|
|
|
import datasets |
|
|
|
|
|
|
|
"""The Shipping label Dataset. it converts conll to ner input format""" |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The goal of this task is to provide a dataset for name entity recognition.""" |
|
|
|
_URL = "https://raw.githubusercontent.com/SanghaviHarshPankajkumar/shipping_label_project/main/NER/data/" |
|
_TRAINING_FILE = "train.txt" |
|
_VAL_FILE = "val.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class shipping_labels_Config(datasets.BuilderConfig): |
|
"""Shipping Label Dataset for ner""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Shipping Label data. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(shipping_labels_Config, self).__init__(**kwargs) |
|
|
|
|
|
class shiping_label_ner(datasets.GeneratorBasedBuilder): |
|
"""Shipping Label Dataset for ner""" |
|
|
|
BUILDER_CONFIGS = [ |
|
shipping_labels_Config( |
|
name="shipping_label_ner", version=datasets.Version("1.0.0"), description="Shipping Label Dataset for ner" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-GCNUM", |
|
"I-GCNUM", |
|
"B-BGNUM", |
|
"I-BGNUM", |
|
"B-DATE", |
|
"I-DATE", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOCATION", |
|
"I-LOCATION", |
|
"B-NAME", |
|
"I-NAME", |
|
"B-BARCODE", |
|
"I-BARCODE", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
"val": f"{_URL}{_VAL_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("β³ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
current_tokens = [] |
|
current_labels = [] |
|
sentence_counter = 0 |
|
for row in f: |
|
row = row.rstrip() |
|
if row: |
|
token, label = row.split(" ") |
|
current_tokens.append(token) |
|
current_labels.append(label) |
|
else: |
|
|
|
if not current_tokens: |
|
|
|
continue |
|
assert len(current_tokens) == len(current_labels), "π between len of tokens & labels" |
|
sentence = ( |
|
sentence_counter, |
|
{ |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_labels, |
|
}, |
|
) |
|
sentence_counter += 1 |
|
current_tokens = [] |
|
current_labels = [] |
|
yield sentence |
|
|
|
if current_tokens: |
|
yield sentence_counter, { |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_labels, |
|
} |