Dragunflie-420 commited on
Commit
a34f165
·
verified ·
1 Parent(s): fa33463

Create readme.md

Browse files
Files changed (1) hide show
  1. readme.md +73 -0
readme.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Free Music Archive (FMA) Dataset
2
+
3
+ ## Overview
4
+
5
+ This repository contains the Free Music Archive (FMA) dataset, curated and made available on Hugging Face by [dragunflie-420](https://huggingface.co/dragunflie-420). The FMA dataset is a large-scale, open-source dataset of music tracks, designed for music information retrieval and machine learning tasks.
6
+
7
+ ## Dataset Description
8
+
9
+ The Free Music Archive (FMA) is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata. This particular version focuses on the "small" subset of the FMA, which includes:
10
+
11
+ - 8,000 tracks of 30 seconds each
12
+ - 8 balanced genres (Electronic, Experimental, Folk, Hip-Hop, Instrumental, International, Pop, Rock)
13
+ - Audio files in 128k MP3 format
14
+ - Comprehensive metadata for each track
15
+
16
+ ## Contents
17
+
18
+ This dataset provides:
19
+
20
+ 1. Audio files: 30-second MP3 clips of music tracks
21
+ 2. Metadata: Information about each track, including:
22
+ - Track ID
23
+ - Title
24
+ - Artist
25
+ - Genre
26
+ - Additional features (e.g., acoustic features, music analysis data)
27
+
28
+ ## Usage
29
+
30
+ To use this dataset in your Hugging Face projects:
31
+
32
+ ```python
33
+ from datasets import load_dataset
34
+
35
+ dataset = load_dataset("dragunflie-420/fma")
36
+
37
+ # Access the first example
38
+ first_example = dataset['train'][0]
39
+ print(first_example['title'], first_example['artist'], first_example['genre'])
40
+
41
+ # Play the audio (if in a notebook environment)
42
+ from IPython.display import Audio
43
+ Audio(first_example['audio']['array'], rate=first_example['audio']['sampling_rate'])
44
+ ```
45
+
46
+ ## Dataset Structure
47
+
48
+ Each example in the dataset contains:
49
+
50
+ - `track_id`: Unique identifier for the track
51
+ - `title`: Title of the track
52
+ - `artist`: Name of the artist
53
+ - `genre`: Top-level genre classification
54
+ - `audio`: Audio file in the format compatible with Hugging Face's Audio feature
55
+
56
+ ## Applications
57
+
58
+ This dataset is suitable for various music information retrieval and machine learning tasks, including:
59
+
60
+ - Music genre classification
61
+ - Artist identification
62
+ - Music recommendation systems
63
+ - Audio feature extraction and analysis
64
+ - Music generation and style transfer
65
+
66
+ ## Citation
67
+
68
+ If you use this dataset in your research, please cite the original FMA paper:
69
+
70
+ ```
71
+ @inproceedings{defferrard2016fma,
72
+ title={FMA: A Dataset for Music Analysis},
73
+ author={Defferrard, Micha{\"e}l and Ben