# coding=utf-8 # Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import numpy as np import datasets _CITATION = """ @inproceedings{defferrard2016fma, title={FMA: A Dataset for Music Analysis}, author={Defferrard, Micha{\"e}l and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier}, booktitle={18th International Society for Music Information Retrieval Conference}, year={2017}, } """ _DESCRIPTION = """ The Free Music Archive (FMA) is an open and easily accessible dataset of music collections. """ _HOMEPAGE = "https://github.com/mdeff/fma" _LICENSE = "Creative Commons Attribution 4.0 International License" _URLs = { "small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip", "metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip", } class FMADataset(datasets.GeneratorBasedBuilder): """FMA small dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="small", version=VERSION, description="The small subset of FMA dataset"), ] def _info(self): features = datasets.Features( { "track_id": datasets.Value("int32"), "title": datasets.Value("string"), "artist": datasets.Value("string"), "genre": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=44100), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir["small"], "fma_small"), "metadata_path": os.path.join(data_dir["metadata"], "fma_metadata"), }, ), ] def _generate_examples(self, filepath, metadata_path): """Yields examples.""" # Load metadata tracks = pd.read_csv(os.path.join(metadata_path, "tracks.csv"), index_col=0, header=[0, 1]) # Iterate through audio files for root, _, files in os.walk(filepath): for file in files: if file.endswith('.mp3'): track_id = int(file.split('.')[0]) audio_path = os.path.join(root, file) # Get metadata title = tracks.loc[track_id, ('track', 'title')] artist = tracks.loc[track_id, ('artist', 'name')] genre = tracks.loc[track_id, ('track', 'genre_top')] yield track_id, { "track_id": track_id, "title": title, "artist": artist, "genre": genre, "audio": audio_path, } @property def manual_download_instructions(self): return """ To use the FMA dataset, you need to download it manually. Please follow these steps: 1. Go to https://github.com/mdeff/fma 2. Download the 'fma_small.zip' and 'fma_metadata.zip' files 3. Extract both zip files 4. Copy the 'fma_small' folder and the 'fma_metadata' folder to the root of this dataset repository Once you have completed these steps, the dataset will be ready to use. """ coding=utf-8 # Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import numpy as np import datasets _CITATION = """ @inproceedings{defferrard2016fma, title={FMA: A Dataset for Music Analysis}, author={Defferrard, Micha{\"e}l and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier}, booktitle={18th International Society for Music Information Retrieval Conference}, year={2017}, } """ _DESCRIPTION = """ The Free Music Archive (FMA) is an open and easily accessible dataset of music collections. """ _HOMEPAGE = "https://github.com/mdeff/fma" _LICENSE = "Creative Commons Attribution 4.0 International License" _URLs = { "small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip", "metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip", } class FMADataset(datasets.GeneratorBasedBuilder): """FMA small dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="small", version=VERSION, description="The small subset of FMA dataset"), ] def _info(self): features = datasets.Features( { "track_id": datasets.Value("int32"), "title": datasets.Value("string"), "artist": datasets.Value("string"), "genre": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=44100), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir["small"], "fma_small"), "metadata_path": os.path.join(data_dir["metadata"], "fma_metadata"), }, ), ] def _generate_examples(self, filepath, metadata_path): """Yields examples.""" # Load metadata tracks = pd.read_csv(os.path.join(metadata_path, "tracks.csv"), index_col=0, header=[0, 1]) # Iterate through audio files for root, _, files in os.walk(filepath): for file in files: if file.endswith('.mp3'): track_id = int(file.split('.')[0]) audio_path = os.path.join(root, file) # Get metadata title = tracks.loc[track_id, ('track', 'title')] artist = tracks.loc[track_id, ('artist', 'name')] genre = tracks.loc[track_id, ('track', 'genre_top')] yield track_id, { "track_id": track_id, "title": title, "artist": artist, "genre": genre, "audio": audio_path, }