--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label sequence: int64 splits: - name: oos num_bytes: 14659.241462959508 num_examples: 375 - name: train num_bytes: 2163109 num_examples: 16077 download_size: 288776 dataset_size: 2177768.2414629594 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 387 num_examples: 13 download_size: 3096 dataset_size: 387 configs: - config_name: default data_files: - split: train path: data/train-* - split: oos path: data/oos-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # dstc3 This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset dstc3 = Dataset.from_datasets("AutoIntent/dstc3") ``` ## Source This dataset is taken from `marcel-gohsen/dstc3` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from datasets import load_dataset from autointent import Dataset # load original data dstc3 = load_dataset("marcel-gohsen/dstc3") # extract intent names dstc3["test"] = dstc3["test"].filter(lambda example: example["transcript"] != "") intent_names = sorted(set(name for intents in dstc3["test"]["intent"] for name in intents)) intent_names.remove("reqmore") dstc3["test"].filter(lambda example: "reqmore" in example["intent"]) name_to_id = {name: i for i, name in enumerate(intent_names)} # parse complicated dstc format def transform(example: dict): return { "utterance": example["transcript"], "label": [name_to_id[intent_name] for intent_name in example["intent"] if intent_name != "reqmore"], } dstc_converted = dstc3["test"].map(transform, remove_columns=dstc3["test"].features.keys()) # format to autointent.Dataset intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)] utterances = [] oos_utterances = [] for rec in dstc_converted.to_list(): if len(rec["label"]) == 0: rec.pop("label") oos_utterances.append(rec["utterance"]) else: utterances.append(rec) oos_records = [{"utterance": ut} for ut in set(oos_utterances)] dstc_converted = Dataset.from_dict({"intents": intents, "train": utterances + oos_records}) ```