import os import json import random import datasets import numpy as np import pandas as pd _CITATION = """\ @inproceedings{hiebel:cea-03740484, TITLE = {{CLISTER: A corpus for semantic textual similarity in French clinical narratives}}, AUTHOR = {Hiebel, Nicolas and Ferret, Olivier and Fort, Kar{\"e}n and N{\'e}v{\'e}ol, Aur{\'e}lie}, URL = {https://hal-cea.archives-ouvertes.fr/cea-03740484}, BOOKTITLE = {{LREC 2022 - 13th Language Resources and Evaluation Conference}}, ADDRESS = {Marseille, France}, PUBLISHER = {{European Language Resources Association}}, SERIES = {LREC 2022 - Proceedings of the 13th Conference on Language Resources and Evaluation}, VOLUME = {2022}, PAGES = {4306‑4315}, YEAR = {2022}, MONTH = Jun, KEYWORDS = {Semantic Similarity ; Corpus Development ; Clinical Text ; French ; Semantic Similarity}, PDF = {https://hal-cea.archives-ouvertes.fr/cea-03740484/file/2022.lrec-1.459.pdf}, HAL_ID = {cea-03740484}, HAL_VERSION = {v1}, } """ _DESCRIPTION = """\ Modern Natural Language Processing relies on the availability of annotated corpora for training and \ evaluating models. Such resources are scarce, especially for specialized domains in languages other \ than English. In particular, there are very few resources for semantic similarity in the clinical domain \ in French. This can be useful for many biomedical natural language processing applications, including \ text generation. We introduce a definition of similarity that is guided by clinical facts and apply it \ to the development of a new French corpus of 1,000 sentence pairs manually annotated according to \ similarity scores. This new sentence similarity corpus is made freely available to the community. We \ further evaluate the corpus through experiments of automatic similarity measurement. We show that a \ model of sentence embeddings can capture similarity with state of the art performance on the DEFT STS \ shared task evaluation data set (Spearman=0.8343). We also show that the CLISTER corpus is complementary \ to DEFT STS. \ """ _HOMEPAGE = "https://gitlab.inria.fr/codeine/clister" _LICENSE = "unknown" class CLISTER(datasets.GeneratorBasedBuilder): DEFAULT_CONFIG_NAME = "source" BUILDER_CONFIGS = [ datasets.BuilderConfig(name="source", version="1.0.0", description="The CLISTER corpora"), ] def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "document_1_id": datasets.Value("string"), "document_2_id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string"), "label": datasets.Value("float"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = self.config.data_dir.rstrip("/") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "csv_file": data_dir + "/train.csv", "json_file": data_dir + "/id_to_sentence_train.json", "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "csv_file": data_dir + "/train.csv", "json_file": data_dir + "/id_to_sentence_train.json", "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "csv_file": data_dir + "/test.csv", "json_file": data_dir + "/id_to_sentence_test.json", "split": "test", }, ), ] def _generate_examples(self, csv_file, json_file, split): all_res = [] key = 0 # Load JSON file f_json = open(json_file) data_map = json.load(f_json) f_json.close() # Load CSV file df = pd.read_csv(csv_file, sep="\t") for index, e in df.iterrows(): all_res.append({ "id": str(key), "document_1_id": e["id_1"], "document_2_id": e["id_2"], "text_1": data_map["_".join(e["id_1"].split("_")[0:2])], "text_2": data_map["_".join(e["id_2"].split("_")[0:2])], "label": float(e["sim"]), }) key += 1 if split != "test": ids = [r["id"] for r in all_res] random.seed(4) random.shuffle(ids) random.shuffle(ids) random.shuffle(ids) train, validation = np.split(ids, [int(len(ids)*0.8333)]) if split == "train": allowed_ids = list(train) elif split == "validation": allowed_ids = list(validation) for r in all_res: if r["id"] in allowed_ids: yield r["id"], r else: for r in all_res: yield r["id"], r