of 'train' looks as follows:
|
744 |
+
```json
|
745 |
+
{
|
746 |
+
"id": "0",
|
747 |
+
"tokens": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."],
|
748 |
+
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 51, 52, 52, 0, 0, 21, 22, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 21, 0, 21, 0, 0, 41, 0, 0, 0, 0, 0, 0, 51, 52, 0, 0, 41, 0, 0, 0, 0, 0, 51, 0, 0]
|
749 |
+
}
|
750 |
+
```
|
751 |
+
|
752 |
+
#### ai
|
753 |
+
- **Size of downloaded dataset files:** 0.29 MB
|
754 |
+
- **Size of the generated dataset:** 0.48 MB
|
755 |
+
|
756 |
+
An example of 'train' looks as follows:
|
757 |
+
```json
|
758 |
+
{
|
759 |
+
"id": "0",
|
760 |
+
"tokens": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."],
|
761 |
+
"ner_tags": [0, 0, 0, 59, 60, 60, 0, 0, 0, 0, 31, 32, 0, 71, 72, 0, 71, 72, 0, 0, 0, 71, 72, 72, 0, 0, 31, 32, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
762 |
+
}
|
763 |
+
```
|
764 |
+
|
765 |
+
### Data Fields
|
766 |
+
|
767 |
+
The data fields are the same among all splits.
|
768 |
+
- `id`: the instance id of this sentence, a `string` feature.
|
769 |
+
- `tokens`: the list of tokens of this sentence, a `list` of `string` features.
|
770 |
+
- `ner_tags`: the list of entity tags, a `list` of classification labels.
|
771 |
+
|
772 |
+
```json
|
773 |
+
{"O": 0, "B-academicjournal": 1, "I-academicjournal": 2, "B-album": 3, "I-album": 4, "B-algorithm": 5, "I-algorithm": 6, "B-astronomicalobject": 7, "I-astronomicalobject": 8, "B-award": 9, "I-award": 10, "B-band": 11, "I-band": 12, "B-book": 13, "I-book": 14, "B-chemicalcompound": 15, "I-chemicalcompound": 16, "B-chemicalelement": 17, "I-chemicalelement": 18, "B-conference": 19, "I-conference": 20, "B-country": 21, "I-country": 22, "B-discipline": 23, "I-discipline": 24, "B-election": 25, "I-election": 26, "B-enzyme": 27, "I-enzyme": 28, "B-event": 29, "I-event": 30, "B-field": 31, "I-field": 32, "B-literarygenre": 33, "I-literarygenre": 34, "B-location": 35, "I-location": 36, "B-magazine": 37, "I-magazine": 38, "B-metrics": 39, "I-metrics": 40, "B-misc": 41, "I-misc": 42, "B-musicalartist": 43, "I-musicalartist": 44, "B-musicalinstrument": 45, "I-musicalinstrument": 46, "B-musicgenre": 47, "I-musicgenre": 48, "B-organisation": 49, "I-organisation": 50, "B-person": 51, "I-person": 52, "B-poem": 53, "I-poem": 54, "B-politicalparty": 55, "I-politicalparty": 56, "B-politician": 57, "I-politician": 58, "B-product": 59, "I-product": 60, "B-programlang": 61, "I-programlang": 62, "B-protein": 63, "I-protein": 64, "B-researcher": 65, "I-researcher": 66, "B-scientist": 67, "I-scientist": 68, "B-song": 69, "I-song": 70, "B-task": 71, "I-task": 72, "B-theory": 73, "I-theory": 74, "B-university": 75, "I-university": 76, "B-writer": 77, "I-writer": 78}
|
774 |
+
```
|
775 |
+
|
776 |
+
### Data Splits
|
777 |
+
| | Train | Dev | Test |
|
778 |
+
|--------------|--------|-------|-------|
|
779 |
+
| conll2003 | 14,987 | 3,466 | 3,684 |
|
780 |
+
| politics | 200 | 541 | 651 |
|
781 |
+
| science | 200 | 450 | 543 |
|
782 |
+
| music | 100 | 380 | 456 |
|
783 |
+
| literature | 100 | 400 | 416 |
|
784 |
+
| ai | 100 | 350 | 431 |
|
785 |
+
|
786 |
+
## Dataset Creation
|
787 |
+
|
788 |
+
### Curation Rationale
|
789 |
+
|
790 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
791 |
+
|
792 |
+
### Source Data
|
793 |
+
|
794 |
+
#### Initial Data Collection and Normalization
|
795 |
+
|
796 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
797 |
+
|
798 |
+
#### Who are the source language producers?
|
799 |
+
|
800 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
801 |
+
|
802 |
+
### Annotations
|
803 |
+
|
804 |
+
#### Annotation process
|
805 |
+
|
806 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
807 |
+
|
808 |
+
#### Who are the annotators?
|
809 |
+
|
810 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
811 |
+
|
812 |
+
### Personal and Sensitive Information
|
813 |
+
|
814 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
815 |
+
|
816 |
+
## Considerations for Using the Data
|
817 |
+
|
818 |
+
### Social Impact of Dataset
|
819 |
+
|
820 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
821 |
+
|
822 |
+
### Discussion of Biases
|
823 |
+
|
824 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
825 |
+
|
826 |
+
### Other Known Limitations
|
827 |
+
|
828 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
829 |
+
|
830 |
+
## Additional Information
|
831 |
+
|
832 |
+
### Dataset Curators
|
833 |
+
|
834 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
835 |
+
|
836 |
+
### Licensing Information
|
837 |
+
|
838 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
839 |
+
|
840 |
+
### Citation Information
|
841 |
+
|
842 |
+
```
|
843 |
+
@article{liu2020crossner,
|
844 |
+
title={CrossNER: Evaluating Cross-Domain Named Entity Recognition},
|
845 |
+
author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung},
|
846 |
+
year={2020},
|
847 |
+
eprint={2012.04373},
|
848 |
+
archivePrefix={arXiv},
|
849 |
+
primaryClass={cs.CL}
|
850 |
+
}
|
851 |
+
```
|
852 |
+
|
853 |
+
### Contributions
|
854 |
+
|
855 |
+
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
|
cross_ner.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""CrossNER is a cross-domain dataset for named entity recognition"""
|
15 |
+
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@article{liu2020crossner,
|
25 |
+
title={CrossNER: Evaluating Cross-Domain Named Entity Recognition},
|
26 |
+
author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung},
|
27 |
+
year={2020},
|
28 |
+
eprint={2012.04373},
|
29 |
+
archivePrefix={arXiv},
|
30 |
+
primaryClass={cs.CL}
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains
|
36 |
+
(Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for
|
37 |
+
different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five
|
38 |
+
domains.
|
39 |
+
|
40 |
+
For details, see the paper:
|
41 |
+
[CrossNER: Evaluating Cross-Domain Named Entity Recognition](https://arxiv.org/abs/2012.04373)
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://github.com/zliucr/CrossNER"
|
45 |
+
|
46 |
+
# TODO: Add the licence for the dataset here if you can find it
|
47 |
+
_LICENSE = ""
|
48 |
+
|
49 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
50 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
51 |
+
_URLS = {
|
52 |
+
"conll2003": {
|
53 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/conll2003/train.txt",
|
54 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/conll2003/dev.txt",
|
55 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/conll2003/test.txt",
|
56 |
+
},
|
57 |
+
"politics": {
|
58 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/politics/train.txt",
|
59 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/politics/dev.txt",
|
60 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/politics/test.txt",
|
61 |
+
},
|
62 |
+
"science": {
|
63 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/science/train.txt",
|
64 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/science/dev.txt",
|
65 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/science/test.txt",
|
66 |
+
},
|
67 |
+
"music": {
|
68 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/music/train.txt",
|
69 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/music/dev.txt",
|
70 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/music/test.txt",
|
71 |
+
},
|
72 |
+
"literature": {
|
73 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/literature/train.txt",
|
74 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/literature/dev.txt",
|
75 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/literature/test.txt",
|
76 |
+
},
|
77 |
+
"ai": {
|
78 |
+
"train": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/ai/train.txt",
|
79 |
+
"validation": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/ai/dev.txt",
|
80 |
+
"test": "https://raw.githubusercontent.com/zliucr/CrossNER/main/ner_data/ai/test.txt",
|
81 |
+
},
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
_CLASS_LABELS = [
|
86 |
+
"O",
|
87 |
+
"B-academicjournal", "I-academicjournal",
|
88 |
+
"B-album", "I-album",
|
89 |
+
"B-algorithm", "I-algorithm",
|
90 |
+
"B-astronomicalobject", "I-astronomicalobject",
|
91 |
+
"B-award", "I-award",
|
92 |
+
"B-band", "I-band",
|
93 |
+
"B-book", "I-book",
|
94 |
+
"B-chemicalcompound", "I-chemicalcompound",
|
95 |
+
"B-chemicalelement", "I-chemicalelement",
|
96 |
+
"B-conference", "I-conference",
|
97 |
+
"B-country", "I-country",
|
98 |
+
"B-discipline", "I-discipline",
|
99 |
+
"B-election", "I-election",
|
100 |
+
"B-enzyme", "I-enzyme",
|
101 |
+
"B-event", "I-event",
|
102 |
+
"B-field", "I-field",
|
103 |
+
"B-literarygenre", "I-literarygenre",
|
104 |
+
"B-location", "I-location",
|
105 |
+
"B-magazine", "I-magazine",
|
106 |
+
"B-metrics", "I-metrics",
|
107 |
+
"B-misc", "I-misc",
|
108 |
+
"B-musicalartist", "I-musicalartist",
|
109 |
+
"B-musicalinstrument", "I-musicalinstrument",
|
110 |
+
"B-musicgenre", "I-musicgenre",
|
111 |
+
"B-organisation", "I-organisation",
|
112 |
+
"B-person", "I-person",
|
113 |
+
"B-poem", "I-poem",
|
114 |
+
"B-politicalparty", "I-politicalparty",
|
115 |
+
"B-politician", "I-politician",
|
116 |
+
"B-product", "I-product",
|
117 |
+
"B-programlang", "I-programlang",
|
118 |
+
"B-protein", "I-protein",
|
119 |
+
"B-researcher", "I-researcher",
|
120 |
+
"B-scientist", "I-scientist",
|
121 |
+
"B-song", "I-song",
|
122 |
+
"B-task", "I-task",
|
123 |
+
"B-theory", "I-theory",
|
124 |
+
"B-university", "I-university",
|
125 |
+
"B-writer", "I-writer",
|
126 |
+
]
|
127 |
+
|
128 |
+
|
129 |
+
class CrossNER(datasets.GeneratorBasedBuilder):
|
130 |
+
"""CrossNER is a cross-domain dataset for named entity recognition"""
|
131 |
+
|
132 |
+
VERSION = datasets.Version("1.1.0")
|
133 |
+
|
134 |
+
# This is an example of a dataset with multiple configurations.
|
135 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
136 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
137 |
+
|
138 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
139 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
140 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
141 |
+
|
142 |
+
# You will be able to load one or the other configurations in the following list with
|
143 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
144 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
145 |
+
BUILDER_CONFIGS = [
|
146 |
+
datasets.BuilderConfig(name="conll2003", version=VERSION,
|
147 |
+
description="This part of CrossNER covers data from the news domain"),
|
148 |
+
datasets.BuilderConfig(name="politics", version=VERSION,
|
149 |
+
description="This part of CrossNER covers data from the politics domain"),
|
150 |
+
datasets.BuilderConfig(name="science", version=VERSION,
|
151 |
+
description="This part of CrossNER covers data from the science domain"),
|
152 |
+
datasets.BuilderConfig(name="music", version=VERSION,
|
153 |
+
description="This part of CrossNER covers data from the music domain"),
|
154 |
+
datasets.BuilderConfig(name="literature", version=VERSION,
|
155 |
+
description="This part of CrossNER covers data from the literature domain"),
|
156 |
+
datasets.BuilderConfig(name="ai", version=VERSION,
|
157 |
+
description="This part of CrossNER covers data from the AI domain"),
|
158 |
+
]
|
159 |
+
|
160 |
+
def _info(self):
|
161 |
+
features = datasets.Features(
|
162 |
+
{
|
163 |
+
"id": datasets.Value("string"),
|
164 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
165 |
+
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=_CLASS_LABELS)),
|
166 |
+
}
|
167 |
+
)
|
168 |
+
return datasets.DatasetInfo(
|
169 |
+
# This is the description that will appear on the datasets page.
|
170 |
+
description=_DESCRIPTION,
|
171 |
+
# This defines the different columns of the dataset and their types
|
172 |
+
features=features, # Here we define them above because they are different between the two configurations
|
173 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
174 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
175 |
+
# supervised_keys=("sentence", "label"),
|
176 |
+
# Homepage of the dataset for documentation
|
177 |
+
homepage=_HOMEPAGE,
|
178 |
+
# License for the dataset if available
|
179 |
+
license=_LICENSE,
|
180 |
+
# Citation for the dataset
|
181 |
+
citation=_CITATION,
|
182 |
+
)
|
183 |
+
|
184 |
+
def _split_generators(self, dl_manager):
|
185 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
186 |
+
|
187 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
188 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
189 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
190 |
+
urls = _URLS[self.config.name]
|
191 |
+
downloaded_files = dl_manager.download_and_extract(urls)
|
192 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
|
193 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
194 |
+
|
195 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
196 |
+
def _generate_examples(self, filepath):
|
197 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
198 |
+
with open(filepath, encoding="utf-8") as f:
|
199 |
+
guid = 0
|
200 |
+
tokens = []
|
201 |
+
ner_tags = []
|
202 |
+
for line in f:
|
203 |
+
if line == "" or line == "\n":
|
204 |
+
if tokens:
|
205 |
+
yield guid, {
|
206 |
+
"id": str(guid),
|
207 |
+
"tokens": tokens,
|
208 |
+
"ner_tags": ner_tags,
|
209 |
+
}
|
210 |
+
guid += 1
|
211 |
+
tokens = []
|
212 |
+
ner_tags = []
|
213 |
+
else:
|
214 |
+
splits = line.split("\t")
|
215 |
+
tokens.append(splits[0])
|
216 |
+
ner_tags.append(splits[1].rstrip())
|
217 |
+
# last example
|
218 |
+
if tokens:
|
219 |
+
yield guid, {
|
220 |
+
"id": str(guid),
|
221 |
+
"tokens": tokens,
|
222 |
+
"ner_tags": ner_tags,
|
223 |
+
}
|