CLISTER / CLISTER.py
qanastek's picture
Upload CLISTER.py
f5b1743
import os
import json
import random
import datasets
import numpy as np
import pandas as pd
_CITATION = """\
@inproceedings{hiebel:cea-03740484,
TITLE = {{CLISTER: A corpus for semantic textual similarity in French clinical narratives}},
AUTHOR = {Hiebel, Nicolas and Ferret, Olivier and Fort, Kar{\"e}n and N{\'e}v{\'e}ol, Aur{\'e}lie},
URL = {https://hal-cea.archives-ouvertes.fr/cea-03740484},
BOOKTITLE = {{LREC 2022 - 13th Language Resources and Evaluation Conference}},
ADDRESS = {Marseille, France},
PUBLISHER = {{European Language Resources Association}},
SERIES = {LREC 2022 - Proceedings of the 13th Conference on Language Resources and Evaluation},
VOLUME = {2022},
PAGES = {4306‑4315},
YEAR = {2022},
MONTH = Jun,
KEYWORDS = {Semantic Similarity ; Corpus Development ; Clinical Text ; French ; Semantic Similarity},
PDF = {https://hal-cea.archives-ouvertes.fr/cea-03740484/file/2022.lrec-1.459.pdf},
HAL_ID = {cea-03740484},
HAL_VERSION = {v1},
}
"""
_DESCRIPTION = """\
Modern Natural Language Processing relies on the availability of annotated corpora for training and \
evaluating models. Such resources are scarce, especially for specialized domains in languages other \
than English. In particular, there are very few resources for semantic similarity in the clinical domain \
in French. This can be useful for many biomedical natural language processing applications, including \
text generation. We introduce a definition of similarity that is guided by clinical facts and apply it \
to the development of a new French corpus of 1,000 sentence pairs manually annotated according to \
similarity scores. This new sentence similarity corpus is made freely available to the community. We \
further evaluate the corpus through experiments of automatic similarity measurement. We show that a \
model of sentence embeddings can capture similarity with state of the art performance on the DEFT STS \
shared task evaluation data set (Spearman=0.8343). We also show that the CLISTER corpus is complementary \
to DEFT STS. \
"""
_HOMEPAGE = "https://gitlab.inria.fr/codeine/clister"
_LICENSE = "unknown"
class CLISTER(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "source"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="source", version="1.0.0", description="The CLISTER corpora"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_1_id": datasets.Value("string"),
"document_2_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"label": datasets.Value("float"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = self.config.data_dir.rstrip("/")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"csv_file": data_dir + "/train.csv",
"json_file": data_dir + "/id_to_sentence_train.json",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"csv_file": data_dir + "/train.csv",
"json_file": data_dir + "/id_to_sentence_train.json",
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"csv_file": data_dir + "/test.csv",
"json_file": data_dir + "/id_to_sentence_test.json",
"split": "test",
},
),
]
def _generate_examples(self, csv_file, json_file, split):
all_res = []
key = 0
# Load JSON file
f_json = open(json_file)
data_map = json.load(f_json)
f_json.close()
# Load CSV file
df = pd.read_csv(csv_file, sep="\t")
for index, e in df.iterrows():
all_res.append({
"id": str(key),
"document_1_id": e["id_1"],
"document_2_id": e["id_2"],
"text_1": data_map["_".join(e["id_1"].split("_")[0:2])],
"text_2": data_map["_".join(e["id_2"].split("_")[0:2])],
"label": float(e["sim"]),
})
key += 1
if split != "test":
ids = [r["id"] for r in all_res]
random.seed(4)
random.shuffle(ids)
random.shuffle(ids)
random.shuffle(ids)
train, validation = np.split(ids, [int(len(ids)*0.8333)])
if split == "train":
allowed_ids = list(train)
elif split == "validation":
allowed_ids = list(validation)
for r in all_res:
if r["id"] in allowed_ids:
yield r["id"], r
else:
for r in all_res:
yield r["id"], r