[ { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Is Retain Set All You Need in Machine Unlearning? Restoring Performance of Unlearned Models with Out-Of-Distribution Images", "id": "main", "arxiv_id": "2404.12922", "GitHub": [ "https://github.com/jbonato1/scar" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [ "test1/test2" ], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 0 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Octopus: Embodied Vision-Language Programmer from Environmental Feedback", "id": "main", "arxiv_id": "2310.08588", "GitHub": [ "https://github.com/dongyh20/octopus" ], "paper_page": "https://huggingface.co/papers/2310.08588", "n_linked_authors": 9, "upvotes": 34, "num_comments": 4, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FunQA: Towards Surprising Video Comprehension", "id": "main", "arxiv_id": "2306.14899", "GitHub": [ "https://github.com/jingkang50/funqa" ], "paper_page": "https://huggingface.co/papers/2306.14899", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "4D Contrastive Superflows are Dense 3D Representation Learners", "id": "main", "arxiv_id": "2407.06190", "GitHub": [ "https://github.com/xiangxu-0103/superflow" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 3 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation", "id": "main", "arxiv_id": "2407.07171", "GitHub": [ "https://github.com/yyliu01/it2" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 4 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ponymation: Learning Articulated 3D Animal Motions from Unlabeled Online Videos", "id": "main", "arxiv_id": "2312.13604", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 5 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Fitting on a Gate Quantum Computer", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 6 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "H-V2X: A Large Scale Highway Dataset for BEV Perception", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 7 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Camouflaged Object Detection from Noisy Pseudo Label", "id": "main", "arxiv_id": "2407.13157", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 8 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance", "id": "main", "arxiv_id": "2312.07530", "GitHub": [ "https://github.com/kuanchihhuang/vg-w3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 9 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 10 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLR-GAN: Improving GANs Stability and Quality via Consistent Latent Representation and Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 11 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence", "id": "main", "arxiv_id": "2407.18899", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 12 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PromptIQA: Boosting the Performance and Generalization for No-Reference Image Quality Assessment via Prompts", "id": "main", "arxiv_id": "2403.04993", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 13 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion Mamba: Efficient and Long Sequence Motion Generation", "id": "main", "arxiv_id": "2403.07487", "GitHub": [ "https://github.com/steve-zeyu-zhang/MotionMamba" ], "paper_page": "https://huggingface.co/papers/2403.07487", "n_linked_authors": 3, "upvotes": 13, "num_comments": 3, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 14 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis", "id": "main", "arxiv_id": "2403.04116", "GitHub": [ "https://github.com/caiyuanhao1998/x-gaussian" ], "paper_page": "https://huggingface.co/papers/2403.04116", "n_linked_authors": 4, "upvotes": 3, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 15 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance", "id": "main", "arxiv_id": "2403.05231", "GitHub": [ "https://github.com/litinglin/lorat" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 16 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Direct Approach to Viewing Graph Solvability", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 17 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization", "id": "main", "arxiv_id": "2405.12110", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 18 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving", "id": "main", "arxiv_id": "2407.01702", "GitHub": [ "https://github.com/kth-rpl/deflow" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 19 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ZeST: Zero-Shot Material Transfer from a Single Image", "id": "main", "arxiv_id": "2404.06425", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.06425", "n_linked_authors": 1, "upvotes": 5, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 20 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Congealing: 3D-Aware Image Alignment in the Wild", "id": "main", "arxiv_id": "2404.02125", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.02125", "n_linked_authors": 1, "upvotes": 6, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 21 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SMooDi: Stylized Motion Diffusion Model", "id": "main", "arxiv_id": "2407.12783", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 22 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs", "id": "main", "arxiv_id": "2311.13600", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.13600", "n_linked_authors": 5, "upvotes": 41, "num_comments": 3, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 23 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SV3D: Novel Multi-view Synthesis and 3D Generation from a Single Image using Latent Video Diffusion", "id": "main", "arxiv_id": "2403.12008", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12008", "n_linked_authors": 7, "upvotes": 19, "num_comments": 1, "n_authors": 9, "Models": [ "stabilityai/sv3d" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 24 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WordRobe: Text-Guided Generation of Textured 3D Garments", "id": "main", "arxiv_id": "2403.17541", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.17541", "n_linked_authors": 0, "upvotes": 1, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 25 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Generate Conditional Tri-plane for 3D-aware Expression Controllable Portrait Animation", "id": "main", "arxiv_id": "2404.00636", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 26 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SimPB: A Single Model for 2D and 3D Object Detection from Multiple Cameras", "id": "main", "arxiv_id": "2403.10353", "GitHub": [ "https://github.com/nullmax-vision/simpb" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 27 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EMDM: Efficient Motion Diffusion Model for Fast, High-Quality Human Motion Generation", "id": "main", "arxiv_id": "2312.02256", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 28 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Editable Image Elements for Controllable Synthesis", "id": "main", "arxiv_id": "2404.16029", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.16029", "n_linked_authors": 3, "upvotes": 10, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 29 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving 2D Feature Representations by 3D-Aware Fine-Tuning", "id": "main", "arxiv_id": "2407.20229", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.20229", "n_linked_authors": 1, "upvotes": 7, "num_comments": 2, "n_authors": 5, "Models": [ "yuanwenyue/FiT3D" ], "Datasets": [], "Spaces": [ "yuanwenyue/FiT3D" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 30 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection", "id": "main", "arxiv_id": "2401.03145", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 31 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 32 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SemGrasp: Semantic Grasp Generation via Language Aligned Discretization", "id": "main", "arxiv_id": "2404.03590", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 33 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MANIKIN: Biomechanically Accurate Neural Inverse Kinematics for Human Motion Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 34 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Simple Unsupervised Knowledge Distillation With Space Similarity", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 35 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DragAPart: Learning a Part-Level Motion Prior for Articulated Objects", "id": "main", "arxiv_id": "2403.15382", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.15382", "n_linked_authors": 2, "upvotes": 9, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 36 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Bridges for 3D Point Cloud Denoising", "id": "main", "arxiv_id": "2408.16325", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 37 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Optimizing Illuminant Estimation in Dual-Exposure HDR Imaging", "id": "main", "arxiv_id": "2403.02449", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 38 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sentence Grounding in Videos", "id": "main", "arxiv_id": "2312.00083", "GitHub": [ "https://github.com/Pilhyeon/BAM-DETR" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 39 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MarineInst: A Foundation Model for Marine Image Analysis with Instance Visual Description", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 40 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Superpixel-informed Implicit Neural Representation for Multi-Dimensional Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 41 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoPoser: Robust Real-Time Egocentric Pose Estimation from Sparse and Intermittent Observations Everywhere", "id": "main", "arxiv_id": "2308.06493", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 42 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Physics-Free Spectrally Multiplexed Photometric Stereo under Unknown Spectral Composition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 43 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 44 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models", "id": "main", "arxiv_id": "2403.12034", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12034", "n_linked_authors": 2, "upvotes": 5, "num_comments": 2, "n_authors": 3, "Models": [ "facebook/vfusion3d", "jadechoghari/vfusion3d" ], "Datasets": [], "Spaces": [ "facebook/VFusion3D", "jadechoghari/vfusion3d-app", "Msh11111134/VFusion3D", "csimpkins/VFusion3D", "mmaitai/VFusion3D", "vibs08/Img-3D_V2", "mahiatlinux/VFusion3D-App-GPU", "Sham786/VFusion3D" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 45 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Alignist: CAD-Informed Orientation Distribution Estimation by Fusing Shape and Correspondences", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 46 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Meta-Prompting for Automating Zero-shot Visual Recognition with LLMs", "id": "main", "arxiv_id": "2403.11755", "GitHub": [ "https://github.com/jmiemirza/meta-prompting" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 47 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Physics-Based Interaction with 3D Objects via Video Generation", "id": "main", "arxiv_id": "2404.13026", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.13026", "n_linked_authors": 6, "upvotes": 21, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 48 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians", "id": "main", "arxiv_id": "2403.09434", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 49 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Patch Visual SLAM", "id": "main", "arxiv_id": "2408.01654", "GitHub": [ "https://github.com/princeton-vl/dpvo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 50 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Surface Reconstruction for 3D Gaussian Splatting via Local Structural Hints", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 51 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting", "id": "main", "arxiv_id": "2312.02902", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 52 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LayeredFlow: A Real-World Benchmark for Non-Lambertian Multi-Layer Optical Flow", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 53 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal", "id": "main", "arxiv_id": "2404.13679", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 54 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation", "id": "main", "arxiv_id": "2407.10802", "GitHub": [ "https://github.com/tub-rip/motionpriorcmax" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 55 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Few-Shot Action Recognition via Multi-Level Post-Reasoning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 56 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text2Place: Affordance-aware Text Guided Human Placement", "id": "main", "arxiv_id": "2407.15446", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.15446", "n_linked_authors": 0, "upvotes": 1, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 57 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations", "id": "main", "arxiv_id": "2406.11711", "GitHub": [ "https://github.com/princeton-vl/ogni-dc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 58 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-Shot Multi-Object Scene Completion", "id": "main", "arxiv_id": "2403.14628", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 59 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beta-Tuned Timestep Diffusion Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 60 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "POA: Pre-training Once for Models of All Sizes", "id": "main", "arxiv_id": "2408.01031", "GitHub": [ "https://github.com/qichuzyy/poa" ], "paper_page": "https://huggingface.co/papers/2408.01031", "n_linked_authors": 5, "upvotes": 26, "num_comments": 3, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 61 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Taming Latent Diffusion Model for Neural Radiance Field Inpainting", "id": "main", "arxiv_id": "2404.09995", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.09995", "n_linked_authors": 3, "upvotes": 6, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 62 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MapDistill: Boosting Efficient Camera-based HD Map Construction via Camera-LiDAR Fusion Model Distillation", "id": "main", "arxiv_id": "2407.11682", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 63 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ByteEdit: Boost, Comply and Accelerate Generative Image Editing", "id": "main", "arxiv_id": "2404.04860", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.04860", "n_linked_authors": 2, "upvotes": 24, "num_comments": 1, "n_authors": 14, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 64 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProDepth: Boosting Self-Supervised Multi-Frame Monocular Depth with Probabilistic Fusion", "id": "main", "arxiv_id": "2407.09303", "GitHub": [ "https://github.com/sungmin-woo/ProDepth" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 65 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Resolution and Few-shot View Synthesis from Asymmetric Dual-lens Inputs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 66 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Accelerating Image Super-Resolution Networks with Pixel-Level Classification", "id": "main", "arxiv_id": "2407.21448", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 67 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LASS3D: Language-Assisted Semi-Supervised 3D Semantic Segmentation with Progressive Unreliable Data Exploitation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 68 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contourlet Residual for Prompt Learning Enhanced Infrared Image Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 69 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Click-Gaussian: Interactive Segmentation to Any 3D Gaussians", "id": "main", "arxiv_id": "2407.11793", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.11793", "n_linked_authors": 0, "upvotes": 3, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 70 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Random Walk on Pixel Manifolds for Anomaly Segmentation of Complex Driving Scenes", "id": "main", "arxiv_id": "2404.17961", "GitHub": [ "https://github.com/zelongzeng/rwpm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 71 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DySeT: a Dynamic Masked Self-distillation Approach for Robust Trajectory Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 72 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Track Everything Everywhere Fast and Robustly", "id": "main", "arxiv_id": "2403.17931", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.17931", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 73 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Open-ended Visual Quality Comparison", "id": "main", "arxiv_id": "2402.16641", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.16641", "n_linked_authors": 9, "upvotes": 16, "num_comments": 1, "n_authors": 14, "Models": [ "q-future/co-instruct", "q-future/co-instruct-llava-v1.5-7b" ], "Datasets": [ "q-future/Co-Instruct-DB" ], "Spaces": [ "q-future/Co-Instruct" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 74 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeInit: Bridging Initialization Gap in Video Diffusion Models", "id": "main", "arxiv_id": "2312.07537", "GitHub": [ "https://github.com/tianxingwu/freeinit" ], "paper_page": "https://huggingface.co/papers/2312.07537", "n_linked_authors": 5, "upvotes": 24, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [ "TianxingWu/FreeInit", "Xuweiyi/UniCtrl" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 75 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs", "id": "main", "arxiv_id": "2403.19588", "GitHub": [ "https://github.com/naver-ai/rdnet" ], "paper_page": "https://huggingface.co/papers/2403.19588", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [ "naver-ai/rdnet_tiny.nv_in1k", "naver-ai/rdnet_base.nv_in1k", "naver-ai/rdnet_large.nv_in1k", "naver-ai/rdnet_large.nv_in1k_ft_in1k_384", "naver-ai/rdnet_small.nv_in1k" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 76 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Eliminating Feature Ambiguity for Few-Shot Segmentation", "id": "main", "arxiv_id": "2407.09842", "GitHub": [ "https://github.com/sam1224/aenet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 77 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Soft Prompt Generation for Domain Generalization", "id": "main", "arxiv_id": "2404.19286", "GitHub": [ "https://github.com/renytek13/soft-prompt-generation-with-cgan" ], "paper_page": "https://huggingface.co/papers/2404.19286", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 78 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shedding More Light on Robust Classifiers under the lens of Energy-based Models", "id": "main", "arxiv_id": "2407.06315", "GitHub": [ "https://github.com/omnai-lab/robust-classifiers-under-the-lens-of-ebm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 79 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation", "id": "main", "arxiv_id": "2402.05054", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.05054", "n_linked_authors": 5, "upvotes": 25, "num_comments": 3, "n_authors": 6, "Models": [ "ashawkey/LGM", "dylanebert/LGM", "dylanebert/LGM-full", "shankartr123/LGM", "JCTN/LGM", "Xeracle/LGM-test", "fgkhvgkv/model", "ahmetyaylalioglu/multiview-diffusion-synthesis-LGM", "haf1g/LGM-Test", "LandonValentine604/LGM-test", "LandonValentine604/LGM-full", "2gnak/LGM-demo", "jayc0207/LGM-full", "jamesmcbennett/MVMesh", "Thever/LGM-Thever", "kumarhans/LGM", "jmlien/lgm-haha", "OzeroDev/LGM-model" ], "Datasets": [], "Spaces": [ "ashawkey/LGM", "dylanebert/LGM-mini", "jiawei011/dreamgaussian4d", "dylanebert/LGM-tiny", "Mathdesenvnonimate/LGM", "OzeroDev/LGM-tiny-space", "ahmetyaylalioglu/image2mesh", "Eyaladir/LGM-mini", "EliasGeo/LGMtest", "cocktailpeanut/LGM", "Nymbo/LGM-Gaussian-Multiview", "jorgejungle/LGM", "jorgejungle/GLM", "Emerging-Tech/3D", "Nymbo/LGM-mini", "legolasyiu/LGM_Textto3D", "yotty22/dreamgaussian4d", "vulture990/2D-3D", "jamesmcbennett/MVMesh", "vibs08/LGM" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 80 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mahalanobis Distance-based Multi-view Optimal Transport for Multi-view Crowd Localization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 81 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RAW-Adapter: Adapting Pretrained Visual Model to Camera RAW Images", "id": "main", "arxiv_id": "2408.14802", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 82 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic", "id": "main", "arxiv_id": "2403.17933", "GitHub": [ "https://github.com/autonomousvision/sledge" ], "paper_page": "https://huggingface.co/papers/2403.17933", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 83 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AFreeCA: Annotation-Free Counting for All", "id": "main", "arxiv_id": "2403.04943", "GitHub": [ "https://github.com/adrian-dalessandro/afreeca" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 84 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adversarially Robust Distillation by Reducing the Student-Teacher Variance Gap", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 85 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation", "id": "main", "arxiv_id": "2403.12019", "GitHub": [ "https://github.com/nirvanalan/ln3diff" ], "paper_page": "https://huggingface.co/papers/2403.12019", "n_linked_authors": 5, "upvotes": 8, "num_comments": 2, "n_authors": 8, "Models": [ "yslan/LN3Diff" ], "Datasets": [], "Spaces": [ "yslan/LN3Diff_I23D" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 86 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion", "id": "main", "arxiv_id": "2407.02077", "GitHub": [ "https://github.com/arlo0o/htcl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 87 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 88 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation", "id": "main", "arxiv_id": "2407.05540", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 89 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PromptCCD: Learning Gaussian Mixture Prompt Pool for Continual Category Discovery", "id": "main", "arxiv_id": "2407.19001", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 90 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sapiens: Foundation for Human Vision Models", "id": "main", "arxiv_id": "2408.12569", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.12569", "n_linked_authors": 3, "upvotes": 81, "num_comments": 3, "n_authors": 8, "Models": [ "facebook/sapiens" ], "Datasets": [], "Spaces": [ "joselobenitezg/sapiens-demo", "Ariamehr/Meta-Sapiens", "Vijish/sapiens-demo", "fiesty-bear/sapiens-demo" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 91 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Linearly Controllable GAN: Unsupervised Feature Categorization and Decomposition for Image Generation and Manipulation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 92 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generating Human Interaction Motions in Scenes with Text Control", "id": "main", "arxiv_id": "2404.10685", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 93 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NOVUM: Neural Object Volumes for Robust Object Classification", "id": "main", "arxiv_id": "2305.14668", "GitHub": [ "https://github.com/genintel/novum" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 94 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Align before Collaborate: Mitigating Feature Misalignment for Robust Multi-Agent Perception", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 95 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects", "id": "main", "arxiv_id": "2407.12371", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12371", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 96 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAIR: Learning Semantic-aware Implicit Representation", "id": "main", "arxiv_id": "2310.09285", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 97 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ColorMNet: A Memory-based Deep Spatial-Temporal Feature Propagation Network for Video Colorization", "id": "main", "arxiv_id": "2404.06251", "GitHub": [ "https://github.com/yyang181/colormnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 98 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UNIC: Universal Classification Models via Multi-teacher Distillation", "id": "main", "arxiv_id": "2408.05088", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 99 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation", "id": "main", "arxiv_id": "2305.19486", "GitHub": [ "https://github.com/arpit2412/noiseratelearning" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 100 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Eliminating Warping Shakes for Unsupervised Online Video Stitching", "id": "main", "arxiv_id": "2403.06378", "GitHub": [ "https://github.com/nie-lang/stabstitch" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 101 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models", "id": "main", "arxiv_id": "2312.06109", "GitHub": [ "https://github.com/Ucas-HaoranWei/Vary" ], "paper_page": "https://huggingface.co/papers/2312.06109", "n_linked_authors": 3, "upvotes": 20, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 102 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Merlin: Empowering Multimodal LLMs with Foresight Minds", "id": "main", "arxiv_id": "2312.00589", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.00589", "n_linked_authors": 4, "upvotes": 24, "num_comments": 1, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 103 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders", "id": "main", "arxiv_id": "2303.12001", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 104 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "E.T. the Exceptional Trajectory: Text-to-camera-trajectory generation with character awareness", "id": "main", "arxiv_id": "2407.01516", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 105 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding", "id": "main", "arxiv_id": "2406.07471", "GitHub": [ "https://github.com/minghu0830/ophnet-benchmark" ], "paper_page": "https://huggingface.co/papers/2406.07471", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 14, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 106 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SignAvatars: A Large-scale 3D Sign Language Holistic Motion Dataset and Benchmark", "id": "main", "arxiv_id": "2310.20436", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 107 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AttnZero: Efficient Attention Discovery for Vision Transformers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 108 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Auto-GAS: Automated Proxy Discovery for Training-free Generative Architecture Search", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 109 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Auto-DAS: Automated Proxy Discovery for Training-free Distillation-aware Architecture Search", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 110 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation", "id": "main", "arxiv_id": "2312.08754", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.08754", "n_linked_authors": 5, "upvotes": 6, "num_comments": 1, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 111 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TimeCraft: Navigate Weakly-Supervised Temporal Grounded Video Question Answering via Bi-directional Reasoning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 112 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spectral Subsurface Scattering for Material Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 113 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "nuCraft: Crafting High Resolution 3D Semantic Occupancy for Unified 3D Scene Understanding", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 114 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dynamic Neural Radiance Field From Defocused Monocular Video", "id": "main", "arxiv_id": "2407.05586", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 115 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PiTe: Pixel-Temporal Alignment for Large Video-Language Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 116 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CarFormer: Self-Driving with Learned Object-Centric Representations", "id": "main", "arxiv_id": "2407.15843", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 117 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models", "id": "main", "arxiv_id": "2404.11895", "GitHub": [ "https://github.com/thermal-dynamics/freediff" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 118 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Plain-Det: A Plain Multi-Dataset Object Detector", "id": "main", "arxiv_id": "2407.10083", "GitHub": [ "https://github.com/chengshiest/plain-det" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 119 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation", "id": "main", "arxiv_id": "2311.17325", "GitHub": [ "https://github.com/zhenzhao/ad-mt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 120 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cs2K: Class-specific and Class-shared Knowledge Guidance for Incremental Semantic Segmentation", "id": "main", "arxiv_id": "2407.09047", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 121 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synchronous Diffusion for Unsupervised Smooth Non-Rigid 3D Shape Matching", "id": "main", "arxiv_id": "2407.08244", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 122 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text-Guided Video Masked Autoencoder", "id": "main", "arxiv_id": "2408.00759", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 123 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Models for Open-Vocabulary Segmentation", "id": "main", "arxiv_id": "2306.09316", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2306.09316", "n_linked_authors": 1, "upvotes": 9, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 124 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Textual-Visual Logic Challenge: Understanding and Reasoning in Text-to-Image Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 125 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EvSign: Sign Language Recognition and Translation with Streaming Events", "id": "main", "arxiv_id": "2407.12593", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 126 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "QUAR-VLA: Vision-Language-Action Model for Quadruped Robots", "id": "main", "arxiv_id": "2312.14457", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.14457", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 127 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-shot Object Counting with Good Exemplars", "id": "main", "arxiv_id": "2407.04948", "GitHub": [ "https://github.com/hopoolinz/va-count" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 128 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering", "id": "main", "arxiv_id": "2311.16465", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.16465", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [ "JingyeChen22/TextDiffuser-2", "JingyeChen22/TextDiffuser-2-Text-Inpainting" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 129 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SFPNet: Sparse Focal Point Network for Semantic Segmentation on General LiDAR Point Clouds", "id": "main", "arxiv_id": "2407.11569", "GitHub": [ "https://github.com/Cavendish518/SFPNet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 130 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PartSTAD: 2D-to-3D Part Segmentation Task Adaptation", "id": "main", "arxiv_id": "2401.05906", "GitHub": [ "https://github.com/kormachine/partstad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 131 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FutureDepth: Learning to Predict the Future Improves Video Depth Estimation", "id": "main", "arxiv_id": "2403.12953", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 132 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLM as Copilot for Coarse-grained Vision-and-Language Navigation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 133 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Raindrop Clarity: A Dual-Focused Dataset for Day and Night Raindrop Removal", "id": "main", "arxiv_id": "2407.16957", "GitHub": [ "https://github.com/jinyeying/raindropclarity" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 134 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Moving Object Segmentation with Atmospheric Turbulence", "id": "main", "arxiv_id": "2311.03572", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 135 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AccDiffusion: An Accurate Method for Higher-Resolution Image Generation", "id": "main", "arxiv_id": "2407.10738", "GitHub": [ "https://github.com/lzhxmu/accdiffusion" ], "paper_page": "https://huggingface.co/papers/2407.10738", "n_linked_authors": 0, "upvotes": 3, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "fffiloni/AccDiffusion", "cocktailpeanut/AccDiffusion" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 136 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Uncertainty-Driven Spectral Compressive Imaging with Spatial-Frequency Transformer", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 137 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CaesarNeRF: Calibrated Semantic Representation for Few-Shot Generalizable Neural Rendering", "id": "main", "arxiv_id": "2311.15510", "GitHub": [ "https://github.com/haidongz-usc/CaesarNeRF" ], "paper_page": "https://huggingface.co/papers/2311.15510", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 138 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping", "id": "main", "arxiv_id": "2403.15951", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 139 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image Demoireing in RAW and sRGB Domains", "id": "main", "arxiv_id": "2312.09063", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 140 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LiDAR-Event Stereo Fusion with Hallucinations", "id": "main", "arxiv_id": "2408.04633", "GitHub": [ "https://github.com/bartn8/eventvppstereo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 141 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "X-Former: Unifying Contrastive and Reconstruction Learning for MLLMs", "id": "main", "arxiv_id": "2407.13851", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13851", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 142 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Anomalies with Normality Prior for Unsupervised Video Anomaly Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 143 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisiting Supervision for Continual Representation Learning", "id": "main", "arxiv_id": "2311.13321", "GitHub": [ "https://github.com/danielm1405/sl-vs-ssl-cl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 144 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FLAT: Flux-aware Imperceptible Adversarial Attacks on 3D Point Clouds", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 145 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MMBENCH: Is Your Multi-Modal Model an All-around Player?", "id": "main", "arxiv_id": "2307.06281", "GitHub": [ "https://github.com/InternLM/opencompass" ], "paper_page": "https://huggingface.co/papers/2307.06281", "n_linked_authors": 5, "upvotes": 3, "num_comments": 0, "n_authors": 12, "Models": [ "HuggingFaceM4/idefics-80b-instruct", "HuggingFaceM4/idefics-9b-instruct", "HuggingFaceM4/idefics-80b", "HuggingFaceM4/idefics-9b", "areegtarek/idefics-9b-instruct-all" ], "Datasets": [ "HuggingFaceM4/MMBench_dev", "lmms-lab/MMBench_CN", "lmms-lab/MMBench_EN" ], "Spaces": [ "HuggingFaceM4/idefics_playground", "HuggingFaceM4/AI_Meme_Generator", "HuggingFaceM4/ai_dad_jokes", "HuggingFaceM4/ai_raven", "openskyml/pigeon-chat", "HuggingFaceM4/IDEFICS-bias-eval", "Leyo/AI_Meme_Generator", "aliabid94/idefics_playground", "Omnibus/idefics_playground", "johann22/chat-diffusion", "ImagineAI-Real/idefics_playground", "Omnibus/idefics_playground_mod", "Statical/STC-ITT", "johann22/idefics-9b-ft-describe-diffusion-mj", "cyberdan2002/AI_Meme_Generator", "alexkueck/TestInferenceAPI", "peterpeter8585/abc", "ysharma/dummy_m4", "smothiki/idefics_playground", "johann22/idefics_playground", "ysharma/dummy_123", "johann22/idefics-stream", "johann22/chat-diffusion-describe", "steadilyai/idefics", "johann22/inference-explorer", "Omnibus/micro-agent-new-test", "dawood/idefics2_playground", "Suniilkumaar/AI_Meme_Generator", "jbilcke-hf/idefics-server" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 146 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Implicit Filtering for Learning Neural Signed Distance Functions from 3D Point Clouds", "id": "main", "arxiv_id": "2407.13342", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 147 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Exposure Correction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 148 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Anytime Continual Learning for Open Vocabulary Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 149 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "External Knowledge Enhanced 3D Scene Generation from Sketch", "id": "main", "arxiv_id": "2403.14121", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 150 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "G3R: Gradient Guided Generalizable Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 151 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting", "id": "main", "arxiv_id": "2404.06903", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.06903", "n_linked_authors": 4, "upvotes": 16, "num_comments": 3, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 152 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Frequency-Spatial Entanglement Learning for Camouflaged Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/csysi/fsel" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 153 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions", "id": "main", "arxiv_id": "2407.12345", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 154 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Occluded Gait Recognition with Mixture of Experts: An Action Detection Perspective", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 155 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis", "id": "main", "arxiv_id": "2404.01647", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 156 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models", "id": "main", "arxiv_id": "2404.13013", "GitHub": [ "https://github.com/FoundationVision/Groma" ], "paper_page": "https://huggingface.co/papers/2404.13013", "n_linked_authors": 3, "upvotes": 29, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [ "FoundationVision/groma_instruct" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 157 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Utility of 3D Hand Poses for Action Recognition", "id": "main", "arxiv_id": "2403.09805", "GitHub": [ "https://github.com/s-shamil/HandFormer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 158 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DG-PIC: Domain Generalized Point-In-Context Learning for Point Cloud Understanding", "id": "main", "arxiv_id": "2407.08801", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 159 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Operational Open-Set Recognition and PostMax Refinement", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 160 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ScaleDreamer: Scalable Text-to-3D Synthesis with Asynchronous Score Distillation", "id": "main", "arxiv_id": "2407.02040", "GitHub": [ "https://github.com/theericma/scaledreamer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 161 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SINDER: Repairing the Singular Defects of DINOv2", "id": "main", "arxiv_id": "2407.16826", "GitHub": [ "https://github.com/haoqiwang/sinder" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 162 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow", "id": "main", "arxiv_id": "2405.14793", "GitHub": [ "https://github.com/princeton-vl/sea-raft" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 163 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation", "id": "main", "arxiv_id": "2408.14738", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 164 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "General and Task-Oriented Video Segmentation", "id": "main", "arxiv_id": "2407.06540", "GitHub": [ "https://github.com/kagawa588/gvseg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 165 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VISAGE: Video Instance Segmentation with Appearance-Guided Enhancement", "id": "main", "arxiv_id": "2312.04885", "GitHub": [ "https://github.com/kimhanjung/visage" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 166 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LiFT: A Surprisingly Simple Lightweight Feature Transform for Dense ViT Descriptors", "id": "main", "arxiv_id": "2403.14625", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14625", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 167 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback", "id": "main", "arxiv_id": "2404.07987", "GitHub": [ "https://github.com/liming-ai/ControlNet_Plus_Plus" ], "paper_page": "https://huggingface.co/papers/2404.07987", "n_linked_authors": 2, "upvotes": 47, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [ "limingcv/ControlNet-Plus-Plus" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 168 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TF-FAS: Twofold-Element Fine-Grained Semantic Guidance for Generalizable Face Anti-Spoofing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 169 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prompting Future Driven Diffusion Model for Hand Motion Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 170 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Defect Spectrum: A Granular Look of Large-scale Defect Datasets with Rich Semantics", "id": "main", "arxiv_id": "2310.17316", "GitHub": [ "https://github.com/EnVision-Research/Defect_Spectrum" ], "paper_page": "https://huggingface.co/papers/2310.17316", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 171 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unveiling Advanced Frequency Disentanglement Paradigm for Low-Light Image Enhancement", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/redrock303/adf-llie" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 172 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RAPiD-Seg: Range-Aware Pointwise Distance Distribution Networks for 3D LiDAR Segmentation", "id": "main", "arxiv_id": "2407.10159", "GitHub": [ "https://github.com/l1997i/rapid_seg" ], "paper_page": "https://huggingface.co/papers/2407.10159", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 173 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UMBRAE: Unified Multimodal Brain Decoding", "id": "main", "arxiv_id": "2404.07202", "GitHub": [ "https://github.com/weihaox/UMBRAE" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 174 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NavGPT-2: Unleashing Navigational Reasoning Capability for Large Vision-Language Models", "id": "main", "arxiv_id": "2407.12366", "GitHub": [ "https://github.com/gengzezhou/navgpt-2" ], "paper_page": "https://huggingface.co/papers/2407.12366", "n_linked_authors": 1, "upvotes": 4, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [ "ZGZzz/NavGPT-Instruct" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 175 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Single-object Tracking in Point Clouds with High Temporal Variation", "id": "main", "arxiv_id": "2408.02049", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 176 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Multi-task Learning for Few-shot Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 177 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event Trojan: Asynchronous Event-based Backdoor Attacks", "id": "main", "arxiv_id": "2407.06838", "GitHub": [ "https://github.com/rfww/eventtrojan" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 178 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stepwise Multi-grained Boundary Detector for Point-supervised Temporal Action Localization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 179 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Imaging Interiors: An Implicit Solution to Electromagnetic Inverse Scattering Problems", "id": "main", "arxiv_id": "2407.09352", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 180 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dropout Mixture Low-Rank Adaptation for Visual Parameters-Efficient Fine-Tuning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 181 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OneTrack: Demystifying the Conflict Between Detection and Tracking in End-to-End 3D Trackers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 182 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LoA-Trans: Enhancing Visual Grounding by Location-Aware Transformers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 183 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression", "id": "main", "arxiv_id": "2403.14530", "GitHub": [ "https://github.com/yihangchen-ee/hac" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 184 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Energy-induced Explicit quantification for Multi-modality MRI fusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 185 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ColorPeel: Color Prompt Learning with Diffusion Models via Color and Shape Disentanglement", "id": "main", "arxiv_id": "2407.07197", "GitHub": [ "https://github.com/moatifbutt/color-peel" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 186 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exemplar-free Continual Representation Learning via Learnable Drift Compensation", "id": "main", "arxiv_id": "2407.08536", "GitHub": [ "https://github.com/alviur/ldc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 187 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Walker: Self-supervised Multiple Object Tracking by Walking on Temporal Object Appearance Graphs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 188 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spatio-Temporal Proximity-Aware Dual-Path Model for Panoramic Activity Recognition", "id": "main", "arxiv_id": "2403.14113", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 189 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffiT: Diffusion Vision Transformers for Image Generation", "id": "main", "arxiv_id": "2312.02139", "GitHub": [ "https://github.com/nvlabs/diffit" ], "paper_page": "https://huggingface.co/papers/2312.02139", "n_linked_authors": 3, "upvotes": 13, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 190 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WebRPG: Automatic Web Rendering Parameters Generation for Visual Presentation", "id": "main", "arxiv_id": "2407.15502", "GitHub": [ "https://github.com/alibabaresearch/advancedliteratemachinery" ], "paper_page": "https://huggingface.co/papers/2407.15502", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 191 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding", "id": "main", "arxiv_id": "2407.13519", "GitHub": [ "https://github.com/changshuowang/GPSFormer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 192 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis", "id": "main", "arxiv_id": "2405.15763", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 193 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection", "id": "main", "arxiv_id": "2407.10135", "GitHub": [ "https://github.com/cocoboom/fsd-bev" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 194 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SceneGraphLoc: Cross-Modal Coarse Visual Localization on 3D Scene Graphs", "id": "main", "arxiv_id": "2404.00469", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 195 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ScanReason: Empowering 3D Visual Grounding with Reasoning Capabilities", "id": "main", "arxiv_id": "2407.01525", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 196 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?", "id": "main", "arxiv_id": "2403.14624", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14624", "n_linked_authors": 9, "upvotes": 50, "num_comments": 3, "n_authors": 11, "Models": [], "Datasets": [ "AI4Math/MathVerse", "CaraJ/MathVerse-lmmseval" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 197 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "See and Think: Embodied Agent in Virtual Environment", "id": "main", "arxiv_id": "2311.15209", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.15209", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 198 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PISR: Polarimetric Neural Implicit Surface Reconstruction for Textureless and Specular Objects", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 199 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridging the Gap Between Human Motion and Action Semantics via Kinematics Phrases", "id": "main", "arxiv_id": "2310.04189", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 200 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding", "id": "main", "arxiv_id": "2407.12594", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12594", "n_linked_authors": 3, "upvotes": 18, "num_comments": 4, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 201 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Masked Angle-Aware Autoencoder for Remote Sensing Images", "id": "main", "arxiv_id": "2408.01946", "GitHub": [ "https://github.com/benesakitam/MA3E" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 202 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm", "id": "main", "arxiv_id": "2403.11781", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.11781", "n_linked_authors": 1, "upvotes": 17, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 203 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MultiGen: Zero-shot Image Generation from Multi-modal Prompts", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 204 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GazeXplain: Learning to Predict Natural Language Explanations of Visual Scanpaths", "id": "main", "arxiv_id": "2408.02788", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 205 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Chain of Counterfactual Thought for Bias-Robust Vision-Language Reasoning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 206 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SegGen: Supercharging Segmentation Models with Text2Mask and Mask2Img Synthesis", "id": "main", "arxiv_id": "2311.03355", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.03355", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 207 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sync from the Sea: Retrieving Alignable Videos from Large-Scale Datasets", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 208 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 209 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Elegantly Written: Disentangling Writer and Character Styles for Enhancing Online Chinese Handwriting", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 210 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniCode : Learning a Unified Codebook for Multimodal Large Language Models", "id": "main", "arxiv_id": "2403.09072", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 211 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "When Do We Not Need Larger Vision Models?", "id": "main", "arxiv_id": "2403.13043", "GitHub": [ "https://github.com/bfshi/scaling_on_scales" ], "paper_page": "https://huggingface.co/papers/2403.13043", "n_linked_authors": 3, "upvotes": 25, "num_comments": 2, "n_authors": 5, "Models": [ "MBZUAI/LLaVA-Meta-Llama-3-8B-Instruct-FT-S2" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 212 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GVGEN: Text-to-3D Generation with Volumetric Representation", "id": "main", "arxiv_id": "2403.12957", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12957", "n_linked_authors": 1, "upvotes": 5, "num_comments": 1, "n_authors": 9, "Models": [ "SOTAMak1r/GVGEN" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 213 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bidirectional Stereo Image Compression with Cross-Dimensional Entropy Model", "id": "main", "arxiv_id": "2407.10632", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 214 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniINR: Event-guided Unified Rolling Shutter Correction, Deblurring, and Interpolation", "id": "main", "arxiv_id": "2305.15078", "GitHub": [ "https://github.com/yunfanLu/EG-RSDBI" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 215 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReLoo: Reconstructing Humans Dressed in Loose Garments from Monocular Video in the Wild", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 216 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weakly-supervised Camera Localization by Ground-to-satellite Image Registration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 217 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dataset Growth", "id": "main", "arxiv_id": "2405.18347", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 218 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References", "id": "main", "arxiv_id": "2407.13745", "GitHub": [ "https://github.com/boelukas/mariner" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 219 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Teaching Tailored to Talent: Adverse Weather Restoration via Prompt Pool and Depth-Anything Constraint", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 220 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MoE-DiffIR: Task-customized Diffusion Priors for Universal Compressed Image Restoration", "id": "main", "arxiv_id": "2407.10833", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 221 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning", "id": "main", "arxiv_id": "2312.03849", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.03849", "n_linked_authors": 4, "upvotes": 5, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 222 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant", "id": "main", "arxiv_id": "2403.11299", "GitHub": [ "https://github.com/heliossun/sq-llava" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 223 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation", "id": "main", "arxiv_id": "2403.19319", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.19319", "n_linked_authors": 0, "upvotes": 10, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 224 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Listen to Look into the Future: Audio-Visual Egocentric Gaze Anticipation", "id": "main", "arxiv_id": "2305.03907", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 225 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "R^2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations", "id": "main", "arxiv_id": "2403.04924", "GitHub": [ "https://github.com/lxa9867/r2bench" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 226 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-supervised co-salient object detection via feature correspondences at multiple scales", "id": "main", "arxiv_id": "2403.11107", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 227 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Differentiable Convex Polyhedra Optimization from Multi-view Images", "id": "main", "arxiv_id": "2407.15686", "GitHub": [ "https://github.com/kimren227/diffconvex" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 228 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SlotLifter: Slot-guided Feature Lifting for Learning Object-Centric Radiance Fields", "id": "main", "arxiv_id": "2408.06697", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.06697", "n_linked_authors": 4, "upvotes": 13, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 229 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding", "id": "main", "arxiv_id": "2401.09340", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.09340", "n_linked_authors": 8, "upvotes": 18, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 230 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ADMap: Anti-disturbance Framework for Vectorized HD Map Construction", "id": "main", "arxiv_id": "2401.13172", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 231 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting", "id": "main", "arxiv_id": "2403.08551", "GitHub": [ "https://github.com/xinjie-q/gaussianimage" ], "paper_page": "https://huggingface.co/papers/2403.08551", "n_linked_authors": 5, "upvotes": 8, "num_comments": 2, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 232 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PanoVOS: Bridging Non-panoramic and Panoramic Views with Transformer for Video Segmentation", "id": "main", "arxiv_id": "2309.12303", "GitHub": [ "https://github.com/shilinyan99/panovos" ], "paper_page": "https://huggingface.co/papers/2309.12303", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 233 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Evaluating Text-to-Visual Generation with Image-to-Text Generation", "id": "main", "arxiv_id": "2404.01291", "GitHub": [ "https://github.com/linzhiqiu/t2i_metrics" ], "paper_page": "https://huggingface.co/papers/2404.01291", "n_linked_authors": 2, "upvotes": 5, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 234 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SENC: Handling Self-collision in Neural Cloth Simulation", "id": "main", "arxiv_id": "2407.12479", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 235 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HybridBooth: Hybrid Prompt Inversion for Efficient Subject-Driven Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 236 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PartCraft: Crafting Creative Objects by Parts", "id": "main", "arxiv_id": "2407.04604", "GitHub": [ "https://github.com/kamwoh/partcraft" ], "paper_page": "https://huggingface.co/papers/2407.04604", "n_linked_authors": 3, "upvotes": 4, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 237 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GeometrySticker: Enabling Ownership Claim of Recolorized Neural Radiance Fields", "id": "main", "arxiv_id": "2407.13390", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 238 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation", "id": "main", "arxiv_id": "2403.09192", "GitHub": [ "https://github.com/thu-mig/pyra" ], "paper_page": "https://huggingface.co/papers/2403.09192", "n_linked_authors": 0, "upvotes": 0, "num_comments": 2, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 239 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FineMatch: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction", "id": "main", "arxiv_id": "2404.14715", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 240 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CrossScore: A Multi-View Approach to Image Evaluation and Scoring", "id": "main", "arxiv_id": "2404.14409", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 241 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Modeling and Driving Human Body Soundfields through Acoustic Primitives", "id": "main", "arxiv_id": "2407.13083", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 242 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "m&m\u2019s: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks", "id": "main", "arxiv_id": "2403.11085", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.11085", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [ "zixianma/mnms" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 243 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Label-anticipated Event Disentanglement for Audio-Visual Video Parsing", "id": "main", "arxiv_id": "2407.08126", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 244 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Fidelity 3D Textured Shapes Generation by Sparse Encoding and Adversarial Decoding", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 245 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semi-Supervised Video Desnowing Network via Temporal Decoupling Experts and Distribution-Driven Contrastive Regularization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 246 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "I-MedSAM: Implicit Medical Image Segmentation with Segment Anything", "id": "main", "arxiv_id": "2311.17081", "GitHub": [ "https://github.com/ucwxb/i-medsam" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 247 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReMamber: Referring Image Segmentation with Mamba Twister", "id": "main", "arxiv_id": "2403.17839", "GitHub": [ "https://github.com/yyh-rain-song/ReMamber" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 248 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting", "id": "main", "arxiv_id": "2404.15264", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.15264", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [ "ameerazam08/TalkingGaussian" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 249 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CAT: Enhancing Multimodal Large Language Model to Answer Questions in Dynamic Audio-Visual Scenarios", "id": "main", "arxiv_id": "2403.04640", "GitHub": [ "https://github.com/rikeilong/bay-cat" ], "paper_page": "https://huggingface.co/papers/2403.04640", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 250 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Segmentation-guided Layer-wise Image Vectorization with Gradient Fills", "id": "main", "arxiv_id": "2408.15741", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 251 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Implicit Style-Content Separation using B-LoRA", "id": "main", "arxiv_id": "2403.14572", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14572", "n_linked_authors": 0, "upvotes": 4, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "Yardenfren/B-LoRA" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 252 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OpenPSG: Open-set Panoptic Scene Graph Generation via Large Multimodal Models", "id": "main", "arxiv_id": "2407.11213", "GitHub": [ "https://github.com/franciszzj/OpenPSG" ], "paper_page": "https://huggingface.co/papers/2407.11213", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 253 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ActionVOS: Actions as Prompts for Video Object Segmentation", "id": "main", "arxiv_id": "2407.07402", "GitHub": [ "https://github.com/ut-vision/actionvos" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 254 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FALIP: Visual Prompt as Foveal Attention Boosts CLIP Zero-Shot Performance", "id": "main", "arxiv_id": "2407.05578", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 255 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "U-COPE: Taking a Further Step to Universal 9D Category-level Object Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 256 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Integrating Markov Blanket Discovery into Causal Representation Learning for Domain Generalization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 257 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rotary Position Embedding for Vision Transformer", "id": "main", "arxiv_id": "2403.13298", "GitHub": [ "https://github.com/naver-ai/rope-vit" ], "paper_page": "https://huggingface.co/papers/2403.13298", "n_linked_authors": 1, "upvotes": 3, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 258 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Local All-Pair Correspondence for Point Tracking", "id": "main", "arxiv_id": "2407.15420", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.15420", "n_linked_authors": 5, "upvotes": 5, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [ "hamacojr/LocoTrack" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 259 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection", "id": "main", "arxiv_id": "2407.16448", "GitHub": [ "https://github.com/visualaikhu/monowad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 260 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReALFRED: An Embodied Instruction Following Benchmark in Photo-Realistic Environments", "id": "main", "arxiv_id": "2407.18550", "GitHub": [ "https://github.com/snumprlab/realfred" ], "paper_page": "https://huggingface.co/papers/2407.18550", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 261 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "S^3D-NeRF: Single-Shot Speech-Driven Neural Radiance Field for High Fidelity Talking Head Synthesis", "id": "main", "arxiv_id": "2408.09347", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 262 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ActionSwitch: Class-agnostic Detection of Simultaneous Actions in Streaming Videos", "id": "main", "arxiv_id": "2407.12987", "GitHub": [ "https://github.com/musicalOffering/ActionSwitch-release" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 263 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchically Structured Neural Bones for Reconstructing Animatable Objects from Casual Videos", "id": "main", "arxiv_id": "2408.00351", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 264 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PQ-SAM: Post-training Quantization for Segment Anything Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 265 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CPM: Class-conditional Prompting Machine for Audio-visual Segmentation", "id": "main", "arxiv_id": "2407.05358", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 266 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Optimizing Factorized Encoder Models: Time and Memory Reduction for Scalable and Efficient Action Recognition", "id": "main", "arxiv_id": "2306.04822", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2306.04822", "n_linked_authors": 1, "upvotes": 2, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 267 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DVLO: Deep Visual-LiDAR Odometry with Local-to-Global Feature Fusion and Bi-Directional Structure Alignment", "id": "main", "arxiv_id": "2403.18274", "GitHub": [ "https://github.com/irmvlab/dvlo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 268 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoLeaF: A Contrastive-Collaborative Learning Framework for Weakly Supervised Audio-Visual Video Parsing", "id": "main", "arxiv_id": "2405.10690", "GitHub": [ "https://github.com/faeghehsardari/coleaf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 269 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Noise-assisted Prompt Learning for Image Forgery Detection and Localization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 270 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Data Collection-free Masked Video Modeling", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 271 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Protecting NeRFs' Copyright via Plug-And-Play Watermarking Base Model", "id": "main", "arxiv_id": "2407.07735", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 272 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pixel-Aware Stable Diffusion for Realistic Image Super-Resolution and Personalized Stylization", "id": "main", "arxiv_id": "2308.14469", "GitHub": [ "https://github.com/yangxy/pasd" ], "paper_page": "https://huggingface.co/papers/2308.14469", "n_linked_authors": 0, "upvotes": 7, "num_comments": 0, "n_authors": 4, "Models": [ "ziffir/PASDV1" ], "Datasets": [], "Spaces": [ "fffiloni/PASD", "Vartobus123/PASD", "fuzzy-mittenz/PASD", "ciCic/PASD", "cbensimon/PASD", "haliliboselcuk/PASD", "jbilcke-hf/image-upscaling-api", "codificando/ai-lab-resolution-image", "riteshrm/PASD" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 273 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation", "id": "main", "arxiv_id": "2406.18958", "GitHub": [ "https://github.com/open-mmlab/anycontrol" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 274 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SEED: A Simple and Effective 3D DETR in Point Clouds", "id": "main", "arxiv_id": "2407.10749", "GitHub": [ "https://github.com/happinesslz/seed" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 275 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AEDNet: Adaptive Embedding and Multiview-Aware Disentanglement for Point Cloud Completion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 276 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synergy of Sight and Semantics: Visual Intention Understanding with CLIP", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 277 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Intrinsic Single-Image HDR Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 278 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "T-MAE: Temporal Masked Autoencoders for Point Cloud Representation Learning", "id": "main", "arxiv_id": "2312.10217", "GitHub": [ "https://github.com/codename1995/t-mae" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 279 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pathology-knowledge Enhanced Multi-instance Prompt Learning for Few-shot Whole Slide Image Classification", "id": "main", "arxiv_id": "2407.10814", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 280 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching", "id": "main", "arxiv_id": "2311.12751", "GitHub": [ "https://github.com/MultimodalGeo/GeoText-1652" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 281 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BEAF: Observing BEfore-AFter Changes to Evaluate Hallucination in Vision-language Models", "id": "main", "arxiv_id": "2407.13442", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 282 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene", "id": "main", "arxiv_id": "2407.08569", "GitHub": [ "https://github.com/ruiyang-061x/lise" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 283 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DATENeRF: Depth-Aware Text-based Editing of NeRFs", "id": "main", "arxiv_id": "2404.04526", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.04526", "n_linked_authors": 1, "upvotes": 9, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 284 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "XPSR: Cross-modal Priors for Diffusion-based Image Super-Resolution", "id": "main", "arxiv_id": "2403.05049", "GitHub": [ "https://github.com/qyp2000/xpsr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 285 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class Class-agnostic Counting", "id": "main", "arxiv_id": "2309.04820", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 286 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Category Adaptation Meets Projected Distillation in Generalized Continual Category Discovery", "id": "main", "arxiv_id": "2308.12112", "GitHub": [ "https://github.com/grypesc/camp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 287 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LaRa: Efficient Large-Baseline Radiance Fields", "id": "main", "arxiv_id": "2407.04699", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 288 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 289 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality Assessment", "id": "main", "arxiv_id": "2403.04398", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 290 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Grounding Language Models for Visual Entity Recognition", "id": "main", "arxiv_id": "2402.18695", "GitHub": [ "https://github.com/mrzilinxiao/autover" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 291 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ELSE: Efficient Deep Neural Network Inference through Line-based Sparsity Exploration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 292 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffusionDepth: Diffusion Denoising Approach for Monocular Depth Estimation", "id": "main", "arxiv_id": "2303.05021", "GitHub": [ "https://github.com/duanyiqun/diffusiondepth" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 293 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/wl-zhao/dc-solver" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 294 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TRAM: Global Trajectory and Motion of 3D Humans from in-the-wild Videos", "id": "main", "arxiv_id": "2403.17346", "GitHub": [ "https://github.com/yufu-wang/tram" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 295 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MutDet: Mutually Optimizing Pre-training for Remote Sensing Object Detection", "id": "main", "arxiv_id": "2407.09920", "GitHub": [ "https://github.com/floatingstarz/mutdet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 296 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Video Copy Localization with Regional Token Representation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 297 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Perceptual Quality in Video Super-Resolution through Temporally-Consistent Detail Synthesis using Diffusion Models", "id": "main", "arxiv_id": "2311.15908", "GitHub": [ "https://github.com/claudiom4sir/stablevsr" ], "paper_page": "https://huggingface.co/papers/2311.15908", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [ "claudiom4sir/StableVSR" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 298 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoGUENeRF: A Robust Geometry-Consistent Universal Enhancer for NeRF", "id": "main", "arxiv_id": "2403.11909", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 299 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridging the Gap: Studio-like Avatar Creation from a Monocular Phone Capture", "id": "main", "arxiv_id": "2407.19593", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.19593", "n_linked_authors": 3, "upvotes": 12, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 300 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ControlLLM: Augment Language Models with Tools by Searching on Graphs", "id": "main", "arxiv_id": "2310.17796", "GitHub": [ "https://github.com/opengvlab/controlllm" ], "paper_page": "https://huggingface.co/papers/2310.17796", "n_linked_authors": 6, "upvotes": 16, "num_comments": 1, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [ "OpenGVLab/ControlLLM", "rodrigomasini/ControlLLM" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 301 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction", "id": "main", "arxiv_id": "2403.15098", "GitHub": [ "https://github.com/vita-epfl/unitraj" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 302 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamDissector: Learning Disentangled Text-to-3D Generation from 2D Diffusion Priors", "id": "main", "arxiv_id": "2407.16260", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.16260", "n_linked_authors": 0, "upvotes": 1, "num_comments": 1, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 303 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Vamos: Versatile Action Models for Video Understanding", "id": "main", "arxiv_id": "2311.13627", "GitHub": [ "https://github.com/brown-palm/Vamos" ], "paper_page": "https://huggingface.co/papers/2311.13627", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 304 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prioritized Semantic Learning for Zero-shot Instance Navigation", "id": "main", "arxiv_id": "2403.11650", "GitHub": [ "https://github.com/xinyusun/psl-instancenav" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 305 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoadPainter: Points Are Ideal Navigators for Topology transformER", "id": "main", "arxiv_id": "2407.15349", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 306 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis", "id": "main", "arxiv_id": "2403.12963", "GitHub": [ "https://github.com/leonhlj/fouriscale" ], "paper_page": "https://huggingface.co/papers/2403.12963", "n_linked_authors": 4, "upvotes": 6, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 307 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Can OOD Object Detectors Learn from Foundation Models?", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 308 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Videoshop: Localized Semantic Video Editing with Noise-Extrapolated Diffusion Inversion", "id": "main", "arxiv_id": "2403.14617", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 309 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 310 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Boosting 3D Single Object Tracking with 2D Matching Distillation and 3D Pre-training", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 311 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion-Based Image-to-Image Translation by Noise Correction via Prompt Interpolation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 312 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Real-data-driven 2000 FPS Color Video from Mosaicked Chromatic Spikes", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 313 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Brain-ID: Learning Contrast-agnostic Anatomical Representations for Brain Imaging", "id": "main", "arxiv_id": "2311.16914", "GitHub": [ "https://github.com/peirong26/Brain-ID" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 314 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 315 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RadEdit: stress-testing biomedical vision models via diffusion image editing", "id": "main", "arxiv_id": "2312.12865", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.12865", "n_linked_authors": 7, "upvotes": 3, "num_comments": 0, "n_authors": 14, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 316 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPAMming Labels: Efficient Annotations for the Trackers of Tomorrow", "id": "main", "arxiv_id": "2404.11426", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 317 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaDiffSR: Adaptive Region-aware Dynamic acceleration Diffusion Model for Real-World Image Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 318 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Explicitly Guided Information Interaction Network for Cross-modal Point Cloud Completion", "id": "main", "arxiv_id": "2407.02887", "GitHub": [ "https://github.com/whu-usi3dv/egiinet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 319 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Real-world Event-guided Low-light Video Enhancement and Deblurring", "id": "main", "arxiv_id": "2408.14916", "GitHub": [ "https://github.com/intelpro/elednet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 320 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation", "id": "main", "arxiv_id": "2403.12042", "GitHub": [ "https://github.com/buxiangzhiren/vd-it" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 321 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks", "id": "main", "arxiv_id": "2408.10739", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 322 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation", "id": "main", "arxiv_id": "2407.11294", "GitHub": [ "https://github.com/arking1995/coho" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 323 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography", "id": "main", "arxiv_id": "2407.17996", "GitHub": [ "https://github.com/calayzhou/jdm-hdrnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 324 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SpatialFormer: Towards Generalizable Vision Transformers with Explicit Spatial Understanding", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 325 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OccWorld: Learning a 3D Occupancy World Model for Autonomous Driving", "id": "main", "arxiv_id": "2311.16038", "GitHub": [ "https://github.com/wzzheng/occworld" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 326 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MyVLM: Personalizing VLMs for User-Specific Queries", "id": "main", "arxiv_id": "2403.14599", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14599", "n_linked_authors": 3, "upvotes": 15, "num_comments": 2, "n_authors": 5, "Models": [ "yuvalalaluf/MyVLM" ], "Datasets": [ "yuvalalaluf/MyVLM" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 327 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AMEGO: Active Memory from long EGOcentric videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 328 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Power Variable Projection for Initialization-Free Large-Scale Bundle Adjustment", "id": "main", "arxiv_id": "2405.05079", "GitHub": [ "https://github.com/tum-vision/povar" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 329 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Collaborative Control for Geometry-Conditioned PBR Image Generation", "id": "main", "arxiv_id": "2402.05919", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.05919", "n_linked_authors": 6, "upvotes": 6, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 330 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Co-synthesis of Histopathology Nuclei Image-Label Pairs using a Context-Conditioned Joint Diffusion Model", "id": "main", "arxiv_id": "2407.14434", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 331 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "One-stage Prompt-based Continual Learning", "id": "main", "arxiv_id": "2402.16189", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 332 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SpaceJAM: a Lightweight and Regularization-free Method for Fast Joint Alignment of Images", "id": "main", "arxiv_id": "2407.11850", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 333 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "APL: Anchor-based Prompt Learning for One-stage Weakly Supervised Referring Expression Comprehension", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 334 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GenQ: Quantization in Low Data Regimes with Generative Synthetic Data", "id": "main", "arxiv_id": "2312.05272", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 335 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MVDD: Multi-View Depth Diffusion Models", "id": "main", "arxiv_id": "2312.04875", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.04875", "n_linked_authors": 3, "upvotes": 9, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 336 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data", "id": "main", "arxiv_id": "2407.13094", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 337 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Risk-Aware Self-Consistent Imitation Learning for Trajectory Planning in Autonomous Driving", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 338 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-level Adaptive Self-Labeling for Novel Class Discovery in Point Cloud Segmentation", "id": "main", "arxiv_id": "2407.12489", "GitHub": [ "https://github.com/RikkiXu/NCD_PC" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 339 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EBDM: Exemplar-guided Image Translation with Brownian-bridge Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 340 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamDrone: Text-to-Image Diffusion Models are Zero-shot Perpetual View Generators", "id": "main", "arxiv_id": "2312.08746", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.08746", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 341 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Harnessing Text-to-Image Diffusion Models for Category-Agnostic Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 342 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer", "id": "main", "arxiv_id": "2404.03736", "GitHub": [ "https://github.com/jarrentwu1031/sc4d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 343 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Overcoming Distribution Mismatch in Quantizing Image Super-Resolution Networks", "id": "main", "arxiv_id": "2307.13337", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 344 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Large Motion Model for Unified Multi-Modal Motion Generation", "id": "main", "arxiv_id": "2404.01284", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 345 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FisherRF: Active View Selection and Mapping with Radiance Fields using Fisher Information", "id": "main", "arxiv_id": "2311.17874", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 346 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Occlusion Handling in 3D Human Pose Estimation with Perturbed Positional Encoding", "id": "main", "arxiv_id": "2405.17397", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 347 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gradient-based Out-of-Distribution Detection", "id": "main", "arxiv_id": "2404.12368", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 348 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event-based Mosaicing Bundle Adjustment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 349 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProMerge: Prompt and Merge for Unsupervised Instance Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 350 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "M2D2M: Multi-Motion Generation from Text with Discrete Diffusion Models", "id": "main", "arxiv_id": "2407.14502", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 351 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Hard Positive Truth about Vision-Language Compositionality", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 352 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing", "id": "main", "arxiv_id": "2403.08733", "GitHub": [ "https://github.com/ActiveVisionLab/gaussctrl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 353 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shapefusion: 3D localized human diffusion models", "id": "main", "arxiv_id": "2403.19773", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 354 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing", "id": "main", "arxiv_id": "2403.09468", "GitHub": [ "https://github.com/furiosa-ai/eta-inversion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 355 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prompting Language-Informed Distribution for Compositional Zero-Shot Learning", "id": "main", "arxiv_id": "2305.14428", "GitHub": [ "https://github.com/cogito2012/plid" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 356 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Wear-Any-Way: Manipulable Virtual Try-on via Sparse Correspondence Alignment", "id": "main", "arxiv_id": "2403.12965", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12965", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 357 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3iGS: Factorised Tensorial Illumination for 3D Gaussian Splatting", "id": "main", "arxiv_id": "2408.03753", "GitHub": [ "https://github.com/TangZJ/3iGS" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 358 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels", "id": "main", "arxiv_id": "2407.16802", "GitHub": [ "https://github.com/jaesoonbaik1213/dasc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 359 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Free-Viewpoint Video of Outdoor Sports Using a Drone", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 360 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Wavelength-Embedding-guided Filter-Array Transformer for Spectral Demosaicing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 361 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ConGeo: Robust Cross-view Geo-localization across Ground View Variations", "id": "main", "arxiv_id": "2403.13965", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 362 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generalizable Facial Expression Recognition", "id": "main", "arxiv_id": "2408.10614", "GitHub": [ "https://github.com/zyh-uaiaaaa/generalizable-fer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 363 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GAURA: Generalizable Approach for Unified Restoration and Rendering of Arbitrary Views", "id": "main", "arxiv_id": "2407.08221", "GitHub": [ "https://github.com/Vinayak-VG/GAURA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 364 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Any-Point Tracking by Contrastive Random Walks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 365 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization", "id": "main", "arxiv_id": "2405.17873", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2405.17873", "n_linked_authors": 3, "upvotes": 2, "num_comments": 0, "n_authors": 9, "Models": [ "nics-efc/MixDQ" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 366 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Siamese Vision Transformers are Scalable Audio-visual Learners", "id": "main", "arxiv_id": "2403.19638", "GitHub": [ "https://github.com/genjib/avsiam" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 367 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LCM-Lookahead for Encoder-based Text-to-Image Personalization", "id": "main", "arxiv_id": "2404.03620", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.03620", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 368 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Architecture-Agnostic Untrained Networks Priors for Image Reconstruction with Frequency Regularization", "id": "main", "arxiv_id": "2312.09988", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 369 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Open-Ended Visual Recognition with Large Language Models", "id": "main", "arxiv_id": "2311.08400", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 370 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ray-Distance Volume Rendering for Neural Scene Reconstruction", "id": "main", "arxiv_id": "2408.15524", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 371 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReNoise: Real Image Inversion Through Iterative Noising", "id": "main", "arxiv_id": "2403.14602", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14602", "n_linked_authors": 4, "upvotes": 19, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [ "garibida/ReNoise-Inversion", "cocktailpeanut/ReNoise-Inversion" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 372 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Attention Decomposition for Cross-Domain Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 373 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Be Yourself: Bounded Attention for Multi-Subject Text-to-Image Generation", "id": "main", "arxiv_id": "2403.16990", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.16990", "n_linked_authors": 3, "upvotes": 24, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "omer11a/bounded-attention" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 374 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Handling The Non-Smooth Challenge in Tensor SVD: A Multi-Objective Tensor Recovery Framework", "id": "main", "arxiv_id": "2311.13958", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 375 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RodinHD: High-Fidelity 3D Avatar Generation with Diffusion Models", "id": "main", "arxiv_id": "2407.06938", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.06938", "n_linked_authors": 3, "upvotes": 21, "num_comments": 1, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 376 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation", "id": "main", "arxiv_id": "2403.14621", "GitHub": [ "https://github.com/justimyhxu/grm" ], "paper_page": "https://huggingface.co/papers/2403.14621", "n_linked_authors": 4, "upvotes": 14, "num_comments": 2, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [ "GRM-demo/GRM" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 377 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IRGen: Generative Modeling for Image Retrieval", "id": "main", "arxiv_id": "2303.10126", "GitHub": [ "https://github.com/yakt00/IRGen" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 378 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Trimodal Relation for Audio-Visual Question Answering with Missing Modality", "id": "main", "arxiv_id": "2407.16171", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 379 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FastCAD: Real-Time CAD Retrieval and Alignment from Scans and Videos", "id": "main", "arxiv_id": "2403.15161", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 380 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Simple Latent Diffusion Approach for Panoptic Segmentation and Mask Inpainting", "id": "main", "arxiv_id": "2401.10227", "GitHub": [ "https://github.com/segments-ai/latent-diffusion-segmentation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 381 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VISA: Reasoning Video Object Segmentation via Large Language Model", "id": "main", "arxiv_id": "2407.11325", "GitHub": [ "https://github.com/cilinyan/VISA" ], "paper_page": "https://huggingface.co/papers/2407.11325", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 382 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lego: Learning to Disentangle and Invert Personalized Concepts Beyond Object Appearance in Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2311.13833", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 383 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IDOL: Unified Dual-Modal Latent Diffusion for Human-Centric Joint Video-Depth Generation", "id": "main", "arxiv_id": "2407.10937", "GitHub": [ "https://github.com/yhZhai/idol" ], "paper_page": "https://huggingface.co/papers/2407.10937", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 384 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scaling Backwards: Minimal Synthetic Pre-training?", "id": "main", "arxiv_id": "2408.00677", "GitHub": [ "https://github.com/super-tadory/1p-frac" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 385 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BAMM: Bidirectional Autoregressive Motion Model", "id": "main", "arxiv_id": "2403.19435", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 386 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event-based Head Pose Estimation: Benchmark and Method", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 387 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos", "id": "main", "arxiv_id": "2305.03713", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2305.03713", "n_linked_authors": 3, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 388 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Multi-modal Transformers in Federated Learning", "id": "main", "arxiv_id": "2404.12467", "GitHub": [ "https://github.com/imguangyu/fedcola" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 389 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fisher Calibration for Backdoor-Robust Heterogeneous Federated Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 390 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "QueryCDR: Query-based Controllable Distortion Rectification Network for Fisheye Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 391 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Latent-INR: A Flexible Framework for Implicit Representations of Videos with Discriminative Semantics", "id": "main", "arxiv_id": "2408.02672", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 392 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DCDM: Diffusion-Conditioned-Diffusion Model for Scene Text Image Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 393 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting", "id": "main", "arxiv_id": "2404.03613", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 394 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamMover: Leveraging the Prior of Diffusion Models for Image Interpolation with Large Motion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 395 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoLA: Conditional Dropout and Language-driven Robust Dual-modal Salient Object Detection", "id": "main", "arxiv_id": "2407.06780", "GitHub": [ "https://github.com/ssecv/CoLA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 396 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image-Feature Weak-to-Strong Consistency: An Enhanced Paradigm for Semi-Supervised Learning", "id": "main", "arxiv_id": "2408.12614", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 397 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RPBG: Towards Robust Neural Point-based Graphics in the Wild", "id": "main", "arxiv_id": "2405.05663", "GitHub": [ "https://github.com/qt-zhu/rpbg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 398 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GaussReg: Fast 3D Registration with Gaussian Splatting", "id": "main", "arxiv_id": "2407.05254", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 399 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators", "id": "main", "arxiv_id": "2408.05710", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.05710", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 400 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation", "id": "main", "arxiv_id": "2407.13362", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13362", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 401 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IAM-VFI : Interpolate Any Motion for Video Frame Interpolation with motion complexity map", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 402 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TIP: Tabular-Image Pre-training for Multimodal Classification with Incomplete Data", "id": "main", "arxiv_id": "2407.07582", "GitHub": [ "https://github.com/siyi-wind/tip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 403 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Model is a Good Pose Estimator from 3D RF-Vision", "id": "main", "arxiv_id": "2403.16198", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 404 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues", "id": "main", "arxiv_id": "2404.14634", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 405 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning 3D-aware GANs from Unposed Images with Template Feature Field", "id": "main", "arxiv_id": "2404.05705", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 406 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TAPTR: Tracking Any Point with Transformers as Detection", "id": "main", "arxiv_id": "2403.13042", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13042", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 407 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning", "id": "main", "arxiv_id": "2408.06798", "GitHub": [ "https://github.com/jieshibo/tocom" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 408 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Point-supervised Panoptic Segmentation via Estimating Pseudo Labels from Learnable Distance", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 409 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BRAVE: Broadening the visual encoding of vision-language models", "id": "main", "arxiv_id": "2404.07204", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.07204", "n_linked_authors": 3, "upvotes": 15, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 410 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HUMOS: Human Motion Model Conditioned on Body Shape", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 411 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields", "id": "main", "arxiv_id": "2403.11131", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 412 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MVDiffHD: A Dense High-resolution Multi-view Diffusion Model for Single or Sparse-view 3D Object Reconstruction", "id": "main", "arxiv_id": "2402.12712", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.12712", "n_linked_authors": 1, "upvotes": 14, "num_comments": 3, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 413 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FlowCon: Out-of-Distribution Detection using Flow-based Contrastive Learning", "id": "main", "arxiv_id": "2407.03489", "GitHub": [ "https://github.com/saandeepa93/FlowCon_OOD" ], "paper_page": "https://huggingface.co/papers/2407.03489", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 414 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 415 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Un-EVIMO: Unsupervised Event-based Independent Motion Segmentation", "id": "main", "arxiv_id": "2312.00114", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 416 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Seeing the Unseen: A Frequency Prompt Guided Transformer for Image Restoration", "id": "main", "arxiv_id": "2404.00288", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 417 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians", "id": "main", "arxiv_id": "2404.01133", "GitHub": [ "https://github.com/DekuLiuTesla/CityGaussian" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 418 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bayesian Evidential Deep Learning for Online Action Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 419 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaNAT: Exploring Adaptive Policy for Token-Based Image Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 420 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather", "id": "main", "arxiv_id": "2407.02286", "GitHub": [ "https://github.com/engineerJPark/LiDAR-DataAug4Weather" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 421 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction", "id": "main", "arxiv_id": "2305.15171", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 422 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Memory-Efficient Fine-Tuning for Quantized Diffusion Model", "id": "main", "arxiv_id": "2401.04339", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.04339", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 423 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing", "id": "main", "arxiv_id": "2407.04461", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.04461", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 424 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model", "id": "main", "arxiv_id": "2404.19759", "GitHub": [ "https://github.com/Dai-Wenxun/MotionLCM" ], "paper_page": "https://huggingface.co/papers/2404.19759", "n_linked_authors": 4, "upvotes": 24, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 425 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Human Hair Reconstruction with Strand-Aligned 3D Gaussians", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 426 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation", "id": "main", "arxiv_id": "2408.16426", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 427 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders", "id": "main", "arxiv_id": "2407.13460", "GitHub": [ "https://github.com/pha123661/SA-DVAE" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 428 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridge Past and Future: Overcoming Information Asymmetry in Incremental Object Detection", "id": "main", "arxiv_id": "2407.11499", "GitHub": [ "https://github.com/isee-laboratory/bpf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 429 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Global-to-Pixel Regression for Human Mesh Recovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 430 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visible and Clear: Finding Tiny Objects in Difference Map", "id": "main", "arxiv_id": "2405.11276", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 431 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Image Super Resolution from Training Data Perspectives", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/gohtanii/DiverSeg-dataset" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 432 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BlazeBVD: Make Scale-Time Equalization Great Again for Blind Video Deflickering", "id": "main", "arxiv_id": "2403.06243", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.06243", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 433 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Inference of Vision Instruction-Following Models with Elastic Cache", "id": "main", "arxiv_id": "2407.18121", "GitHub": [ "https://github.com/liuzuyan/elasticcache" ], "paper_page": "https://huggingface.co/papers/2407.18121", "n_linked_authors": 6, "upvotes": 15, "num_comments": 2, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 434 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior", "id": "main", "arxiv_id": "2407.04947", "GitHub": [ "https://github.com/aim-uofa/FreeCompose" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 435 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Robustly Reconstruct Dynamic Scenes from Low-light Spike Streams", "id": "main", "arxiv_id": "2401.10461", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 436 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection", "id": "main", "arxiv_id": "2407.21465", "GitHub": [ "https://github.com/wkfdb/marvelovd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 437 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models", "id": "main", "arxiv_id": "2407.10625", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.10625", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 438 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Interactive 3D Object Detection with Prompts", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 439 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "How Video Meetings Change Your Expression", "id": "main", "arxiv_id": "2406.00955", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 440 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRACE: Graph-Based Contextual Debiasing for Fair Visual Question Answering", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 441 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural Volumetric World Models for Autonomous Driving", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 442 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IVTP: Instruction-guided Visual Token Pruning for Large Vision-Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 443 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RegionDrag: Fast Region-Based Image Editing with Diffusion Models", "id": "main", "arxiv_id": "2407.18247", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 444 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy", "id": "main", "arxiv_id": "2402.00752", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 445 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding", "id": "main", "arxiv_id": "2312.05328", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 446 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration", "id": "main", "arxiv_id": "2403.11056", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 447 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRA: Detecting Oriented Objects through Group-wise Rotating and Attention", "id": "main", "arxiv_id": "2403.11127", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 448 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Portrait4D-v2: Pseudo Multi-View Data Creates Better 4D Head Synthesizer", "id": "main", "arxiv_id": "2403.13570", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13570", "n_linked_authors": 0, "upvotes": 3, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 449 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CSOT: Cross-Scan Object Transfer for Semi-Supervised LiDAR Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 450 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation", "id": "main", "arxiv_id": "2407.13363", "GitHub": [ "https://github.com/dota-109/Web-WILSS" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 451 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ShareGPT4V: Improving Large Multi-Modal Models with Better Captions", "id": "main", "arxiv_id": "2311.12793", "GitHub": [ "https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V" ], "paper_page": "https://huggingface.co/papers/2311.12793", "n_linked_authors": 3, "upvotes": 18, "num_comments": 2, "n_authors": 8, "Models": [ "Lin-Chen/ShareGPT4V-7B", "Lin-Chen/ShareCaptioner", "Lin-Chen/ShareGPT4V-13B", "Lin-Chen/ShareGPT4V-7B_Pretrained_vit-large336-l12", "Lin-Chen/ShareGPT4V-13B_Pretrained_vit-large336-l12_vicuna-13b-v1.5", "Lin-Chen/ShareGPT4V-7B_Pretrained_vit-large336-l12_vicuna-7b-v1.5", "Lin-Chen/ShareGPT4V-13B_Pretrained_vit-large336-l12", "4bit/ShareGPT4V-7B_Pretrained_vit-large336-l12", "4bit/ShareGPT4V-7B", "gokaygokay/ShareCaptioner", "stanrom/ShareCaptioner", "stanrom/ShareGPT4V-7B" ], "Datasets": [ "Lin-Chen/ShareGPT4V", "d0rj/ShareGPT4V-ru", "foundation-multimodal-models/DetailCaps-4870", "d0rj/ShareGPT4V-PT-ru", "damerajee/VQA-COCO-HI" ], "Spaces": [ "Lin-Chen/ShareGPT4V-7B", "Lin-Chen/Share-Captioner", "Sabareeshr/test" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 452 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Eyes Closed, Safety On: Protecting Multimodal LLMs via Image-to-Text Transformation", "id": "main", "arxiv_id": "2403.09572", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 453 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Invertible Neural Warp for NeRF", "id": "main", "arxiv_id": "2407.12354", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 454 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Vectorized Map Perception with Historical Rasterized Maps", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/hxmap/hrmapnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 455 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient and Versatile Robust Fine-Tuning of Zero-shot Models", "id": "main", "arxiv_id": "2408.05749", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.05749", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 456 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Part2Object: Hierarchical Unsupervised 3D Instance Segmentation", "id": "main", "arxiv_id": "2407.10084", "GitHub": [ "https://github.com/chengshiest/part2object" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 457 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PetFace: A Large-Scale Dataset and Benchmark for Animal Identification", "id": "main", "arxiv_id": "2407.13555", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13555", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 458 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo", "id": "main", "arxiv_id": "2405.12218", "GitHub": [ "https://github.com/TQTQliu/MVSGaussian" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 459 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-Shot Detection of AI-Generated Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 460 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Language-Image Pre-training with Long Captions", "id": "main", "arxiv_id": "2403.17007", "GitHub": [ "https://github.com/zyf0619sjtu/DreamLIP" ], "paper_page": "https://huggingface.co/papers/2403.17007", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "qidouxiong619/dreamlip_long_captions" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 461 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GKGNet: Group K-Nearest Neighbor based Graph Convolutional Network for Multi-Label Image Recognition", "id": "main", "arxiv_id": "2308.14378", "GitHub": [ "https://github.com/jin-s13/gkgnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 462 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DISCO: Embodied Navigation and Interaction via Differentiable Scene Semantics and Dual-level Control", "id": "main", "arxiv_id": "2407.14758", "GitHub": [ "https://github.com/allenxuuu/disco" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 463 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception", "id": "main", "arxiv_id": "2312.05525", "GitHub": [ "https://github.com/lishuhuai527/coco-unihuman" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 464 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/jiaqixuac/WResVLM" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 465 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Facial Affective Behavior Analysis with Instruction Tuning", "id": "main", "arxiv_id": "2404.05052", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 466 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoReS: Orchestrating the Dance of Reasoning and Segmentation", "id": "main", "arxiv_id": "2404.05673", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 467 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MagDiff: Multi-Alignment Diffusion for High-Fidelity Video Generation and Editing", "id": "main", "arxiv_id": "2311.17338", "GitHub": [ "https://github.com/gulucaptain/videoassembler" ], "paper_page": "https://huggingface.co/papers/2311.17338", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 468 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MambaIR: A Simple Baseline for Image Restoration with State-Space Model", "id": "main", "arxiv_id": "2402.15648", "GitHub": [ "https://github.com/csguoh/mambair" ], "paper_page": "https://huggingface.co/papers/2402.15648", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 469 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "I Can't Believe It's Not Scene Flow!", "id": "main", "arxiv_id": "2403.04739", "GitHub": [ "https://github.com/kylevedder/bucketedscenefloweval" ], "paper_page": "https://huggingface.co/papers/2403.04739", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 470 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Unsupervised Outlier Detection via Multiple Thresholding", "id": "main", "arxiv_id": "2407.05382", "GitHub": [ "https://github.com/doudouhhh/Multi-T" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 471 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Compress3D: a Compressed Latent Space for 3D Generation from a Single Image", "id": "main", "arxiv_id": "2403.13524", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13524", "n_linked_authors": 0, "upvotes": 8, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 472 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scalable Group Choreography via Variational Phase Manifold Learning", "id": "main", "arxiv_id": "2407.18839", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 473 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Masked Video and Body-worn IMU Autoencoder for Egocentric Action Recognition", "id": "main", "arxiv_id": "2407.06628", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 474 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mutual Learning for Acoustic Matching and Dereverberation via Visual Scene-driven Diffusion", "id": "main", "arxiv_id": "2407.10373", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 475 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PoseSOR: Human Pose Can Guide Our Attention", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 476 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes", "id": "main", "arxiv_id": "2403.19589", "GitHub": [ "https://github.com/jxbbb/tod3cap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 477 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bi-directional Contextual Attention for 3D Dense Captioning", "id": "main", "arxiv_id": "2408.06662", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 478 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Person Pose Forecasting with Individual Interaction Perceptron and Prior Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 479 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InfMAE: A Foundation Model in The Infrared Modality", "id": "main", "arxiv_id": "2402.00407", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 480 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TPA3D: Triplane Attention for Fast Text-to-3D Generation", "id": "main", "arxiv_id": "2312.02647", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 481 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification", "id": "main", "arxiv_id": "2401.06825", "GitHub": [ "https://github.com/shijiangming1/mmm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 482 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LivePhoto: Real Image Animation with Text-guided Motion Control", "id": "main", "arxiv_id": "2312.02928", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.02928", "n_linked_authors": 4, "upvotes": 16, "num_comments": 3, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 483 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation", "id": "main", "arxiv_id": "2403.18241", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.18241", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 484 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AID-AppEAL: Automatic Image Dataset and Algorithm for Content Appeal Enhancement and Assessment Labeling", "id": "main", "arxiv_id": "2407.05546", "GitHub": [ "https://github.com/sherryxtchen/aid-appeal" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 485 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SEDiff: Structure Extraction for Domain Adaptive Depth Estimation via Denoising Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 486 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Quantized Prompt for Efficient Generalization of Vision-Language Models", "id": "main", "arxiv_id": "2407.10704", "GitHub": [ "https://github.com/beyondhtx/qprompt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 487 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Online Temporal Action Localization with Memory-Augmented Transformer", "id": "main", "arxiv_id": "2408.02957", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 488 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Cascaded Multiscale Adaptive Network for Image Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 489 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model", "id": "main", "arxiv_id": "2405.20222", "GitHub": [ "https://github.com/myniuuu/mofa-video" ], "paper_page": "https://huggingface.co/papers/2405.20222", "n_linked_authors": 3, "upvotes": 10, "num_comments": 1, "n_authors": 6, "Models": [ "MyNiuuu/MOFA-Video-Hybrid", "MyNiuuu/MOFA-Video-Traj" ], "Datasets": [], "Spaces": [ "dkrajews/MOFA-demo" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 490 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Occlusion-Aware Seamless Segmentation", "id": "main", "arxiv_id": "2407.02182", "GitHub": [ "https://github.com/yihong-97/oass" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 491 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OpenKD: Opening Prompt Diversity for Zero- and Few-shot Keypoint Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 492 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Referring Atomic Video Action Recognition", "id": "main", "arxiv_id": "2407.01872", "GitHub": [ "https://github.com/kpeng9510/ravar" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 493 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Agent3D-Zero: An Agent for Zero-shot 3D Understanding", "id": "main", "arxiv_id": "2403.11835", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 494 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stream Query Denoising for Vectorized HD-Map Construction", "id": "main", "arxiv_id": "2401.09112", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 495 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAGS: Structure-Aware 3D Gaussian Splatting", "id": "main", "arxiv_id": "2404.19149", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.19149", "n_linked_authors": 4, "upvotes": 13, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 496 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval", "id": "main", "arxiv_id": "2405.00571", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 497 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OneRestore: A Universal Restoration Framework for Composite Degradation", "id": "main", "arxiv_id": "2407.04621", "GitHub": [ "https://github.com/gy65896/onerestore" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 498 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beat-It: Beat-Synchronized Multi-Condition 3D Dance Generation", "id": "main", "arxiv_id": "2407.07554", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 499 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SkyMask: Attack-agnostic Robust Federated Learning with Fine-grained Learnable Masks", "id": "main", "arxiv_id": "2312.12484", "GitHub": [ "https://github.com/koalayan/skymask" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 500 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RePOSE: 3D Human Pose Estimation via Spatio-Temporal Depth Relational Consistency", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 501 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pixel-GS Density Control with Pixel-aware Gradient for 3D Gaussian Splatting", "id": "main", "arxiv_id": "2403.15530", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 502 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WorldPose: A World Cup Dataset for Global 3D Human Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 503 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Language-Driven 6-DoF Grasp Detection Using Negative Prompt Guidance", "id": "main", "arxiv_id": "2407.13842", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13842", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "airvlab/Grasp-Anything-6D" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 504 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COIN-Matting: Confounder Intervention for Image Matting", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 505 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SHINE: Saliency-aware HIerarchical NEgative Ranking for Compositional Temporal Grounding", "id": "main", "arxiv_id": "2407.05118", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 506 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Audio-driven Talking Face Generation with Stabilized Synchronization Loss", "id": "main", "arxiv_id": "2307.09368", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 507 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 508 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Train Till You Drop: Towards Stable and Robust Source-free Unsupervised 3D Domain Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 509 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Obstruct Few-Shot Image Classification over Restricted Classes", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 510 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoofDiffusion: Constructing Roofs from Severely Corrupted Point Data via Diffusion", "id": "main", "arxiv_id": "2404.09290", "GitHub": [ "https://github.com/kylelo/roofdiffusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 511 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "L-DiffER: Single Image Reflection Removal with Language-based Diffusion Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 512 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting", "id": "main", "arxiv_id": "2403.09513", "GitHub": [ "https://github.com/rain305f/adashield" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 513 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OccGen: Generative Multi-modal 3D Occupancy Prediction for Autonomous Driving", "id": "main", "arxiv_id": "2404.15014", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 514 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CrossGLG: LLM Guides One-shot Skeleton-based 3D Action Recognition in a Cross-level Manner", "id": "main", "arxiv_id": "2403.10082", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 515 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HYDRA: A Hyper Agent for Dynamic Compositional Visual Reasoning", "id": "main", "arxiv_id": "2403.12884", "GitHub": [ "https://github.com/ControlNet/HYDRA" ], "paper_page": "https://huggingface.co/papers/2403.12884", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 516 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion", "id": "main", "arxiv_id": "2403.06976", "GitHub": [ "https://github.com/tencentarc/brushnet" ], "paper_page": "https://huggingface.co/papers/2403.06976", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [ "ameerazam08/BrushNet" ], "Datasets": [], "Spaces": [ "TencentARC/BrushNet", "cocktailpeanut/BrushNet", "allAI-tools/BrushNet" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 517 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer", "id": "main", "arxiv_id": "2212.09877", "GitHub": [ "https://github.com/salesforce/layoutdetr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 518 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Blind image deblurring with noise-robust kernel estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 519 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Binomial Self-compensation for Motion Error in Dynamic 3D Scanning", "id": "main", "arxiv_id": "2404.06693", "GitHub": [ "https://github.com/geyouzhang/bsc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 520 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AddMe: Zero-shot Group-photo Synthesis by Inserting People into Scenes", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 521 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation", "id": "main", "arxiv_id": "2305.18381", "GitHub": [ "https://github.com/silicx/goldfromores" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 522 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VersatileGaussian: Real-time Neural Rendering for Versatile Tasks using Gaussian Splatting", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 523 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Momentum Auxiliary Network for Supervised Local Learning", "id": "main", "arxiv_id": "2407.05623", "GitHub": [ "https://github.com/junhaosu0/man" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 524 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HPFF: Hierarchical Locally Supervised Learning with Patch Feature Fusion", "id": "main", "arxiv_id": "2407.05638", "GitHub": [ "https://github.com/zeudfish/hpff" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 525 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking LiDAR Domain Generalization: Single Source as Multiple Density Domains", "id": "main", "arxiv_id": "2312.12098", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 526 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Zero-Shot Generalization for CLIP with Variational Adapter", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 527 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Realistic Human Motion Generation with Cross-Diffusion Models", "id": "main", "arxiv_id": "2312.10993", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 528 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoExo-Fitness: Towards Egocentric and Exocentric Full-Body Action Understanding", "id": "main", "arxiv_id": "2406.08877", "GitHub": [ "https://github.com/isee-laboratory/egoexo-fitness" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 529 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection", "id": "main", "arxiv_id": "2407.12292", "GitHub": [ "https://github.com/vl-group/gaker" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 530 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Reliable Advertising Image Generation Using Human Feedback", "id": "main", "arxiv_id": "2408.00418", "GitHub": [ "https://github.com/ZhenbangDu/Reliable_AD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 531 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Topology-Preserving Downsampling of Binary Images", "id": "main", "arxiv_id": "2407.17786", "GitHub": [ "https://github.com/pengchihan/binaryimagedownsampling" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 532 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders", "id": "main", "arxiv_id": "2407.13036", "GitHub": [ "https://github.com/carlosh93/ColorMAE" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 533 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Classification Matters: Improving Video Action Detection with Class-Specific Attention", "id": "main", "arxiv_id": "2407.19698", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 534 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Medical Multi-modal Contrastive Learning with Expert Annotations", "id": "main", "arxiv_id": "2403.10153", "GitHub": [ "https://github.com/ykumards/eclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 535 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Data Bias: Dataset Copyright Protection via Embedding Class-wise Hidden Bias", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 536 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pose-Aware Self-Supervised Learning with Viewpoint Trajectory Regularization", "id": "main", "arxiv_id": "2403.14973", "GitHub": [ "https://github.com/samaonline/Trajectory-Regularization-Enhances-Self-Supervised-Geometric-Representation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 537 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SILC: Improving Vision Language Pretraining with Self-Distillation", "id": "main", "arxiv_id": "2310.13355", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2310.13355", "n_linked_authors": 0, "upvotes": 6, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 538 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Semantic Latent Directions for Accurate and Controllable Human Motion Prediction", "id": "main", "arxiv_id": "2407.11494", "GitHub": [ "https://github.com/guoweixu368/sld-hmp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 539 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging temporal contextualization for video action recognition", "id": "main", "arxiv_id": "2404.09490", "GitHub": [ "https://github.com/naver-ai/tc-clip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 540 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ChEX: Interactive Localization and Region Description in Chest X-rays", "id": "main", "arxiv_id": "2404.15770", "GitHub": [ "https://github.com/philip-mueller/chex" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 541 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaGlimpse: Active Visual Exploration with Arbitrary Glimpse Position and Scale", "id": "main", "arxiv_id": "2404.03482", "GitHub": [ "https://github.com/apardyl/adaglimpse" ], "paper_page": "https://huggingface.co/papers/2404.03482", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [ "apardyl/AdaGlimpse" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 542 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts", "id": "main", "arxiv_id": "2311.16445", "GitHub": [ "https://github.com/YichaoCai1/CLAP" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 543 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ZigMa: A DiT-style Zigzag Mamba Diffusion Model", "id": "main", "arxiv_id": "2403.13802", "GitHub": [ "https://github.com/CompVis/zigma" ], "paper_page": "https://huggingface.co/papers/2403.13802", "n_linked_authors": 4, "upvotes": 17, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 544 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion", "id": "main", "arxiv_id": "2405.00915", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 545 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines", "id": "main", "arxiv_id": "2405.20459", "GitHub": [ "https://github.com/fiveai/detection_calibration" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 546 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HAT: History-Augmented Anchor Transformer for Online Temporal Action Localization", "id": "main", "arxiv_id": "2408.06437", "GitHub": [ "https://github.com/sakibreza/eccv24-hat" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 547 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Nets with Subsampling Layers Unwittingly Discard Useful Activations at Test-Time", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 548 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Safe-Sim: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries", "id": "main", "arxiv_id": "2401.00391", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 549 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Analysis-by-Synthesis Transformer for Single-View 3D Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 550 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning", "id": "main", "arxiv_id": "2403.07362", "GitHub": [ "https://github.com/optml-group/unlearn-worstcase" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 551 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 552 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCLIP: Rethinking Self-Attention for Dense Vision-Language Inference", "id": "main", "arxiv_id": "2312.01597", "GitHub": [ "https://github.com/wangf3014/sclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 553 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flying with Photons: Rendering Novel Views of Propagating Light", "id": "main", "arxiv_id": "2404.06493", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 554 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RGNet: A Unified Clip Retrieval and Grounding Network for Long Videos", "id": "main", "arxiv_id": "2312.06729", "GitHub": [ "https://github.com/tanveer81/rgnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 555 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images", "id": "main", "arxiv_id": "2403.14627", "GitHub": [ "https://github.com/donydchen/mvsplat" ], "paper_page": "https://huggingface.co/papers/2403.14627", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [ "dylanebert/mvsplat" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 556 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3DGazeNet: Generalizing Gaze Estimation with Weak Supervision from Synthetic Views", "id": "main", "arxiv_id": "2212.02997", "GitHub": [ "https://github.com/vagver/dense3deyes" ], "paper_page": "https://huggingface.co/papers/2212.02997", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 557 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Removing Distributional Discrepancies in Captions Improves Image-Text Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 558 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Resilience of Entropy Model in Distributed Neural Networks", "id": "main", "arxiv_id": "2403.00942", "GitHub": [ "https://github.com/restuccia-group/entropyr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 559 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 560 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Implicit Concept Removal of Diffusion Models", "id": "main", "arxiv_id": "2310.05873", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2310.05873", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [ "zhili-liu/implicit-concept-dataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 561 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PLOT: Text-based Person Search with Part Slot Attention for Corresponding Part Discovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 562 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting", "id": "main", "arxiv_id": "2404.19702", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.19702", "n_linked_authors": 3, "upvotes": 18, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 563 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust-Wide: Robust Watermarking against Instruction-driven Image Editing", "id": "main", "arxiv_id": "2402.12688", "GitHub": [ "https://github.com/hurunyi/robust-wide" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 564 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal", "id": "main", "arxiv_id": "2408.11480", "GitHub": [ "https://github.com/qmoq/oapt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 565 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Formula-Supervised Visual-Geometric Pre-training", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 566 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding", "id": "main", "arxiv_id": "2403.11481", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.11481", "n_linked_authors": 3, "upvotes": 11, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 567 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Unified Representation of Invariant-Specific Features in Missing Modality Face Anti-Spoofing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 568 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Restoring Images in Adverse Weather Conditions via Histogram Transformer", "id": "main", "arxiv_id": "2407.10172", "GitHub": [ "https://github.com/sunshangquan/Histoformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 569 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PosFormer: Recognizing Complex Handwritten Mathematical Expression with Position Forest Transformer", "id": "main", "arxiv_id": "2407.07764", "GitHub": [ "https://github.com/sjtu-deepvisionlab/posformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 570 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NGP-RT: Fusing Multi-Level Hash Features with Lightweight Attention for Real-Time Novel View Synthesis", "id": "main", "arxiv_id": "2407.10482", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 571 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Elysium: Exploring Object-level Perception in Videos through Semantic Integration Using MLLMs", "id": "main", "arxiv_id": "2403.16558", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.16558", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [ "sty-yyj/elysium_7b" ], "Datasets": [ "sty-yyj/ElysiumTrack-1M" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 572 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "G2fR: Frequency Regularization in Grid-based Feature Encoding Neural Radiance Fields", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 573 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Getting it Right: Improving Spatial Consistency in Text-to-Image Models", "id": "main", "arxiv_id": "2404.01197", "GitHub": [ "https://github.com/SPRIGHT-T2I/SPRIGHT" ], "paper_page": "https://huggingface.co/papers/2404.01197", "n_linked_authors": 5, "upvotes": 29, "num_comments": 3, "n_authors": 11, "Models": [ "SPRIGHT-T2I/spright-t2i-sd2" ], "Datasets": [ "SPRIGHT-T2I/spright", "SPRIGHT-T2I/spright_coco", "SPRIGHT-T2I/18_obj_444", "lodestone-horizon/spright", "lodestones/spright" ], "Spaces": [ "SPRIGHT-T2I/SPRIGHT-T2I", "cocktailpeanut/SPRIGHT-T2I" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 574 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generating 3D House Wireframes with Semantics", "id": "main", "arxiv_id": "2407.12267", "GitHub": [ "https://github.com/3d-house-wireframe/3d-house-wireframe-dataset" ], "paper_page": "https://huggingface.co/papers/2407.12267", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 575 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image", "id": "main", "arxiv_id": "2403.12013", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12013", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 576 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shape-guided Configuration-aware Learning for Endoscopic-image-based Pose Estimation of Flexible Robotic Instruments", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 577 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Nonverbal Interaction Detection", "id": "main", "arxiv_id": "2407.08133", "GitHub": [ "https://github.com/weijianan1/nvi" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 578 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniM2AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving", "id": "main", "arxiv_id": "2308.10421", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 579 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Responsible Visual Editing", "id": "main", "arxiv_id": "2404.05580", "GitHub": [ "https://github.com/kodenii/responsible-visual-editing" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 580 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Drag Anything: Motion Control for Anything using Entity Representation", "id": "main", "arxiv_id": "2403.07420", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.07420", "n_linked_authors": 6, "upvotes": 12, "num_comments": 1, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 581 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SegPoint: Segment Any Point Cloud via Large Language Model", "id": "main", "arxiv_id": "2407.13761", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13761", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 582 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Navigation Instruction Generation with BEV Perception and Large Language Models", "id": "main", "arxiv_id": "2407.15087", "GitHub": [ "https://github.com/fanscy/bevinstructor" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 583 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rebalancing Using Estimated Class Distribution for Imbalanced Semi-Supervised Learning under Class Distribution Mismatch", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 584 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Vista3D: unravel the 3d darkside of a single image", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 585 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Fabrication of Reality and Fantasy: Scene Generation with LLM-Assisted Prompt Interpretation", "id": "main", "arxiv_id": "2407.12579", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12579", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 586 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Detecting As Labeling: Rethinking LiDAR-camera Fusion in 3D Object Detection", "id": "main", "arxiv_id": "2311.07152", "GitHub": [ "https://github.com/HuangJunJie2017/BEVDet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 587 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 588 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploiting Dual-Correlation for Multi-frame Time-of-Flight Denoising", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 589 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weak-to-Strong Compositional Learning from Generative Models for Language-based Object Detection", "id": "main", "arxiv_id": "2407.15296", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 590 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domesticating SAM for Breast Ultrasound Image Segmentation via Spatial-frequency Fusion and Uncertainty Correction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 591 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CanonicalFusion: Generating Drivable 3D Human Avatars from Multiple Images", "id": "main", "arxiv_id": "2407.04345", "GitHub": [ "https://github.com/jsshin98/canonicalfusion" ], "paper_page": "https://huggingface.co/papers/2407.04345", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 592 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Camera Height Doesn't Change: Unsupervised Training for Metric Monocular Road-Scene Depth Estimation", "id": "main", "arxiv_id": "2312.04530", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 593 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Uni3DL: A Unified Model for 3D Vision-Language Understanding", "id": "main", "arxiv_id": "2312.03026", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 594 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Object-Aware NIR-to-Visible Translation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 595 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PaPr: Training-Free One-Step Patch Pruning with Lightweight ConvNets for Faster Inference", "id": "main", "arxiv_id": "2403.16020", "GitHub": [ "https://github.com/tanvir-utexas/PaPr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 596 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GENIXER: Empowering Multimodal Large Language Models as a Powerful Data Generator", "id": "main", "arxiv_id": "2312.06731", "GitHub": [ "https://github.com/zhaohengyuan1/genixer" ], "paper_page": "https://huggingface.co/papers/2312.06731", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 597 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BLINK: Multimodal Large Language Models Can See but Not Perceive", "id": "main", "arxiv_id": "2404.12390", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.12390", "n_linked_authors": 3, "upvotes": 24, "num_comments": 2, "n_authors": 10, "Models": [], "Datasets": [ "BLINK-Benchmark/BLINK" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 598 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AFF-ttention! Affordances and Attention models for Short-Term Object Interaction Anticipation", "id": "main", "arxiv_id": "2406.01194", "GitHub": [ "https://github.com/lmur98/AFFttention" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 599 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PreLAR: World Model Pre-training with Learnable Action Representation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 600 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot", "id": "main", "arxiv_id": "2402.14654", "GitHub": [ "https://github.com/naver/multi-hmr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 601 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "De-confounded Gaze Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 602 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions", "id": "main", "arxiv_id": "2407.16698", "GitHub": [ "https://github.com/fabiotosi92/diffusion4robustdepth" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 603 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreestyleRet: Retrieving Images from Style-Diversified Queries", "id": "main", "arxiv_id": "2312.02428", "GitHub": [ "https://github.com/curisejia/freestyleret" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 604 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReGround: Improving Textual and Spatial Grounding at No Cost", "id": "main", "arxiv_id": "2403.13589", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13589", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 605 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 606 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LaMI-DETR: Open-Vocabulary Detection with Language Model Instruction", "id": "main", "arxiv_id": "2407.11335", "GitHub": [ "https://github.com/eternaldolphin/lami-detr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 607 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unrolled Decomposed Unpaired Learning for Controllable Low-Light Video Enhancement", "id": "main", "arxiv_id": "2408.12316", "GitHub": [ "https://github.com/lingyzhu0101/udu" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 608 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Image Pre-Training with Siamese Cropped Masked Autoencoders", "id": "main", "arxiv_id": "2403.17823", "GitHub": [ "https://github.com/alexandre-eymael/cropmae" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 609 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VP-SAM: Taming Segment Anything Model for Video Polyp Segmentation via Disentanglement and Spatio-temporal Side Network", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 610 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dataset Enhancement with Instance-Level Augmentations", "id": "main", "arxiv_id": "2406.08249", "GitHub": [ "https://github.com/KupynOrest/instance_augmentation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 611 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeMotion: MoCap-Free Human Motion Synthesis with Multimodal Large Language Models", "id": "main", "arxiv_id": "2406.10740", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 612 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild", "id": "main", "arxiv_id": "2404.18459", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 613 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reliability in Semantic Segmentation: Can We Use Synthetic Data?", "id": "main", "arxiv_id": "2312.09231", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 614 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCPNet: Unsupervised Cross-modal Homography Estimation via Intra-modal Self-supervised Learning", "id": "main", "arxiv_id": "2407.08148", "GitHub": [ "https://github.com/rm-zhang/scpnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 615 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCAPE: A Simple and Strong Category-Agnostic Pose Estimator", "id": "main", "arxiv_id": "2407.13483", "GitHub": [ "https://github.com/tiny-smart/SCAPE" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 616 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Elevating All Zero-Shot Sketch-Based Image Retrieval Through Multimodal Prompt Learning", "id": "main", "arxiv_id": "2407.04207", "GitHub": [ "https://github.com/mainaksingha01/splip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 617 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Knowledge Distillation via Regularizing Feature Direction and Norm", "id": "main", "arxiv_id": "2305.17007", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 618 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3DFG-PIFu: 3D Feature Grids for Human Digitization from Sparse Views", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 619 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lazy Diffusion Transformer for Interactive Image Editing", "id": "main", "arxiv_id": "2404.12382", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.12382", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 620 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Non-parametric Sensor Noise Modeling and Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 621 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stripe Observation Guided Inference Cost-free Attention Mechanism", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 622 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Nerfect Match: Exploring NeRF Features for Visual Localization", "id": "main", "arxiv_id": "2403.09577", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 623 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance", "id": "main", "arxiv_id": "2403.12409", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12409", "n_linked_authors": 3, "upvotes": 9, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 624 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Calibration of Large Vision-Language Adapters", "id": "main", "arxiv_id": "2407.13588", "GitHub": [ "https://github.com/Bala93/CLIPCalib" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 625 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Hierarchical Feature Sharing for Efficient Dataset Condensation", "id": "main", "arxiv_id": "2310.07506", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 626 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Domain Generalization in Self-Supervised Monocular Depth Estimation via Stabilized Adversarial Training", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 627 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "milliFlow: Scene Flow Estimation on mmWave Radar Point Cloud for Human Motion Sensing", "id": "main", "arxiv_id": "2306.17010", "GitHub": [ "https://github.com/toytiny/milliflow" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 628 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "denoiSplit: a method for joint microscopy image splitting and unsupervised denoising", "id": "main", "arxiv_id": "2403.11854", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 629 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AugDETR: Improving Multi-scale Learning for Detection Transformer", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 630 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spherical World-Locking for Audio-Visual Localization in Egocentric Videos", "id": "main", "arxiv_id": "2408.05364", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 631 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPIN: Hierarchical Segmentation with Subpart Granularity in Natural Images", "id": "main", "arxiv_id": "2407.09686", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 632 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SIGMA: Sinkhorn-Guided Masked Video Modeling", "id": "main", "arxiv_id": "2407.15447", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.15447", "n_linked_authors": 2, "upvotes": 6, "num_comments": 2, "n_authors": 6, "Models": [ "SMSD75/SIGMA" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 633 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis", "id": "main", "arxiv_id": "2405.14868", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2405.14868", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 634 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distribution Alignment for Fully Test-Time Adaptation with Dynamic Online Data Streams", "id": "main", "arxiv_id": "2407.12128", "GitHub": [ "https://github.com/WZq975/DA-TTA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 635 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Divide and Fuse: Body Part Mesh Recovery from Partially Visible Human Images", "id": "main", "arxiv_id": "2407.09694", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 636 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Understanding Physical Dynamics with Counterfactual World Modeling", "id": "main", "arxiv_id": "2312.06721", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 637 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MIGS: Multi-Identity Gaussian Splatting via Tensor Decomposition", "id": "main", "arxiv_id": "2407.07284", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.07284", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 638 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "4Diff: 3D-Aware Diffusion Model for Third-to-First Viewpoint Translation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 639 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance", "id": "main", "arxiv_id": "2405.10589", "GitHub": [ "https://github.com/AaronCIH/APGCC" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 640 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Nymeria: A Massive Collection of Egocentric Multi-modal Human Motion in the Wild", "id": "main", "arxiv_id": "2406.09905", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 641 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamStruct: Understanding Slides and User Interfaces via Synthetic Data Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 642 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SemTrack: A Large-scale Dataset for Semantic Tracking in the Wild", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 643 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoMamba: Spatio-Temporal Selective State Space Model", "id": "main", "arxiv_id": "2407.08476", "GitHub": [ "https://github.com/jinyjelly/videomamba" ], "paper_page": "https://huggingface.co/papers/2407.08476", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 644 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text to Layer-wise 3D Clothed Human Generation", "id": "main", "arxiv_id": "2404.16748", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.16748", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 645 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Texture-GS: Disentangle the Geometry and Texture for 3D Gaussian Splatting Editing", "id": "main", "arxiv_id": "2403.10050", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 646 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fully Sparse 3D Occupancy Prediction", "id": "main", "arxiv_id": "2312.17118", "GitHub": [ "https://github.com/mcg-nju/sparseocc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 647 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Is user feedback always informative? Retrieval Latent Defending for Semi-Supervised Domain Adaptation without Source Data", "id": "main", "arxiv_id": "2407.15383", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 648 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field", "id": "main", "arxiv_id": "2403.16095", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 649 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shifted Autoencoders for Point Annotation Restoration in Object Counting", "id": "main", "arxiv_id": "2312.07190", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.07190", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 650 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PointLLM: Empowering Large Language Models to Understand Point Clouds", "id": "main", "arxiv_id": "2308.16911", "GitHub": [ "https://github.com/openrobotlab/pointllm" ], "paper_page": "https://huggingface.co/papers/2308.16911", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 651 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GarmentAligner: Text-to-Garment Generation via Retrieval-augmented Multi-level Corrections", "id": "main", "arxiv_id": "2408.12352", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 652 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 653 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Diffusion Models with Text-Encoder Reinforcement Learning", "id": "main", "arxiv_id": "2311.15657", "GitHub": [ "https://github.com/chaofengc/texforce" ], "paper_page": "https://huggingface.co/papers/2311.15657", "n_linked_authors": 2, "upvotes": 2, "num_comments": 0, "n_authors": 7, "Models": [ "chaofengc/sd-turbo_texforce", "chaofengc/sdxl-turbo_texforce" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 654 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Asymmetric Mask Scheme for Self-Supervised Real Image Denoising", "id": "main", "arxiv_id": "2407.06514", "GitHub": [ "https://github.com/lll143653/amsnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 655 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 656 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting", "id": "main", "arxiv_id": "2403.11831", "GitHub": [ "https://github.com/WU-CVGL/BAD-Gaussians" ], "paper_page": "https://huggingface.co/papers/2403.11831", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 657 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Forest2Seq: Revitalizing Order Prior for Sequential Indoor Scene Synthesis", "id": "main", "arxiv_id": "2407.05388", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 658 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BaSIC: BayesNet Structure Learning for Computational Scalable Neural Image Compression", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 659 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FlexAttention for Efficient High-Resolution Vision-Language Models", "id": "main", "arxiv_id": "2407.20228", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.20228", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 660 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable Repainting", "id": "main", "arxiv_id": "2312.13271", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.13271", "n_linked_authors": 5, "upvotes": 4, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 661 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AnimatableDreamer: Text-Guided Non-rigid 3D Model Generation and Reconstruction with Canonical Score Distillation", "id": "main", "arxiv_id": "2312.03795", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 662 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spatially-Variant Degradation Model for Dataset-free Super-resolution", "id": "main", "arxiv_id": "2407.08252", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 663 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamView: Injecting View-specific Text Guidance into Text-to-3D Generation", "id": "main", "arxiv_id": "2404.06119", "GitHub": [ "https://github.com/isee-laboratory/dreamview" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 664 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Exhaustive Correlation for Spectral Super-Resolution: Where Spatial-Spectral Attention Meets Linear Dependence", "id": "main", "arxiv_id": "2312.12833", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 665 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Local Action-Guided Motion Diffusion Model for Text-to-Motion Generation", "id": "main", "arxiv_id": "2407.10528", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 666 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EAFormer: Scene Text Segmentation with Edge-Aware Transformers", "id": "main", "arxiv_id": "2407.17020", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 667 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects", "id": "main", "arxiv_id": "2403.16428", "GitHub": [ "https://github.com/facebookresearch/assemblyhands-toolkit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 668 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DetailSemNet: Elevating Signature Verification through Detail-Semantic Integration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 669 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LaPose: Laplacian Mixture Shape Modeling for RGB-Based Category-Level Object Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 670 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Upper-body Hierarchical Graph for Skeleton Based Emotion Recognition in Assistive Driving", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 671 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fine-Grained Scene Graph Generation via Sample-Level Bias Prediction", "id": "main", "arxiv_id": "2407.19259", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 672 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Guided Sampling of Conditional GANs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 673 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MotionChain: Conversational Motion Controllers via Multimodal Prompts", "id": "main", "arxiv_id": "2404.01700", "GitHub": [ "https://github.com/OpenMotionLab/MotionChain" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 674 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 675 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Latent Guard: a Safety Framework for Text-to-image Generation", "id": "main", "arxiv_id": "2404.08031", "GitHub": [ "https://github.com/rt219/latentguard" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 676 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 677 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TCC-Det: Temporarily consistent cues for weakly-supervised 3D detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 678 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection", "id": "main", "arxiv_id": "2407.10753", "GitHub": [ "https://github.com/AlmoonYsl/OPEN" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 679 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FoundPose: Unseen Object Pose Estimation with Foundation Features", "id": "main", "arxiv_id": "2311.18809", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 680 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Early Preparation Pays Off: New Classifier Pre-tuning for Class Incremental Semantic Segmentation", "id": "main", "arxiv_id": "2407.14142", "GitHub": [ "https://github.com/zhengyuan-xie/eccv24_nest" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 681 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Kalman-Inspired Feature Propagation for Video Face Super-Resolution", "id": "main", "arxiv_id": "2408.05205", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.05205", "n_linked_authors": 0, "upvotes": 8, "num_comments": 3, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 682 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models", "id": "main", "arxiv_id": "2403.09296", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 683 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoMamba: State Space Model for Efficient Video Understanding", "id": "main", "arxiv_id": "2403.06977", "GitHub": [ "https://github.com/opengvlab/videomamba" ], "paper_page": "https://huggingface.co/papers/2403.06977", "n_linked_authors": 3, "upvotes": 27, "num_comments": 2, "n_authors": 7, "Models": [ "OpenGVLab/VideoMamba", "Andy1621/VideoMamba" ], "Datasets": [], "Spaces": [ "OpenGVLab/VideoMamba", "minhdang/videotest" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 684 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAFNet: Selective Alignment Fusion Network for Efficient HDR Imaging", "id": "main", "arxiv_id": "2407.16308", "GitHub": [ "https://github.com/ltkong218/safnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 685 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Heterogeneous Graph Learning for Scene Graph Prediction in 3D Point Clouds", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 686 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving", "id": "main", "arxiv_id": "2312.03661", "GitHub": [ "https://github.com/fudan-zvg/reason2drive" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 687 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Omniview-Tuning: Boosting Viewpoint Invariance of Vision-Language Pre-training Models", "id": "main", "arxiv_id": "2404.12139", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.12139", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "RSW233/MVCap-4M" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 688 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Cost Ray Fusion for Sparse Depth Video Completion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 689 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GraphBEV: Towards Robust BEV Feature Alignment for Multi-Modal 3D Object Detection", "id": "main", "arxiv_id": "2403.11848", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 690 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video", "id": "main", "arxiv_id": "2403.14548", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14548", "n_linked_authors": 0, "upvotes": 0, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 691 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GraspXL: Generating Grasping Motions for Diverse Objects at Scale", "id": "main", "arxiv_id": "2403.19649", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 692 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Source Prompt Disentangled Inversion for Boosting Image Editability with Diffusion Models", "id": "main", "arxiv_id": "2403.11105", "GitHub": [ "https://github.com/leeruibin/spdinv" ], "paper_page": "https://huggingface.co/papers/2403.11105", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 693 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models", "id": "main", "arxiv_id": "2405.01531", "GitHub": [ "https://github.com/explainableml/concept_realignment" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 694 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "JointDreamer: Ensuring Geometry Consistency and Text Congruence in Text-to-3D Generation via Joint Score Distillation", "id": "main", "arxiv_id": "2407.12291", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 695 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Brain Netflix: Scaling Data to Reconstruct Videos from Brain Signals", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 696 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection", "id": "main", "arxiv_id": "2404.11737", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 697 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 698 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tensorial template matching for fast cross-correlation with rotations and its application for tomography", "id": "main", "arxiv_id": "2408.02398", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 699 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeAugment: Data Augmentation Search Across All Degrees of Freedom", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 700 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Representations of Satellite Images From Metadata Supervision", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 701 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "I2-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM", "id": "main", "arxiv_id": "2407.11347", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 702 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FlashTex: Fast Relightable Mesh Texturing with LightControlNet", "id": "main", "arxiv_id": "2402.13251", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.13251", "n_linked_authors": 3, "upvotes": 13, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 703 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence", "id": "main", "arxiv_id": "2311.13777", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 704 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ArtVLM: Attribute Recognition Through Vision-Based Prefix Language Modeling", "id": "main", "arxiv_id": "2408.04102", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 705 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PanoFree: Tuning-Free Holistic Multi-view Image Generation with Cross-view Self-Guidance", "id": "main", "arxiv_id": "2408.02157", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 706 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SOS: Segment Object System for Open-World Instance Segmentation With Object Priors", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 707 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lagrangian Hashing for Compressed Neural Field Representations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 708 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EDformer: Transformer-Based Event Denoising Across Varied Noise Levels", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 709 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Foster Adaptivity and Balance in Learning with Noisy Labels", "id": "main", "arxiv_id": "2407.02778", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 710 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MetaAug: Meta-Data Augmentation for Post-Training Quantization", "id": "main", "arxiv_id": "2407.14726", "GitHub": [ "https://github.com/cuong-pv/MetaAug" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 711 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 712 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-Platform Video Person ReID: A New Benchmark Dataset and Adaptation Approach", "id": "main", "arxiv_id": "2408.07500", "GitHub": [ "https://github.com/fhr-l/g2a-vreid" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 713 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unleashing the Power of Prompt-driven Nucleus Instance Segmentation", "id": "main", "arxiv_id": "2311.15939", "GitHub": [ "https://github.com/windygoo/promptnucseg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 714 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gaze Target Detection Based on Head-Local-Global Coordination", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 715 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3DSA:Multi-View 3D Human Pose Estimation With 3D Space Attention Mechanisms", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 716 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Toward Tiny and High-quality Facial Makeup with Data Amplify Learning", "id": "main", "arxiv_id": "2403.15033", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 717 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Economic Framework for 6-DoF Grasp Detection", "id": "main", "arxiv_id": "2407.08366", "GitHub": [ "https://github.com/isee-laboratory/economicgrasp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 718 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction", "id": "main", "arxiv_id": "2405.17429", "GitHub": [ "https://github.com/huang-yh/gaussianformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 719 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Powerful and Flexible: Personalized Text-to-Image Generation via Reinforcement Learning", "id": "main", "arxiv_id": "2407.06642", "GitHub": [ "https://github.com/wfanyue/dpg-t2i-personalization" ], "paper_page": "https://huggingface.co/papers/2407.06642", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 720 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer", "id": "main", "arxiv_id": "2407.12951", "GitHub": [ "https://github.com/GoatWu/AdaLog" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 721 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Label Cluster Discrimination for Visual Representation Learning", "id": "main", "arxiv_id": "2407.17331", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 722 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Plan, Posture and Go: Towards Open-vocabulary Text-to-Motion Generation", "id": "main", "arxiv_id": "2312.14828", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 723 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with Competitive Query Selection and Adaptive Feature Fusion", "id": "main", "arxiv_id": "2403.00326", "GitHub": [ "https://github.com/gjj45/damsdet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 724 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLIP-Guided Generative Networks for Transferable Targeted Adversarial Attacks", "id": "main", "arxiv_id": "2407.10179", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 725 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 726 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds", "id": "main", "arxiv_id": "2311.16474", "GitHub": [ "https://github.com/xiaoyao3302/pcfea" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 727 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A New Dataset and Framework for Real-World Blurred Images Super-Resolution", "id": "main", "arxiv_id": "2407.14880", "GitHub": [ "https://github.com/imalne/pbasr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 728 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization", "id": "main", "arxiv_id": "2407.08156", "GitHub": [ "https://github.com/xsx1001/addressclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 729 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RISurConv: Rotation Invariant Surface Attention-Augmented Convolutions for 3D Point Cloud Classification and Segmentation", "id": "main", "arxiv_id": "2408.06110", "GitHub": [ "https://github.com/cszyzhang/RISurConv" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 730 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StyleTokenizer: Defining Image Style by a Single Instance for Controlling Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/alipay/style-tokenizer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 731 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation", "id": "main", "arxiv_id": "2402.15198", "GitHub": [ "https://github.com/chenchenzong/bual" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 732 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Preventing Catastrophic Overfitting in Fast Adversarial Training: A Bi-level Optimization Perspective", "id": "main", "arxiv_id": "2407.12443", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 733 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Projecting Points to Axes: Oriented Object Detection via Point-Axis Representation", "id": "main", "arxiv_id": "2407.08489", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 734 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SeiT++: Masked Token Modeling Improves Storage-efficient Training", "id": "main", "arxiv_id": "2312.10105", "GitHub": [ "https://github.com/naver-ai/seit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 735 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rectify the Regression Bias in Long-Tailed Object Detection", "id": "main", "arxiv_id": "2401.15885", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 736 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MagicEraser: Erasing Any Objects via Semantics-Aware Control", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 737 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reliable Spatial-Temporal Voxels For Multi-Modal Test-Time Adaptation", "id": "main", "arxiv_id": "2403.06461", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 738 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stable Preference: Redefining training paradigm of human preference model for Text-to-Image Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 739 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images", "id": "main", "arxiv_id": "2407.02159", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 740 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with Diffusion Model", "id": "main", "arxiv_id": "2407.12727", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 741 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities", "id": "main", "arxiv_id": "2403.04908", "GitHub": [ "https://github.com/ramdrop/edgevl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 742 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers", "id": "main", "arxiv_id": "2407.08394", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 743 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Tree-Ring Watermarking for Enhanced Multi-Key Identification", "id": "main", "arxiv_id": "2404.14055", "GitHub": [ "https://github.com/showlab/ringid" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 744 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Small Object Detection with Dynamic Spatial Pruning", "id": "main", "arxiv_id": "2305.03716", "GitHub": [ "https://github.com/xuxw98/dspdet3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 745 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "STSP: Spatial-Temporal Subspace Projection for Video Class-incremental Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 746 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Transferable 3D Adversarial Shape Completion using Diffusion Models", "id": "main", "arxiv_id": "2407.10077", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 747 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OmniSat: Self-Supervised Modality Fusion for Earth Observation", "id": "main", "arxiv_id": "2404.08351", "GitHub": [ "https://github.com/gastruc/omnisat" ], "paper_page": "https://huggingface.co/papers/2404.08351", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [ "IGNF/PASTIS-HD", "IGNF/TreeSatAI-Time-Series" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 748 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distilling Diffusion Models into Conditional GANs", "id": "main", "arxiv_id": "2405.05967", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2405.05967", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 749 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semantically Guided Representation Learning For Action Anticipation", "id": "main", "arxiv_id": "2407.02309", "GitHub": [ "https://github.com/ADiko1997/S-GEAR" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 750 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MemBN: Robust Test-Time Adaptation via Batch Norm with Statistics Memory", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 751 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FREST: Feature RESToration for Semantic Segmentation under Multiple Adverse Conditions", "id": "main", "arxiv_id": "2407.13437", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 752 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ScanTalk: 3D Talking Heads from Unregistered Scans", "id": "main", "arxiv_id": "2403.10942", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 753 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Controllable Navigation Instruction Generation with Chain of Thought Prompting", "id": "main", "arxiv_id": "2407.07433", "GitHub": [ "https://github.com/refkxh/c-instructor" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 754 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GiT: Towards Generalist Vision Transformer through Universal Language Interface", "id": "main", "arxiv_id": "2403.09394", "GitHub": [ "https://github.com/haiyang-w/git" ], "paper_page": "https://huggingface.co/papers/2403.09394", "n_linked_authors": 4, "upvotes": 25, "num_comments": 6, "n_authors": 8, "Models": [ "kanashi6/GiT" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 755 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention", "id": "main", "arxiv_id": "2401.00912", "GitHub": [ "https://github.com/skyhehe123/scatterformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 756 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Cephalometric Landmark Regression Method based on Dual-encoder for High-resolution X-ray Image", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 757 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring the Feature Extraction and Relation Modeling For Light-Weight Transformer Tracking", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 758 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LiveHPS++: Robust and Coherent Motion Capture in Dynamic Free Environment", "id": "main", "arxiv_id": "2407.09833", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 759 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "You Only Need One Step: Fast Super-Resolution with Stable Diffusion via Scale Distillation", "id": "main", "arxiv_id": "2401.17258", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.17258", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 760 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gaussian Grouping: Segment and Edit Anything in 3D Scenes", "id": "main", "arxiv_id": "2312.00732", "GitHub": [ "https://github.com/lkeab/gaussian-grouping" ], "paper_page": "https://huggingface.co/papers/2312.00732", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 761 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoMo: Controllable Motion Generation through Language Guided Pose Code Editing", "id": "main", "arxiv_id": "2403.13900", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13900", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 762 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MegaScenes: Scene-Level View Synthesis at Scale", "id": "main", "arxiv_id": "2406.11819", "GitHub": [ "https://github.com/MegaScenes/nvs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 763 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SuperGaussian: Repurposing Video Models for 3D Super Resolution", "id": "main", "arxiv_id": "2406.00609", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 764 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Model-Agnostic Dataset Condensation by Heterogeneous Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 765 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Goldfish: Vision-Language Understanding of Arbitrarily Long Videos", "id": "main", "arxiv_id": "2407.12679", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12679", "n_linked_authors": 0, "upvotes": 7, "num_comments": 2, "n_authors": 9, "Models": [ "Vision-CAIR/MiniGPT4-Video" ], "Datasets": [ "Vision-CAIR/TVQA-Long" ], "Spaces": [ "Vision-CAIR/MiniGPT4-video", "fffiloni/miniGPT4-Video-Zero" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 766 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MeshFeat: Multi-Resolution Features for Neural Fields on Meshes", "id": "main", "arxiv_id": "2407.13592", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 767 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Decoupling Common and Unique Representations for Multimodal Self-supervised Learning", "id": "main", "arxiv_id": "2309.05300", "GitHub": [ "https://github.com/zhu-xlab/decur" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 768 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training", "id": "main", "arxiv_id": "2403.09611", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.09611", "n_linked_authors": 16, "upvotes": 123, "num_comments": 10, "n_authors": 31, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 769 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation", "id": "main", "arxiv_id": "2408.00766", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 770 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "2S-ODIS: Two-Stage Omni-Directional Image Synthesis by Geometric Distortion Correction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 771 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2407.13642", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 772 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "D-SCo: Dual-Stream Conditional Diffusion for Monocular Hand-Held Object Reconstruction", "id": "main", "arxiv_id": "2311.14189", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 773 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Combining Generative and Geometry Priors for Wide-Angle Portrait Correction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 774 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RealViformer: Investigating Attention for Real-World Video Super-Resolution", "id": "main", "arxiv_id": "2407.13987", "GitHub": [ "https://github.com/yuehan717/realviformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 775 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution", "id": "main", "arxiv_id": "2407.07302", "GitHub": [ "https://github.com/yuehan717/pdd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 776 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Decomposed Vector-Quantized Variational Autoencoder for Human Grasp Generation", "id": "main", "arxiv_id": "2407.14062", "GitHub": [ "https://github.com/florasion/d-vqvae" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 777 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniFS: Universal Few-shot Instance Perception with Point Representations", "id": "main", "arxiv_id": "2404.19401", "GitHub": [ "https://github.com/jin-s13/unifs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 778 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SemanticHuman-HD: High Resolution Semantic disentangled 3D Human Generation", "id": "main", "arxiv_id": "2403.10166", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 779 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians", "id": "main", "arxiv_id": "2403.19495", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.19495", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 780 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Monocular Occupancy Prediction for Scalable Indoor Scenes", "id": "main", "arxiv_id": "2407.11730", "GitHub": [ "https://github.com/hongxiaoy/ISO" ], "paper_page": "https://huggingface.co/papers/2407.11730", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "hongxiaoy/ISO" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 781 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visual Grounding for Object-Level Generalization in Reinforcement Learning", "id": "main", "arxiv_id": "2408.01942", "GitHub": [ "https://github.com/pku-rl/copl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 782 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3DEgo: 3D Editing on the Go!", "id": "main", "arxiv_id": "2407.10102", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 783 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Depth-Guided Urban View Synthesis", "id": "main", "arxiv_id": "2407.12395", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 784 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Probabilistic Weather Forecasting with Deterministic Guidance-based Diffusion Model", "id": "main", "arxiv_id": "2312.02819", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 785 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domain-adaptive Video Deblurring via Test-time Blurring", "id": "main", "arxiv_id": "2407.09059", "GitHub": [ "https://github.com/jin-ting-he/dadeblur" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 786 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Representing Topological Self-Similarity Using Fractal Feature Maps for Accurate Segmentation of Tubular Structures", "id": "main", "arxiv_id": "2407.14754", "GitHub": [ "https://github.com/cbmi-group/ffm-multi-decoder-network" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 787 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving", "id": "main", "arxiv_id": "2404.07762", "GitHub": [ "https://github.com/wljungbergh/neuroncap" ], "paper_page": "https://huggingface.co/papers/2404.07762", "n_linked_authors": 1, "upvotes": 0, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 788 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OLAF: A Plug-and-Play Framework for Enhanced Multi-object Multi-part Scene Parsing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 789 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Progressive Pretext Task Learning for Human Trajectory Prediction", "id": "main", "arxiv_id": "2407.11588", "GitHub": [ "https://github.com/isee-laboratory/ppt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 790 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hyperion \u2013 A fast, versatile symbolic Gaussian Belief Propagation framework for Continuous-Time SLAM", "id": "main", "arxiv_id": "2407.07074", "GitHub": [ "https://github.com/vis4rob-lab/hyperion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 791 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Isomorphic Pruning for Vision Models", "id": "main", "arxiv_id": "2407.04616", "GitHub": [ "https://github.com/vainf/isomorphic-pruning" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 792 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Attention Prompting on Image for Large Vision-Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 793 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Cross-hand Policies of High-DOF Reaching and Grasping", "id": "main", "arxiv_id": "2404.09150", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 794 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reprojection Errors as Prompts for Efficient Scene Coordinate Regression", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 795 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/jinglin-liang/dddr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 796 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Long-Tail Temporal Action Segmentation with Group-wise Temporal Logit Adjustment", "id": "main", "arxiv_id": "2408.09919", "GitHub": [ "https://github.com/pangzhan27/GTLA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 797 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "REVISION: Rendering Tools Enable Spatial Fidelity in Vision-Language Models", "id": "main", "arxiv_id": "2408.02231", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.02231", "n_linked_authors": 2, "upvotes": 2, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [ "revision-t2i/revision-generator" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 798 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video Editing", "id": "main", "arxiv_id": "2403.12002", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12002", "n_linked_authors": 1, "upvotes": 3, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 799 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoClusterNet: Self-Supervised and Adaptive Face Clustering for Videos", "id": "main", "arxiv_id": "2407.12214", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 800 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unveiling Privacy Risks in Stochastic Neural Networks Training: Effective Image Reconstruction from Gradients", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 801 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Controlling the World by Sleight of Hand", "id": "main", "arxiv_id": "2408.07147", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 802 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hiding Imperceptible Noise in Curvature-Aware Patches for 3D Point Cloud Attack", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 803 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Interleaving One-Class and Weakly-Supervised Models with Adaptive Thresholding for Unsupervised Video Anomaly Detection", "id": "main", "arxiv_id": "2401.13551", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 804 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-Domain Learning for Video Anomaly Detection with Limited Supervision", "id": "main", "arxiv_id": "2408.05191", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 805 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "id": "main", "arxiv_id": "2402.13616", "GitHub": [ "https://github.com/WongKinYiu/YOLO" ], "paper_page": "https://huggingface.co/papers/2402.13616", "n_linked_authors": 0, "upvotes": 45, "num_comments": 3, "n_authors": 3, "Models": [ "UmaDiffusion/ULTIMA-YOLOv9", "adonaivera/yolov9", "kadirnar/yolov9-gelan-c", "Supra03/YoLoV9" ], "Datasets": [], "Spaces": [ "SkalskiP/YOLO-ARENA", "Shivdutta/S15-YOLOV9", "henry000/YOLO", "kasper-boy/Evolving-YOLO-V8-V9-V10" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 806 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Multi-modal Medical Image Registration via Invertible Translation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 807 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Functional Transform-Based Low-Rank Tensor Factorization for Multi-Dimensional Data Recovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 808 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model", "id": "main", "arxiv_id": "2403.05034", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.05034", "n_linked_authors": 5, "upvotes": 19, "num_comments": 2, "n_authors": 9, "Models": [ "Zhengyi/CRM" ], "Datasets": [], "Spaces": [ "Zhengyi/CRM", "wyysf/CraftsMan", "RamAnanth1/3D-Arena-Router", "SIGMitch/PropAI", "SIGMitch/ModelMan" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 809 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domain Reduction Strategy for Non-Line-of-Sight Imaging", "id": "main", "arxiv_id": "2308.10269", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 810 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HPE-Li: WiFi-enabled Lightweight Dual Selective Kernel Convolution for Human Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 811 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cut out the Middleman: Revisiting Pose-based Gait Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 812 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HiEI: A Universal Framework for Generating High-quality Emerging Images from Natural Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 813 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Precision Self-Supervised Monocular Depth Estimation with Rich-Resource Prior", "id": "main", "arxiv_id": "2408.00361", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 814 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM", "id": "main", "arxiv_id": "2402.03246", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 815 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "View Selection for 3D Captioning via Diffusion Ranking", "id": "main", "arxiv_id": "2404.07984", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.07984", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [ "tiange/Cap3D" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 816 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model", "id": "main", "arxiv_id": "2404.10312", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 817 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models", "id": "main", "arxiv_id": "2312.04884", "GitHub": [ "https://github.com/zym-pku/udifftext" ], "paper_page": "https://huggingface.co/papers/2312.04884", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [ "ZYMPKU/UDiffText" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 818 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Confidence Self-Calibration for Multi-Label Class-Incremental Learning", "id": "main", "arxiv_id": "2403.12559", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 819 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OMG: Occlusion-friendly Personalized Multi-concept Generation in Diffusion Models", "id": "main", "arxiv_id": "2403.10983", "GitHub": [ "https://github.com/kongzhecn/omg" ], "paper_page": "https://huggingface.co/papers/2403.10983", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [ "Fucius/OMG-InstantID", "Fucius/OMG" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 820 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Versatile Incremental Learning: Towards Class and Domain-Agnostic Incremental Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 821 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WeCromCL: Weakly Supervised Cross-Modality Contrastive Learning for Transcription-only Supervised Text Spotting", "id": "main", "arxiv_id": "2407.19507", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 822 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Incremental Unified Framework for Small Defect Inspection", "id": "main", "arxiv_id": "2312.08917", "GitHub": [ "https://github.com/jqtangust/IUF" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 823 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Optimization Robustness in 1-bit Neural Networks through Stochastic Sign Descent", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 824 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporally Consistent Stereo Matching", "id": "main", "arxiv_id": "2407.11950", "GitHub": [ "https://github.com/jiaxiZeng/Temporally-Consistent-Stereo-Matching" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 825 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Rotation-invariant Texture ViT for Fine-Grained Recognition of Esophageal Cancer Endoscopic Ultrasound Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 826 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BI-MDRG: Bridging Image History in Multimodal Dialogue Response Generation", "id": "main", "arxiv_id": "2408.05926", "GitHub": [ "https://github.com/hee-suk-yoon/bi-mdrg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 827 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adapting Fine-Grained Cross-View Localization to Areas without Fine Ground Truth", "id": "main", "arxiv_id": "2406.00474", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 828 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BeNeRF:Neural Radiance Fields from a Single Blurry Image and Event Stream", "id": "main", "arxiv_id": "2407.02174", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 829 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Human Motion Forecasting in Dynamic Domain Shifts: A Homeostatic Continual Test-time Adaptation Framework", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 830 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CloudFixer: Test-Time Adaptation for 3D Point Clouds via Diffusion-Guided Geometric Transformation", "id": "main", "arxiv_id": "2407.16193", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 831 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamDiffusion: High-Quality EEG-to-Image Generation with Temporal Masked Signal Modeling and CLIP Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 832 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FRI-Net: Floorplan Reconstruction via Room-wise Implicit Representation", "id": "main", "arxiv_id": "2407.10687", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 833 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BugNIST - a Large Volumetric Dataset for Detection under Domain Shift", "id": "main", "arxiv_id": "2304.01838", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 834 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis", "id": "main", "arxiv_id": "2403.09638", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 835 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PoseAugment: Generative Human Pose Data Augmentation with Physical Plausibility for IMU-based Motion Capture", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 836 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PixArt-Sigma: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation", "id": "main", "arxiv_id": "2403.04692", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.04692", "n_linked_authors": 3, "upvotes": 40, "num_comments": 1, "n_authors": 10, "Models": [ "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", "PixArt-alpha/PixArt-Sigma-XL-2-512-MS", "alfredplpl/CommonArt-PoC", "AlanB/SigmaJourney-1024ms" ], "Datasets": [], "Spaces": [ "PixArt-alpha/PixArt-Sigma", "artificialguybr/Pixart-Sigma", "dataautogpt3/PixArt-Sigma-900M", "bghira/PixArt-900M-EDiffi", "Jyothirmai782/Pixart-Sigma", "Viswanath999/Pixart-Sigma", "Xtenda/PixArt-alpha-PixArt-Sigma-XL-2-1024-MS" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 837 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchical Gaussian Mixture Normalizing Flow Modeling for Unified Anomaly Detection", "id": "main", "arxiv_id": "2403.13349", "GitHub": [ "https://github.com/xcyao00/hgad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 838 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks", "id": "main", "arxiv_id": "2407.13863", "GitHub": [ "https://github.com/final-solution/if-gmi" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 839 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Unsupervised Domain Adaptation: A Pseudo-Candidate Set Approach", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 840 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HeadStudio: Text to Animatable Head Avatars with 3D Gaussian Splatting", "id": "main", "arxiv_id": "2402.06149", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.06149", "n_linked_authors": 3, "upvotes": 16, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 841 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DetToolChain: A New Prompting Paradigm to Unleash Detection Ability of MLLM", "id": "main", "arxiv_id": "2403.12488", "GitHub": [ "https://github.com/yixuan730/DetToolChain" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 842 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Surface-Centric Modeling for High-Fidelity Generalizable Neural Surface Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/prstrive/surf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 843 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HumanRefiner: Benchmarking Abnormal Human Generation and Refining with Coarse-to-fine Pose-Reversible Guidance", "id": "main", "arxiv_id": "2407.06937", "GitHub": [ "https://github.com/enderfga/humanrefiner" ], "paper_page": "https://huggingface.co/papers/2407.06937", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "Enderfga/HumanRefiner" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 844 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multiscale Graph Texture Network", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 845 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HyTAS: A Hyperspectral Image Transformer Architecture Search Benchmark and Analysis", "id": "main", "arxiv_id": "2407.16269", "GitHub": [ "https://github.com/zhoufangqin/hytas" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 846 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Integer-Valued Training and Spike-driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection", "id": "main", "arxiv_id": "2407.20708", "GitHub": [ "https://github.com/biclab/spikeyolo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 847 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception", "id": "main", "arxiv_id": "2407.10876", "GitHub": [ "https://github.com/jbji/repvf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 848 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Phase Concentration and Shortcut Suppression for Weakly Supervised Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 849 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Group Testing for Accurate and Efficient Range-Based Near Neighbor Search for Plagiarism Detection", "id": "main", "arxiv_id": "2311.02573", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 850 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CompGS: Smaller and Faster Gaussian Splatting with Vector Quantization", "id": "main", "arxiv_id": "2311.18159", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.18159", "n_linked_authors": 0, "upvotes": 0, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 851 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection", "id": "main", "arxiv_id": "2407.02665", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 852 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models", "id": "main", "arxiv_id": "2402.14780", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.14780", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 853 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "S-JEPA: A Joint Embedding Predictive Architecture for Skeletal Action Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 854 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "\u221e-Brush: Controllable Large Image Synthesis with Diffusion Models in Infinite Dimensions", "id": "main", "arxiv_id": "2407.14709", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 855 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SwapAnything: Enabling Arbitrary Object Swapping in Personalized Image Editing", "id": "main", "arxiv_id": "2404.05717", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.05717", "n_linked_authors": 1, "upvotes": 24, "num_comments": 0, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 856 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Interaction-centric Spatio-Temporal Context Reasoning for Multi-Person Video HOI Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 857 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Unsupervised Visual Representation Learning with Explicit Cluster Balancing", "id": "main", "arxiv_id": "2407.11168", "GitHub": [ "https://github.com/maniadisg/excb" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 858 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models against Stochastic Perturbation", "id": "main", "arxiv_id": "2402.15429", "GitHub": [ "https://github.com/wellzline/protip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 859 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Near-Field Lighting for Monocular Depth Estimation from Endoscopy Videos", "id": "main", "arxiv_id": "2403.17915", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 860 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OvSW: Overcoming Silent Weights for Accurate Binary Neural Networks", "id": "main", "arxiv_id": "2407.05257", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 861 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multistain Pretraining for Slide Representation Learning in Pathology", "id": "main", "arxiv_id": "2408.02859", "GitHub": [ "https://github.com/mahmoodlab/madeleine" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 862 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy", "id": "main", "arxiv_id": "2403.14610", "GitHub": [ "https://github.com/idea-research/t-rex" ], "paper_page": "https://huggingface.co/papers/2403.14610", "n_linked_authors": 1, "upvotes": 3, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 863 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Harmonizing knowledge Transfer in Neural Network with Unified Distillation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 864 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data", "id": "main", "arxiv_id": "2402.05892", "GitHub": [ "https://github.com/jacklishufan/mamba-nd" ], "paper_page": "https://huggingface.co/papers/2402.05892", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 865 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Click Prompt Learning with Optimal Transport for Interactive Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 866 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Human Pose Estimation via Non-Causal Retentive Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 867 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OMR: Occlusion-Aware Memory-Based Refinement for Video Lane Detection", "id": "main", "arxiv_id": "2408.07486", "GitHub": [ "https://github.com/dongkwonjin/omr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 868 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "6DoF Head Pose Estimation through Explicit Bidirectional Interaction with Face Geometry", "id": "main", "arxiv_id": "2407.14136", "GitHub": [ "https://github.com/asw91666/trg-release" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 869 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging", "id": "main", "arxiv_id": "2311.14280", "GitHub": [ "https://github.com/Zongliang-Wu/LADE-DUN" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 870 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition", "id": "main", "arxiv_id": "2405.19917", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 871 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Tampered Text Detection through Frequency Feature Fusion and Decomposition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 872 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Modeling Label Correlations with Latent Context for Multi-Label Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 873 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLM as Dataset Analyst: Subpopulation Structure Discovery with Large Language Model", "id": "main", "arxiv_id": "2405.02363", "GitHub": [ "https://github.com/llm-as-dataset-analyst/SSDLLM" ], "paper_page": "https://huggingface.co/papers/2405.02363", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 874 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection", "id": "main", "arxiv_id": "2403.15955", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 875 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DynoSurf: Neural Deformation-based Temporally Consistent Dynamic Surface Reconstruction", "id": "main", "arxiv_id": "2403.11586", "GitHub": [ "https://github.com/yaoyx689/dynosurf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 876 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MOD-UV: Learning Mobile Object Detectors from Unlabeled Videos", "id": "main", "arxiv_id": "2405.14841", "GitHub": [ "https://github.com/yihongsun/mod-uv" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 877 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ARoFace: Alignment Robustness to Improve Low-quality Face Recognition", "id": "main", "arxiv_id": "2407.14972", "GitHub": [ "https://github.com/msed-ebrahimi/aroface" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 878 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Diffusion Models for Multi-View Anomaly Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 879 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation", "id": "main", "arxiv_id": "2311.08007", "GitHub": [ "https://github.com/zzh-tech/interpany-clearer" ], "paper_page": "https://huggingface.co/papers/2311.08007", "n_linked_authors": 1, "upvotes": 1, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 880 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-modal Relation Distillation for Unified 3D Representation Learning", "id": "main", "arxiv_id": "2407.14007", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 881 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization", "id": "main", "arxiv_id": "2403.08730", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 882 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Collaborative Vision-Text Representation Optimizing for Open-Vocabulary Segmentation", "id": "main", "arxiv_id": "2408.00744", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 883 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distributionally Robust Loss for Long-Tailed Multi-Label Image Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 884 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MesonGS: Post-training Compression of 3D Gaussians via Efficient Attribute Transformation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 885 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LongVLM: Efficient Long Video Understanding via Large Language Models", "id": "main", "arxiv_id": "2404.03384", "GitHub": [ "https://github.com/ziplab/longvlm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 886 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The All-Seeing Project V2: Towards General Relation Comprehension of the Open World", "id": "main", "arxiv_id": "2402.19474", "GitHub": [ "https://github.com/opengvlab/all-seeing" ], "paper_page": "https://huggingface.co/papers/2402.19474", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 12, "Models": [], "Datasets": [ "OpenGVLab/AS-V2" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 887 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural Metamorphosis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 888 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WHAC: World-grounded Humans and Cameras", "id": "main", "arxiv_id": "2403.12959", "GitHub": [ "https://github.com/openxrlab/xrfeitoria" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 889 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Federated Learning with Local Openset Noisy Labels", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 890 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diff3DETR: Agent-based Diffusion Model for Semi-supervised 3D Object Detection", "id": "main", "arxiv_id": "2408.00286", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 891 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PSALM: Pixelwise Segmentation with Large Multi-modal Model", "id": "main", "arxiv_id": "2403.14598", "GitHub": [ "https://github.com/zamling/psalm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 892 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Layout-Corrector: Alleviating Layout Sticking Phenomenon in Discrete Diffusion Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 893 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Active Coarse-to-Fine Segmentation of Moveable Parts from Real Images", "id": "main", "arxiv_id": "2303.11530", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 894 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Topo4D: Topology-Preserving Gaussian Splatting for High-Fidelity 4D Head Capture", "id": "main", "arxiv_id": "2406.00440", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2406.00440", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 895 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities", "id": "main", "arxiv_id": "2407.11351", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 896 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Kinetic Typography Diffusion Model", "id": "main", "arxiv_id": "2407.10476", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.10476", "n_linked_authors": 0, "upvotes": 1, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 897 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Refine, Discriminate and Align: Stealing Encoders via Sample-Wise Prototypes and Multi-Relational Extraction", "id": "main", "arxiv_id": "2312.00855", "GitHub": [ "https://github.com/shuchiwu/rda" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 898 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Light-in-Flight for a World-in-Motion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 899 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GroupDiff: Diffusion-based Group Portrait Editing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 900 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Faceptor: A Generalist Model for Face Perception", "id": "main", "arxiv_id": "2403.09500", "GitHub": [ "https://github.com/lxq1000/faceptor" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 901 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Inter-Class Topology Alignment for Efficient Black-Box Substitute Attacks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 902 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without Manual Labels", "id": "main", "arxiv_id": "2312.17232", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 903 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InsMapper: Exploring Inner-instance Information for Vectorized HD Mapping", "id": "main", "arxiv_id": "2308.08543", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 904 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "KDProR: A Knowledge-Decoupling Probabilistic Framework for Video-Text Retrieval", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 905 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images", "id": "main", "arxiv_id": "2407.06984", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 906 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning with Unmasked Tokens Drives Stronger Vision Learners", "id": "main", "arxiv_id": "2310.13593", "GitHub": [ "https://github.com/naver-ai/lut" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 907 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-stage Hyperspectral Image Classification Model with Spectral Supertoken", "id": "main", "arxiv_id": "2407.07307", "GitHub": [ "https://github.com/laprf/dstc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 908 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Task Domain Adaptation for Language Grounding with 3D Objects", "id": "main", "arxiv_id": "2407.02846", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 909 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Active Domain Adaptation for Semantic Segmentation by Selecting Information-rich Superpixels", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 910 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Training of Spiking Neural Networks with Multi-Parallel Implicit Stream Architecture", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 911 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Camera-LiDAR Cross-modality Gait Recognition", "id": "main", "arxiv_id": "2407.02038", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 912 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LiteSAM is Actually what you Need for segment Everything", "id": "main", "arxiv_id": "2407.08965", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 913 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IGNORE: Information Gap-based False Negative Loss Rejection for Single Positive Multi-Label Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 914 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visual Prompting via Partial Optimal Transport", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 915 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Modelling Competitive Behaviors in Autonomous Driving Under Generative World Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 916 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation", "id": "main", "arxiv_id": "2404.11981", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 917 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection", "id": "main", "arxiv_id": "2407.15795", "GitHub": [ "https://github.com/caoyunkang/adaclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 918 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pathformer3D: A 3D Scanpath Transformer for 360\u00b0 Images", "id": "main", "arxiv_id": "2407.10563", "GitHub": [ "https://github.com/lsztzp/pathformer3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 919 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TransFusion -- A Transparency-Based Diffusion Model for Anomaly Detection", "id": "main", "arxiv_id": "2311.09999", "GitHub": [ "https://github.com/maticfuc/eccv_transfusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 920 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SparseLIF: High-Performance Sparse LiDAR-Camera Fusion for 3D Object Detection", "id": "main", "arxiv_id": "2403.07284", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 921 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Gaussian Parametric Head Model", "id": "main", "arxiv_id": "2407.15070", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.15070", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 922 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RING-NeRF : Rethinking Inductive Biases for Versatile and Efficient Neural Fields", "id": "main", "arxiv_id": "2312.03357", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 923 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Platypus: A Generalized Specialist Model for Reading Text in Various Forms", "id": "main", "arxiv_id": "2408.14805", "GitHub": [ "https://github.com/alibabaresearch/advancedliteratemachinery" ], "paper_page": "https://huggingface.co/papers/2408.14805", "n_linked_authors": 3, "upvotes": 11, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 924 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Structured-NeRF: Hierarchical Scene Graph with Neural Representation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 925 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by Semantic Segmentation", "id": "main", "arxiv_id": "2309.03244", "GitHub": [ "https://github.com/nikolai10/egic" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 926 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Plug-and-Play Learned Proximal Trajectory for 3D Sparse-View X-Ray Computed Tomography", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 927 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving", "id": "main", "arxiv_id": "2311.08100", "GitHub": [ "https://github.com/zlichen/ppad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 928 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Test-Time Stain Adaptation with Diffusion Models for Histopathology Image Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 929 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond MOT: Semantic Multi-Object Tracking", "id": "main", "arxiv_id": "2403.05021", "GitHub": [ "https://github.com/Nathan-Li123/SMOTer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 930 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporal Event Stereo via Joint Learning with Stereoscopic Flow", "id": "main", "arxiv_id": "2407.10831", "GitHub": [ "https://github.com/mickeykang16/temporaleventstereo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 931 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAM-COD: SAM-guided Unified Framework for Weakly-Supervised Camouflaged Object Detection", "id": "main", "arxiv_id": "2408.10760", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 932 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Just a Hint: Point-Supervised Camouflaged Object Detection", "id": "main", "arxiv_id": "2408.10777", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 933 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ManiGaussian: Dynamic Gaussian Splatting for Multi-task Robotic Manipulation", "id": "main", "arxiv_id": "2403.08321", "GitHub": [ "https://github.com/GuanxingLu/ManiGaussian" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 934 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Global-Local Collaborative Inference with LLM for Lidar-Based Open-Vocabulary Detection", "id": "main", "arxiv_id": "2407.08931", "GitHub": [ "https://github.com/gradiustwinbee/glis" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 935 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning High-resolution Vector Representation from Multi-Camera Images for 3D Object Detection", "id": "main", "arxiv_id": "2407.15354", "GitHub": [ "https://github.com/zlichen/vectorformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 936 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "View-Consistent 3D Editing with Gaussian Splatting", "id": "main", "arxiv_id": "2403.11868", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 937 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "E3V-K5: An Authentic Benchmark for Redefining Video-Based Energy Expenditure Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 938 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering", "id": "main", "arxiv_id": "2403.11324", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 939 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "URS-NeRF: Unordered Rolling Shutter Bundle Adjustment for Neural Radiance Fields", "id": "main", "arxiv_id": "2403.10119", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 940 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InstructIR: High-Quality Image Restoration Following Human Instructions", "id": "main", "arxiv_id": "2401.16468", "GitHub": [ "https://github.com/mv-lab/InstructIR" ], "paper_page": "https://huggingface.co/papers/2401.16468", "n_linked_authors": 2, "upvotes": 12, "num_comments": 2, "n_authors": 3, "Models": [ "marcosv/InstructIR" ], "Datasets": [], "Spaces": [ "marcosv/InstructIR", "q-future/Co-Instruct", "asahi417/stable-video-diffusion-upscale", "cocktailpeanut/InstructIR", "reviriego/InstructIR", "Nymbo/InstructIR-API", "Nymbo/InstructIR", "arinsrini/Digital_Image_Project" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 941 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Asynchronous Large Language Model Enhanced Planner for Autonomous Driving", "id": "main", "arxiv_id": "2406.14556", "GitHub": [ "https://github.com/memberre/asyncdriver" ], "paper_page": "https://huggingface.co/papers/2406.14556", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "Member22335/AsyncDriver" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 942 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Make a Cheap Scaling: A Self-Cascade Diffusion Model for Higher-Resolution Adaptation", "id": "main", "arxiv_id": "2402.10491", "GitHub": [ "https://github.com/guolanqing/self-cascade" ], "paper_page": "https://huggingface.co/papers/2402.10491", "n_linked_authors": 9, "upvotes": 16, "num_comments": 1, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 943 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LayoutFlow: Flow Matching for Layout Generation", "id": "main", "arxiv_id": "2403.18187", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 944 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Making Large Language Models Better Planners with Reasoning-Decision Alignment", "id": "main", "arxiv_id": "2408.13890", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 945 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection", "id": "main", "arxiv_id": "2407.10862", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 946 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Representation Enhancement-Stabilization: Reducing Bias-Variance of Domain Generalization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 947 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference", "id": "main", "arxiv_id": "2407.13974", "GitHub": [ "https://github.com/mayyoy/rppgdil" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 948 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Optimization Framework to Enforce Multi-View Consistency for Texturing 3D Meshes", "id": "main", "arxiv_id": "2403.15559", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 949 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians", "id": "main", "arxiv_id": "2403.14939", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14939", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 950 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RGBD GS-ICP SLAM", "id": "main", "arxiv_id": "2403.12550", "GitHub": [ "https://github.com/lab-of-ai-and-robotics/gs_icp_slam" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 951 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient NeRF Optimization - Not All Samples Remain Equally Hard", "id": "main", "arxiv_id": "2408.03193", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 952 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisiting Calibration of Wide-Angle Radially Symmetric Cameras", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 953 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs", "id": "main", "arxiv_id": "2404.10700", "GitHub": [ "https://github.com/gosha20777/rawformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 954 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Incremental Structure-from-Motion with Hybrid Features", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 955 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisiting Domain-Adaptive Object Detection in Adverse Weather by the Generation and Composition of High-Quality Pseudo-Labels", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 956 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prediction Exposes Your Face: Black-box Model Inversion via Prediction Alignment", "id": "main", "arxiv_id": "2407.08127", "GitHub": [ "https://github.com/lyufan/P2I-MI" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 957 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Noise Calibration: Plug-and-play Content-Preserving Video Enhancement using Pre-trained Video Diffusion Models", "id": "main", "arxiv_id": "2407.10285", "GitHub": [ "https://github.com/yangqy1110/nc-sdedit" ], "paper_page": "https://huggingface.co/papers/2407.10285", "n_linked_authors": 0, "upvotes": 4, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 958 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniCal: Unified Neural Sensor Calibration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 959 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models", "id": "main", "arxiv_id": "2407.05342", "GitHub": [ "https://github.com/lloongx/diki" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 960 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Urban Waterlogging Detection: A Challenging Benchmark and Large-Small Model Co-Adapter", "id": "main", "arxiv_id": "2407.08109", "GitHub": [ "https://github.com/zhang-chenxu/lsm-adapter" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 961 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pseudo-Embedding for Generalized Few-Shot Point Cloud Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 962 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WSI-VQA: Interpreting Whole Slide Images by Generative Visual Question Answering", "id": "main", "arxiv_id": "2407.05603", "GitHub": [ "https://github.com/cpystan/wsi-vqa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 963 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions", "id": "main", "arxiv_id": "2311.17057", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 964 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Statewide Visual Geolocalization in the Wild", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 965 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Any2Point: Empowering Any-modality Transformers for Efficient 3D Understanding", "id": "main", "arxiv_id": "2404.07989", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 966 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Trajectory-aligned Space-time Tokens for Few-shot Action Recognition", "id": "main", "arxiv_id": "2407.18249", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 967 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoCVR: An Egocentric Benchmark for Fine-Grained Composed Video Retrieval", "id": "main", "arxiv_id": "2407.16658", "GitHub": [ "https://github.com/explainableml/egocvr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 968 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synchronization of Projective Transformations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 969 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TLControl: Trajectory and Language Control for Human Motion Synthesis", "id": "main", "arxiv_id": "2311.17135", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17135", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 970 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Insect Identification in the Wild: The AMI Dataset", "id": "main", "arxiv_id": "2406.12452", "GitHub": [ "https://github.com/rolnicklab/ami-dataset" ], "paper_page": "https://huggingface.co/papers/2406.12452", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 28, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 971 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-view image geo-localization with Panorama-BEV Co-Retrieval Network", "id": "main", "arxiv_id": "2408.05475", "GitHub": [ "https://github.com/yejy53/ep-bev" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 972 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "F-HOI: Toward Fine-grained Semantic-Aligned 3D Human-Object Interactions", "id": "main", "arxiv_id": "2407.12435", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12435", "n_linked_authors": 3, "upvotes": 13, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 973 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Test-time Model Adaptation for Image Reconstruction Using Self-supervised Adaptive Layers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 974 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SHIC: Shape-Image Correspondences with no Keypoint Supervision", "id": "main", "arxiv_id": "2407.18907", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.18907", "n_linked_authors": 1, "upvotes": 38, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 975 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GenRC: Generative 3D Room Completion from Sparse Image Collections", "id": "main", "arxiv_id": "2407.12939", "GitHub": [ "https://github.com/minfenli/GenRC" ], "paper_page": "https://huggingface.co/papers/2407.12939", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 976 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Probability-guided Sampler for Neural Implicit Surface Rendering", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 977 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReMatching: Low-Resolution Representations for Scalable Shape Correspondence", "id": "main", "arxiv_id": "2305.09274", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 978 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Where am I? Scene Retrieval with Language", "id": "main", "arxiv_id": "2404.14565", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 979 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "This Probably Looks Exactly Like That: An Invertible Prototypical Network", "id": "main", "arxiv_id": "2407.12200", "GitHub": [ "https://github.com/craymichael/protoflow" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 980 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Arc2Face: A Foundation Model for ID-Consistent Human Faces", "id": "main", "arxiv_id": "2403.11641", "GitHub": [ "https://huggingface.co/FoivosPar/Arc2Face" ], "paper_page": "https://huggingface.co/papers/2403.11641", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [ "FoivosPar/Arc2Face", "JCTN/Arc2Face" ], "Datasets": [ "FoivosPar/Arc2Face" ], "Spaces": [ "FoivosPar/Arc2Face", "cocktailpeanut/Arc2Face", "allAI-tools/Arc2Face", "Cesarcr/Arc2Face" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 981 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations", "id": "main", "arxiv_id": "2404.04421", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.04421", "n_linked_authors": 1, "upvotes": 16, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 982 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisiting Feature Disentanglement Strategy in Diffusion Training and Breaking Conditional Independence Assumption in Sampling", "id": "main", "arxiv_id": "2302.14368", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 983 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SweepNet: Unsupervised Learning Shape Abstraction via Neural Sweepers", "id": "main", "arxiv_id": "2407.06305", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.06305", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [ "zmrr/SweepNetDataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 984 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Thermal Modality to Enhance Reconstruction in Low-Light Conditions", "id": "main", "arxiv_id": "2403.14053", "GitHub": [ "https://github.com/xujiacong/thermal-nerf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 985 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Viability of Monocular Depth Pre-training for Semantic Segmentation", "id": "main", "arxiv_id": "2203.13987", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 986 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fairness-aware Vision Transformer via Debiased Self-Attention", "id": "main", "arxiv_id": "2301.13803", "GitHub": [ "https://github.com/qiangyao1988/dsa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 987 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoPet: Egomotion and Interaction Data from an Animal's Perspective", "id": "main", "arxiv_id": "2404.09991", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.09991", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "amirbar1/egopet" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 988 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Companion Learning: Enhancing Generalization Through Historical Consistency", "id": "main", "arxiv_id": "2407.18821", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 989 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural graphics texture compression supporting random access", "id": "main", "arxiv_id": "2407.00021", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 990 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contrastive Learning with Synthetic Positives", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/dewenzeng/clsp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 991 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features", "id": "main", "arxiv_id": "2407.12427", "GitHub": [ "https://github.com/LucStrater/GeneralAD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 992 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Interpretability-Guided Test-Time Adversarial Defense", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 993 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DIM: Dyadic Interaction Modeling for Social Behavior Generation", "id": "main", "arxiv_id": "2403.09069", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 994 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tri^{2}-plane: Thinking Head Avatar via Feature Pyramid", "id": "main", "arxiv_id": "2401.09386", "GitHub": [ "https://github.com/songluchuan/tri2plane" ], "paper_page": "https://huggingface.co/papers/2401.09386", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 995 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ControlCap: Controllable Region-level Captioning", "id": "main", "arxiv_id": "2401.17910", "GitHub": [ "https://github.com/callsys/controlcap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 996 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Free Lunch for Gait Recognition: A Novel Relation Descriptor", "id": "main", "arxiv_id": "2308.11487", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 997 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding", "id": "main", "arxiv_id": "2407.03200", "GitHub": [ "https://github.com/weitaikang/segvg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 998 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Correspondence Scoring for Unsupervised Medical Image Registration", "id": "main", "arxiv_id": "2312.00837", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 999 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2404.09977", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.09977", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1000 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Watch Your Steps: Local Image and Scene Editing by Text Instructions", "id": "main", "arxiv_id": "2308.08947", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1001 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Forget More to Learn More: Domain-specific Feature Unlearning for Semi-supervised and Unsupervised Domain Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1002 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3x2: 3D Object Part Segmentation by 2D Semantic Correspondences", "id": "main", "arxiv_id": "2407.09648", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.09648", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1003 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Idea2Img: Iterative Self-Refinement with GPT-4V for Automatic Image Design and Generation", "id": "main", "arxiv_id": "2310.08541", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2310.08541", "n_linked_authors": 6, "upvotes": 17, "num_comments": 6, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1004 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Human-in-the-Loop Visual Re-ID for Population Size Estimation", "id": "main", "arxiv_id": "2312.05287", "GitHub": [ "https://github.com/cvl-umass/counting-clusters" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1005 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation", "id": "main", "arxiv_id": "2311.14671", "GitHub": [ "https://github.com/menglcool/segic" ], "paper_page": "https://huggingface.co/papers/2311.14671", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1006 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PointNeRF++: A multi-scale, point-based Neural Radiance Field", "id": "main", "arxiv_id": "2312.02362", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1007 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties", "id": "main", "arxiv_id": "2312.13764", "GitHub": [ "https://github.com/lambert-x/prolab" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1008 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding", "id": "main", "arxiv_id": "2401.06397", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.06397", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1009 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast View Synthesis of Casual Videos with Soup-of-Planes", "id": "main", "arxiv_id": "2312.02135", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.02135", "n_linked_authors": 3, "upvotes": 8, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1010 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Human Trajectory Prediction via Latent Corridors", "id": "main", "arxiv_id": "2312.06653", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06653", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1011 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Video Question Answering with Procedural Programs", "id": "main", "arxiv_id": "2312.00937", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1012 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification", "id": "main", "arxiv_id": "2407.03575", "GitHub": [ "https://github.com/chongqingnosubway/dgr-mil" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1013 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TexGen: Text-Guided 3D Texture Generation with Multi-view Sampling and Resampling", "id": "main", "arxiv_id": "2408.01291", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.01291", "n_linked_authors": 2, "upvotes": 11, "num_comments": 2, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1014 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "C2C: Component-to-Composition Learning for Zero-Shot Compositional Action Recognition", "id": "main", "arxiv_id": "2407.06113", "GitHub": [ "https://github.com/rongchangli/zscar_c2c" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1015 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLMGA: Multimodal Large Language Model based Generation Assistant", "id": "main", "arxiv_id": "2311.16500", "GitHub": [ "https://github.com/dvlab-research/LLMGA" ], "paper_page": "https://huggingface.co/papers/2311.16500", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1016 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Put Myself in Your Shoes: Lifting the Egocentric Perspective from Exocentric Videos", "id": "main", "arxiv_id": "2403.06351", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1017 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shape from Heat Conduction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1018 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Adaptive Screen-Space Meshing Approach for Normal Integration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1019 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Parrot: Pareto-optimal Multi-Reward Reinforcement Learning Framework for Text-to-Image Generation", "id": "main", "arxiv_id": "2401.05675", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.05675", "n_linked_authors": 6, "upvotes": 20, "num_comments": 1, "n_authors": 14, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1020 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HandDGP: Camera-Space Hand Mesh Prediction with Differentiable Global Positioning", "id": "main", "arxiv_id": "2407.15844", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1021 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Latent Masked Image Modeling for Self-Supervised Visual Representation Learning", "id": "main", "arxiv_id": "2407.15837", "GitHub": [ "https://github.com/yibingwei-1/latentmim" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1022 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Nuvo: Neural UV Mapping for Unruly 3D Representations", "id": "main", "arxiv_id": "2312.05283", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1023 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards High-Quality 3D Motion Transfer with Realistic Apparel Animation", "id": "main", "arxiv_id": "2407.11266", "GitHub": [ "https://github.com/rongakowang/mmdmc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1024 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AnyHome: Open-Vocabulary Large-Scale Indoor Scene Generation with First-Person View Exploration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1025 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Better Call SAL: Towards Learning to Segment Anything in Lidar", "id": "main", "arxiv_id": "2403.13129", "GitHub": [ "https://github.com/nv-dvl/segment-anything-lidar" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1026 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control", "id": "main", "arxiv_id": "2312.03048", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.03048", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1027 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DECOLLAGE: 3D Detailization by Controllable, Localized, and Learned Geometry Enhancement", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1028 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scene-aware Human Motion Forecasting via Mutual Distance Prediction", "id": "main", "arxiv_id": "2310.00615", "GitHub": [ "https://github.com/xccyue/MutualDistance" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1029 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting", "id": "main", "arxiv_id": "2312.00451", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.00451", "n_linked_authors": 2, "upvotes": 9, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1030 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open Panoramic Segmentation", "id": "main", "arxiv_id": "2407.02685", "GitHub": [ "https://github.com/JunweiZheng93/OPS" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1031 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "iMatching: Imperative Correspondence Learning", "id": "main", "arxiv_id": "2312.02141", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1032 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COSMU: Complete 3D human shape from monocular unconstrained images", "id": "main", "arxiv_id": "2407.10586", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1033 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MAP-ADAPT: Real-Time Quality-Adaptive Semantic 3D Maps", "id": "main", "arxiv_id": "2406.05849", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1034 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Appearance-based Refinement for Object-Centric Motion Segmentation", "id": "main", "arxiv_id": "2312.11463", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1035 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance", "id": "main", "arxiv_id": "2311.16241", "GitHub": [ "https://github.com/google-research/semivl" ], "paper_page": "https://huggingface.co/papers/2311.16241", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1036 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open Vocabulary Multi-Label Video Classification", "id": "main", "arxiv_id": "2407.09073", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1037 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Optimal Transport of Diverse Unsupervised Tasks for Robust Learning from Noisy Few-Shot Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1038 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Regularizing Dynamic Radiance Fields with Kinematic Fields", "id": "main", "arxiv_id": "2407.14059", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1039 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation", "id": "main", "arxiv_id": "2408.16478", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1040 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Pre-training for Localized Instruction Generation of Procedural Videos", "id": "main", "arxiv_id": "2311.15964", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1041 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution", "id": "main", "arxiv_id": "2404.09571", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1042 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DEAL: Disentangle and Localize Concept-level Explanations for VLMs", "id": "main", "arxiv_id": "2407.14412", "GitHub": [ "https://github.com/tangli-udel/DEAL" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1043 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Encoding and Decoding for Implicit Video Representation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1044 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models", "id": "main", "arxiv_id": "2311.17050", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17050", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1045 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion-Refined VQA Annotations for Semi-Supervised Gaze Following", "id": "main", "arxiv_id": "2406.02774", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1046 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IMMA: Immunizing text-to-image Models against Malicious Adaptation", "id": "main", "arxiv_id": "2311.18815", "GitHub": [ "https://github.com/zhengyjzoe/imma" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1047 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion-Oriented Compositional Neural Radiance Fields for Monocular Dynamic Human Modeling", "id": "main", "arxiv_id": "2407.11962", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1048 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GeoCalib: Learning Single-image Calibration with Geometric Optimization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1049 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Open-Vocabulary Panoptic Segmentation with 2D-3D Vision-Language Distillation", "id": "main", "arxiv_id": "2401.02402", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1050 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semicalibrated Relative Pose from an Affine Correspondence and Monodepth", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1051 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Global Structure-from-Motion Revisited", "id": "main", "arxiv_id": "2407.20219", "GitHub": [ "https://github.com/colmap/glomap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1052 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MobileNetV4: Universal Models for the Mobile Ecosystem", "id": "main", "arxiv_id": "2404.10518", "GitHub": [ "https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py" ], "paper_page": "https://huggingface.co/papers/2404.10518", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 14, "Models": [ "timm/mobilenetv4_conv_small.e2400_r224_in1k", "timm/mobilenetv4_conv_small.e1200_r224_in1k", "timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k", "timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k", "timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k", "timm/mobilenetv4_conv_blur_medium.e500_r224_in1k", "timm/mobilenetv4_conv_large.e600_r384_in1k", "timm/mobilenetv4_hybrid_large.e600_r384_in1k", "timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k", "timm/efficientnet_b0.ra4_e3600_r224_in1k", "timm/mobilenetv1_100.ra4_e3600_r224_in1k", "byoussef/MobileNetV4_Conv_Small_TFLite_224", "byoussef/MobileNetV4_Conv_Blur_Medium_TFLite_224", "byoussef/MobileNetV4_Conv_Medium_TFLite_256", "byoussef/MobileNetV4_Conv_Large_TFLite_384", "byoussef/MobileNetV4_Conv_Medium_TFLite_224", "byoussef/MobileNetV4_Conv_Large_TFLite_256", "timm/mobilenetv4_conv_aa_large.e230_r384_in12k", "timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k", "timm/mobilenetv4_conv_aa_large.e600_r384_in1k", "timm/mobilenetv4_conv_large.e500_r256_in1k", "timm/mobilenetv4_conv_medium.e500_r224_in1k", "timm/mobilenetv4_conv_medium.e500_r256_in1k", "timm/mobilenetv4_hybrid_medium.e200_r256_in12k", "timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k", "timm/mobilenetv4_hybrid_medium.e500_r224_in1k", "timm/mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k", "timm/mobilenetv1_100h.ra4_e3600_r224_in1k", "timm/mobilenetv1_125.ra4_e3600_r224_in1k", "timm/efficientnet_b1.ra4_e3600_r240_in1k", "timm/resnet50d.ra4_e3600_r224_in1k", "timm/mobilenetv3_large_100.ra4_e3600_r224_in1k", "timm/mobilenetv3_large_150d.ra4_e3600_r256_in1k" ], "Datasets": [], "Spaces": [ "byoussef/MobileNetV4_TFLite" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1053 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gravity-aligned Rotation Averaging with Circular Regression", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1054 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MoMA: Multimodal LLM Adapter for Fast Personalized Image Generation", "id": "main", "arxiv_id": "2404.05674", "GitHub": [ "https://github.com/bytedance/MoMA" ], "paper_page": "https://huggingface.co/papers/2404.05674", "n_linked_authors": 1, "upvotes": 13, "num_comments": 2, "n_authors": 6, "Models": [ "KunpengSong/MoMA_llava_7b" ], "Datasets": [], "Spaces": [ "yizhezhu/MoMA_demo", "yizhezhu/MoMA_zeroGPU" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1055 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments", "id": "main", "arxiv_id": "2403.13556", "GitHub": [ "https://github.com/djamahl99/findnpropagate" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1056 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Quanta Video Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1057 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models", "id": "main", "arxiv_id": "2311.12092", "GitHub": [ "https://github.com/rohitgandikota/sliders" ], "paper_page": "https://huggingface.co/papers/2311.12092", "n_linked_authors": 4, "upvotes": 20, "num_comments": 4, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1058 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CAT-SAM: Conditional Tuning for Few-Shot Adaptation of Segment Anything Model", "id": "main", "arxiv_id": "2402.03631", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1059 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image", "id": "main", "arxiv_id": "2312.07381", "GitHub": [ "https://github.com/halleewong/ScribblePrompt" ], "paper_page": "https://huggingface.co/papers/2312.07381", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "halleewong/ScribblePrompt" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1060 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "POCA: Post-training Quantization with Temporal Alignment for Codec Avatars", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1061 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HYPE: Hyperbolic Entailment Filtering for Underspecified Images and Texts", "id": "main", "arxiv_id": "2404.17507", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1062 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Finding Meaning in Points: Weakly Supervised Semantic Segmentation for Event Cameras", "id": "main", "arxiv_id": "2407.11216", "GitHub": [ "https://github.com/chohoonhee/ev-wsss" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1063 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Dense Prediction using Differentiable Normalized Cuts", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1064 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training", "id": "main", "arxiv_id": "2311.14109", "GitHub": [ "https://github.com/chengtan9907/mc-cot" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1065 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scaling Up Personalized Image Aesthetic Assessment via Task Vector Customization", "id": "main", "arxiv_id": "2407.07176", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.07176", "n_linked_authors": 1, "upvotes": 3, "num_comments": 2, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1066 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion", "id": "main", "arxiv_id": "2310.10123", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1067 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers", "id": "main", "arxiv_id": "2311.17717", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17717", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1068 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EINet: Point Cloud Completion via Extrapolation and Interpolation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1069 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Personalized Video Relighting With an At-Home Light Stage", "id": "main", "arxiv_id": "2311.08843", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1070 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporal Residual Guided Diffusion Framework for Event-Driven Video Reconstruction", "id": "main", "arxiv_id": "2407.10636", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1071 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Secure Image Watermarking Framework with Statistical Guarantees via Adversarial Attacks on Secret Key Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1072 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPIRE: Semantic Prompt-Driven Image Restoration", "id": "main", "arxiv_id": "2312.11595", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.11595", "n_linked_authors": 4, "upvotes": 5, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1073 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Free-ATM: Harnessing Free Attention Masks for Representation Learning on Diffusion-Generated Images", "id": "main", "arxiv_id": "2308.06739", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1074 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution", "id": "main", "arxiv_id": "2407.05878", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1075 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Audio-Synchronized Visual Animation", "id": "main", "arxiv_id": "2403.05659", "GitHub": [ "https://github.com/lzhangbj/ASVA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1076 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Expressive Whole-Body 3D Gaussian Avatar", "id": "main", "arxiv_id": "2407.21686", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.21686", "n_linked_authors": 1, "upvotes": 7, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1077 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Canonical Shape Projection is All You Need for 3D Few-shot Class Incremental Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1078 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Controllable Human-Object Interaction Synthesis", "id": "main", "arxiv_id": "2312.03913", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.03913", "n_linked_authors": 4, "upvotes": 22, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1079 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Fidelity and Transferable NeRF Editing by Frequency Decomposition", "id": "main", "arxiv_id": "2404.02514", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.02514", "n_linked_authors": 0, "upvotes": 9, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1080 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DoughNet: A Visual Predictive Model for Topological Manipulation of Deformable Objects", "id": "main", "arxiv_id": "2404.12524", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1081 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PAV: Personalized Head Avatar from Unstructured Video Collection", "id": "main", "arxiv_id": "2407.21047", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.21047", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1082 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Strike a Balance in Continual Panoptic Segmentation", "id": "main", "arxiv_id": "2407.16354", "GitHub": [ "https://github.com/jinpeng0528/balconpas" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1083 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "In Defense of Lazy Visual Grounding for Open-Vocabulary Semantic Segmentation", "id": "main", "arxiv_id": "2408.04961", "GitHub": [ "https://github.com/dahyun-kang/lazygrounding" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1084 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MultiDelete for Multimodal Machine Unlearning", "id": "main", "arxiv_id": "2311.12047", "GitHub": [ "https://github.com/chengjiali/Multimodal-Machine-Unlearning" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1085 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unified Local-Cloud Decision-Making via Reinforcement Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1086 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniTalker: Scaling up Audio-Driven 3D Facial Animation through A Unified Model", "id": "main", "arxiv_id": "2408.00762", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.00762", "n_linked_authors": 1, "upvotes": 9, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1087 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robo-ABC: Affordance Generalization Beyond Categories via Semantic Correspondence for Robot Manipulation", "id": "main", "arxiv_id": "2401.07487", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1088 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Frequency-Domain Image Deraining with Contrastive Regularization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1089 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stitched ViTs are Flexible Vision Backbones", "id": "main", "arxiv_id": "2307.00154", "GitHub": [ "https://github.com/ziplab/sn-netv2" ], "paper_page": "https://huggingface.co/papers/2307.00154", "n_linked_authors": 3, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [ "ziplab/snnetv2-image-classification", "ziplab/snnetv2-semantic-segmentation" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1090 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TrajPrompt: Aligning Color Trajectory with Vision-Language Representations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1091 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SemReg: Semantics Constrained Point Cloud Registration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1092 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cascade-Zero123: One Image to Highly Consistent 3D with Self-Prompted Nearby Views", "id": "main", "arxiv_id": "2312.04424", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1093 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoScenes: A Large-scale Multi-view 3D Dataset for Roadside Perception", "id": "main", "arxiv_id": "2405.09883", "GitHub": [ "https://github.com/xiaosu-zhu/roscenes" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1094 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer", "id": "main", "arxiv_id": "2408.03284", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.03284", "n_linked_authors": 2, "upvotes": 9, "num_comments": 2, "n_authors": 13, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1095 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Language-Driven Physics-Based Scene Synthesis and Editing via Feature Splatting", "id": "main", "arxiv_id": "2404.01223", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1096 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AlignDiff: Aligning Diffusion Models for General Few-Shot Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1097 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition", "id": "main", "arxiv_id": "2403.09508", "GitHub": [ "https://github.com/KAIST-VICLab/SkateFormer" ], "paper_page": "https://huggingface.co/papers/2403.09508", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1098 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "R^2-Tuning: Efficient Image-to-Video Transfer Learning for Video Temporal Grounding", "id": "main", "arxiv_id": "2404.00801", "GitHub": [ "https://github.com/yeliudev/R2-Tuning" ], "paper_page": "https://huggingface.co/papers/2404.00801", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [ "yeliudev/R2-Tuning" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1099 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors", "id": "main", "arxiv_id": "2407.10330", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.10330", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1100 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Parameterization-driven Neural Surface Reconstruction for Object-oriented Editing in Neural Rendering", "id": "main", "arxiv_id": "2310.05524", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1101 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DomainFusion: Generalizing To Unseen Domains with Latent Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1102 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Set Recognition in the Age of Vision-Language Models", "id": "main", "arxiv_id": "2403.16528", "GitHub": [ "https://github.com/dimitymiller/openset_vlms" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1103 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsqueeze [CLS] Bottleneck to Learn Rich Representations", "id": "main", "arxiv_id": "2407.17671", "GitHub": [ "https://github.com/isl-cv/udi" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1104 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Multimodal Learning via Representation Decoupling", "id": "main", "arxiv_id": "2407.04458", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1105 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2404.07389", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.07389", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1106 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WiMANS: A Benchmark Dataset for WiFi-based Multi-user Activity Sensing", "id": "main", "arxiv_id": "2402.09430", "GitHub": [ "https://github.com/huangshk/wimans" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1107 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Embedding-Free Transformer with Inference Spatial Reduction for Efficient Semantic Segmentation", "id": "main", "arxiv_id": "2407.17261", "GitHub": [ "https://github.com/hyunwoo137/edaformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1108 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VeCLIP: Improving CLIP Training via Visual-enriched Captions", "id": "main", "arxiv_id": "2310.07699", "GitHub": [ "https://github.com/apple/ml-veclip" ], "paper_page": "https://huggingface.co/papers/2310.07699", "n_linked_authors": 3, "upvotes": 2, "num_comments": 0, "n_authors": 11, "Models": [ "Citaman/VeCLIP" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1109 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Three Things We Need to Know About Transferring Stable Diffusion to Visual Dense Prediciton Tasks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1110 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Representations from Foundation Models for Domain Generalized Stereo Matching", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1111 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spike-Temporal Latent Representation for Energy-Efficient Event-to-Video Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1112 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer", "id": "main", "arxiv_id": "2404.03819", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1113 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts", "id": "main", "arxiv_id": "2407.06842", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1114 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event-Adapted Video Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1115 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Look Hear: Gaze Prediction for Speech-directed Human Attention", "id": "main", "arxiv_id": "2407.19605", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1116 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching", "id": "main", "arxiv_id": "2407.07789", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1117 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge", "id": "main", "arxiv_id": "2401.10712", "GitHub": [ "https://github.com/whb139426/qa-prompts-eccv-24" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1118 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Catastrophic Overfitting: A Potential Blessing in Disguise", "id": "main", "arxiv_id": "2402.18211", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1119 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Long-range Turbulence Mitigation: A Large-scale Dataset and A Coarse-to-fine Framework", "id": "main", "arxiv_id": "2407.08377", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1120 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models", "id": "main", "arxiv_id": "2311.16933", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.16933", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [ "guoyww/animatediff-sparsectrl-scribble", "guoyww/animatediff-sparsectrl-rgb", "guoyww/animatediff-motion-lora-v1-5-3" ], "Datasets": [], "Spaces": [ "seawolf2357/diffusers" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1121 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visual Alignment Pre-training for Sign Language Translation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1122 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Parrot Captions Teach CLIP to Spot Text", "id": "main", "arxiv_id": "2312.14232", "GitHub": [ "https://github.com/opendatalab/clip-parrot-bias" ], "paper_page": "https://huggingface.co/papers/2312.14232", "n_linked_authors": 3, "upvotes": 10, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [ "linyq/laion_text_debiased_100M" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1123 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Solving Motion Planning Tasks with a Scalable Generative Model", "id": "main", "arxiv_id": "2407.02797", "GitHub": [ "https://github.com/horizonrobotics/gump" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1124 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Griffon: Spelling out All Object Locations at Any Granularity with Large Language Models", "id": "main", "arxiv_id": "2311.14552", "GitHub": [ "https://github.com/jefferyzhan/griffon" ], "paper_page": "https://huggingface.co/papers/2311.14552", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "JefferyZhan/Language-prompted-Localization-Dataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1125 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Vision-Language Action Knowledge Learning for Semantic-Aware Action Quality Assessment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1126 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Knowledge Transfer with Simulated Inter-Image Erasing for Weakly Supervised Semantic Segmentation", "id": "main", "arxiv_id": "2407.02768", "GitHub": [ "https://github.com/nust-machine-intelligence-laboratory/ktse" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1127 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BurstM: Deep Burst Multi-scale SR using Fourier Space with Optical Flow", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1128 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Reward: Learning Rewards via Conditional Video Diffusion", "id": "main", "arxiv_id": "2312.14134", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1129 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Recursive Visual Programming", "id": "main", "arxiv_id": "2312.02249", "GitHub": [ "https://github.com/para-lost/rvp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1130 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLaVA-Grounding: Grounded Visual Chat with Large Multimodal Models", "id": "main", "arxiv_id": "2312.02949", "GitHub": [ "https://github.com/ux-decoder/llava-grounding" ], "paper_page": "https://huggingface.co/papers/2312.02949", "n_linked_authors": 8, "upvotes": 11, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1131 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prompt-Driven Contrastive Learning for Transferable Adversarial Attacks", "id": "main", "arxiv_id": "2407.20657", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1132 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Adapt SAM for Segmenting Cross-domain Point Clouds", "id": "main", "arxiv_id": "2310.08820", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1133 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Enhance Aperture Phasor Field for Non-Line-of-Sight Imaging", "id": "main", "arxiv_id": "2407.18574", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1134 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViewFormer: Exploring Spatiotemporal Modeling for Multi-View 3D Occupancy Perception via View-Guided Transformers", "id": "main", "arxiv_id": "2405.04299", "GitHub": [ "https://github.com/viewformerocc/viewformer-occ" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1135 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fine-grained Dynamic Network for Generic Event Boundary Detection", "id": "main", "arxiv_id": "2407.04274", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1136 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Take A Step Back: Rethinking the Two Stages in Visual Reasoning", "id": "main", "arxiv_id": "2407.19666", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1137 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AlignZeg: Mitigating Objective Misalignment for Zero-shot Semantic Segmentation", "id": "main", "arxiv_id": "2404.05667", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1138 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning with Counterfactual Explanations for Radiology Report Generation", "id": "main", "arxiv_id": "2407.14474", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1139 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SpeedUpNet: A Plug-and-Play Adapter Network for Accelerating Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2312.08887", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.08887", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1140 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Better Regression Makes Better Test-time Adaptive 3D Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1141 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ShapeLLM: Universal 3D Object Understanding for Embodied Interaction", "id": "main", "arxiv_id": "2402.17766", "GitHub": [ "https://github.com/qizekun/ShapeLLM" ], "paper_page": "https://huggingface.co/papers/2402.17766", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1142 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwidth Quantization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1143 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Finding Visual Task Vectors", "id": "main", "arxiv_id": "2404.05729", "GitHub": [ "https://github.com/alhojel/visual_task_vectors" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1144 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Connecting Consistency Distillation to Score Distillation for Text-to-3D Generation", "id": "main", "arxiv_id": "2407.13584", "GitHub": [ "https://github.com/LMozart/ECCV2024-GCS-BEG" ], "paper_page": "https://huggingface.co/papers/2407.13584", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1145 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event Camera Data Dense Pre-training", "id": "main", "arxiv_id": "2311.11533", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1146 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning", "id": "main", "arxiv_id": "2407.11683", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1147 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Image-to-Video Adaptation: An Object-centric Perspective", "id": "main", "arxiv_id": "2407.06871", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1148 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Layer-Wise Relevance Propagation with Conservation Property for ResNet", "id": "main", "arxiv_id": "2407.09115", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1149 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DECap: Towards Generalized Explicit Caption Editing via Diffusion Mechanism", "id": "main", "arxiv_id": "2311.14920", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1150 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoLifter: Open-world 3D Segmentation for Egocentric Perception", "id": "main", "arxiv_id": "2403.18118", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.18118", "n_linked_authors": 0, "upvotes": 9, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1151 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MEVG : Multi-event Video Generation with Text-to-Video Models", "id": "main", "arxiv_id": "2312.04086", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.04086", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1152 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively", "id": "main", "arxiv_id": "2401.02955", "GitHub": [ "https://github.com/harboryuan/ovsam" ], "paper_page": "https://huggingface.co/papers/2401.02955", "n_linked_authors": 4, "upvotes": 19, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1153 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Data-to-Model Distillation: Data-Efficient Learning Framework", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1154 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays", "id": "main", "arxiv_id": "2407.13545", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1155 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaIFL: Adaptive Image Forgery Localization via a Dynamic and Importance-aware Transformer Network", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1156 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ComFusion: Enhancing Personalized Generation by Instance-Scene Compositing and Fusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1157 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ML-SemReg: Boosting Point Cloud Registration with Multi-level Semantic Consistency", "id": "main", "arxiv_id": "2407.09862", "GitHub": [ "https://github.com/laka-3dv/ml-semreg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1158 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mask as Supervision: Leveraging Unified Mask Information for Unsupervised 3D Pose Estimation", "id": "main", "arxiv_id": "2312.07051", "GitHub": [ "https://github.com/charrrrrlie/mask-as-supervision" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1159 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MoVideo: Motion-Aware Video Generation with Diffusion Models", "id": "main", "arxiv_id": "2311.11325", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.11325", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1160 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning", "id": "main", "arxiv_id": "2407.07523", "GitHub": [ "https://github.com/paranioar/sherl" ], "paper_page": "https://huggingface.co/papers/2407.07523", "n_linked_authors": 1, "upvotes": 4, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1161 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MonoTTA: Fully Test-Time Adaptation for Monocular 3D Object Detection", "id": "main", "arxiv_id": "2405.19682", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1162 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RangeLDM: Fast Realistic LiDAR Point Cloud Generation", "id": "main", "arxiv_id": "2403.10094", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1163 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learn to Optimize Denoising Scores: A Unified and Improved Diffusion Prior for 3D Generation", "id": "main", "arxiv_id": "2312.04820", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1164 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Be-Your-Outpainter: Mastering Video Outpainting through Input-Specific Adaptation", "id": "main", "arxiv_id": "2403.13745", "GitHub": [ "https://github.com/g-u-n/be-your-outpainter" ], "paper_page": "https://huggingface.co/papers/2403.13745", "n_linked_authors": 6, "upvotes": 11, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1165 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Physically Plausible Color Correction for Neural Radiance Fields", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1166 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unifying 3D Vision-Language Understanding via Promptable Queries", "id": "main", "arxiv_id": "2405.11442", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1167 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Model Stock: All we need is just a few fine-tuned models", "id": "main", "arxiv_id": "2403.19522", "GitHub": [ "https://github.com/naver-ai/model-stock" ], "paper_page": "https://huggingface.co/papers/2403.19522", "n_linked_authors": 0, "upvotes": 10, "num_comments": 0, "n_authors": 3, "Models": [ "nitky/Oumuamua-7b-instruct-v2", "bluuwhale/L3-SthenoMaidBlackroot-8B-V1", "jukofyork/Dark-Miqu-70B", "Lewdiculous/llama-3-Stheno-Mahou-8B-GGUF-IQ-Imatrix", "mlabonne/Zebrafish-7B", "NeverSleep/MiquMaid-v3-70B", "Hastagaras/Halu-8B-Llama3-Blackroot", "nbeerbower/llama-3-Stheno-Mahou-8B", "aifeifei798/llama3-8B-DarkIdol-1.0", "saishf/Neural-SOVLish-Devil-8B-L3", "Undi95/Miqu-MS-70B", "aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-1048K", "aifeifei798/llama3-8B-DarkIdol-2.3-Uncensored-32K", "saishf/SOVLish-Maid-L3-8B", "aifeifei798/llama3-8B-DarkIdol-2.2-Uncensored-1048K", "Casual-Autopsy/Gemma-Radiation-RP-9B", "Local-Novel-LLM-project/Ninja-V3", "Undi95/Miqu-MS-70B-GGUF", "saishf/SOVLish-Devil-8B-L3", "aifeifei798/llama3-8B-DarkIdol-2.1-Uncensored-32K", "MarinaraSpaghetti/Nemomix-v2.0-12B", "nbeerbower/Gutensuppe-mistral-nemo-12B", "aifeifei798/llama3-8B-DarkIdol-1.1", "aifeifei798/llama3-8B-DarkIdol-1.2", "QuantFactory/L3-SthenoMaidBlackroot-8B-V1-GGUF", "InferenceIllusionist/TeTO-MS-8x7b", "nbeerbower/llama-3-Daredevil-Mahou-8B", "nbeerbower/llama-3-dragon-bophades-8B", "saishf/Aura-Uncensored-OAS-8B-L3", "nbeerbower/llama-3-stinky-v2-8B", "nbeerbower/llama-3-spicy-abliterated-stella-8B", "iskonai/prodigy-sm-base-v0.1", "nbeerbower/llama-3-wissenschaft-8B", "BigHuggyD/BigHuggyD-Grey-WizardLM-2-8x22B", "nitky/Oumuamua-7b-instruct", "aifeifei798/llama3-8B-aifeifei-1.3", "NeverSleep/MiquMaid-v3-70B-GGUF", "ichigoberry/pandafish-7b", "ryzen88/Llama-3-70b-Arimas-story-RP-V2.0", "trollek/CleverQwen2-1.5B", "Masterjp123/Llama-3-SnowyRP-8B-V1", "Quant-Cartel/TeTO-MS-8x7b-exl2-rpcal", "saishf/Merge-Mayhem-L3-V2", "gghfez/WizardLM-2-8x22B-Beige", "6DammK9/AstolfoMix-XL", "kihoonlee/STOCK_SOLAR-10.7B", "draganjovanovich/prodigy-sm-base-v0.1", "Revile/ReviledSoup-L3-8B", "draganjovanovich/prodigy-sm-base-v0.1-GGUF", "emnakamura/llama-3-MagicDolphin-8B", "nbeerbower/llama-3-bophades-v1-8B", "Virt-io/Irene-RP-v5-7B-GGUF", "QuantFactory/Gutensuppe-mistral-nemo-12B-GGUF", "jukofyork/Dawn-Miqu-70B", "flammenai/flammen26-mistral-7B", "nbeerbower/llama-3-stinky-8B", "blockblockblock/Dark-Miqu-70B-bpw5-exl2", "Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B", "mergekit-community/L3.1-Artemis-c-8B", "nbeerbower/Stella-mistral-nemo-12B", "ryzen88/Llama-3-70b-Arimas-story-RP-V2.1", "inflatebot/guns-and-roses-r1", "flammenai/flammen24X-mistral-7B", "QuantFactory/Stella-mistral-nemo-12B-GGUF", "jeiku/32K_Selfbot", "saishf/SOVL-Instruct-8B-L3", "DreadPoor/ONeil-model_stock-8B", "inflatebot/L3-8B-Helium3", "saishf/Ortho-SOVL-8B-L3", "Quant-Cartel/TeTO-MS-8x7b-iMat-GGUF", "QuantFactory/SOVL-Mega-Mash-V2-L3-8B-GGUF", "v000000/L3-8B-Serpentine", "jeiku/32kTest_7B", "nlpguy/StockFuseChat", "Revile/ReviledSink-L3-8B", "jeiku/Aurbliterated_Qwen2_7B", "flammenai/flammen22X-mistral-7B", "saishf/Long-SOVL-Experiment-8B-L3-262K", "Azazelle/Llama-3-8B-Help-Me", "saishf/Long-Neural-SOVLish-Devil-8B-L3-262K", "QuantFactory/Oumuamua-7b-instruct-GGUF", "Azazelle/Llama-3-Nerdy-RP-8B", "aifeifei798/llama3-8B-feifei-1.0", "saishf/Extended-Mega-Mash-262K-8B-L3", "saishf/SOVL-Mega-Mash-V2-L3-8B", "flammenai/flammen31-mistral-7B", "lemon07r/llama-3-NeuralMahou-8b", "v000000/L3-8B-MegaSerpentine", "TheSkullery/Y1.5-MS-Mysteria-34b", "flammenai/flammen30-mistral-7B", "DeusImperator/L3-SthenoMaidBlackroot-8B-V1_exl2_8.05bpw", "Virt-io/Irene-RP-v5-7B", "flammenai/flammen18-mistral-7B", "nbeerbower/MaidFlameSoup-7B", "nbeerbower/Yiet-9B", "saishf/SOVL-Mega-Mash-L3-8B", "blockblockblock/Dark-Miqu-70B-bpw4.4-exl2", "blockblockblock/Dark-Miqu-70B-bpw4-exl2", "saishf/Kitty-Cat-SOVL-8B-L3-V1", "zaq-hack/MiquMaid-v3-70B-bpw250-h6-exl2-rpcal" ], "Datasets": [], "Spaces": [ "arcee-ai/mergekit-gui", "featherless-ai/try-this-model", "burak/TurkishChatbot", "Darok/Featherless-Feud", "DavidAU/mergekit-gui", "emekaboris/try-this-model", "EclecticMarsupialNeurosis/nbeerbower-llama-3-spicy-abliterated-stella-8B", "JohnSeeman/nbeerbower-llama-3-spicy-abliterated-stella-8B", "K00B404/mergekit_allow_crimes_gui", "Nymbo/mergekit-gui" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1168 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution", "id": "main", "arxiv_id": "2312.00853", "GitHub": [ "https://github.com/ianyeung/mgld-vsr" ], "paper_page": "https://huggingface.co/papers/2312.00853", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1169 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PoseCrafter: One-Shot Personalized Video Synthesis Following Flexible Pose Control", "id": "main", "arxiv_id": "2405.14582", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1170 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MAD-DR: Map Compression for Visual Localization with Matchness Aware Descriptor Dimension Reduction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1171 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Benchmarking Object Detectors with COCO: A New Path Forward", "id": "main", "arxiv_id": "2403.18819", "GitHub": [ "https://github.com/kdexd/coco-rem" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1172 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive High-Frequency Transformer for Diverse Wildlife Re-Identification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1173 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WPS-SAM: Towards Weakly-Supervised Part Segmentation with Foundation Models", "id": "main", "arxiv_id": "2407.10131", "GitHub": [ "https://github.com/xjwu1024/WPS-SAM" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1174 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lane Graph as Path: Continuity-preserving Path-wise Modeling for Online Lane Graph Construction", "id": "main", "arxiv_id": "2303.08815", "GitHub": [ "https://github.com/hustvl/lanegap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1175 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DeCo: Decoupled Human-Centered Diffusion Video Editing with Motion Consistency", "id": "main", "arxiv_id": "2408.07481", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1176 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1177 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Uncertainty-aware sign language video retrieval with probability distribution modeling", "id": "main", "arxiv_id": "2405.19689", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1178 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeRMo: Learning Implicit Neural Representations for 3D Human Motion Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1179 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridging Synthetic and Real Worlds for Pre-training Scene Text Detectors", "id": "main", "arxiv_id": "2312.05286", "GitHub": [ "https://github.com/sjtu-deepvisionlab/freereal" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1180 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VLAD-BuFF: Burst-aware Fast Feature Aggregation for Visual Place Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1181 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DSA: Discriminative Scatter Analysis for Early Smoke Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1182 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAFARI: Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation", "id": "main", "arxiv_id": "2407.02389", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1183 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter", "id": "main", "arxiv_id": "2407.13185", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1184 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Physical-Based Event Camera Simulator", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1185 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "V-IRL: Grounding Virtual Intelligence in Real Life", "id": "main", "arxiv_id": "2402.03310", "GitHub": [ "https://github.com/VIRL-Platform/VIRL" ], "paper_page": "https://huggingface.co/papers/2402.03310", "n_linked_authors": 3, "upvotes": 15, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1186 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adversarial Prompt Tuning for Vision-Language Models", "id": "main", "arxiv_id": "2311.11261", "GitHub": [ "https://github.com/jiamingzhang94/adversarial-prompt-tuning" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1187 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing", "id": "main", "arxiv_id": "2311.16043", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.16043", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1188 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mono-ViFI: A Unified Learning Framework for Self-supervised Single- and Multi-frame Monocular Depth Estimation", "id": "main", "arxiv_id": "2407.14126", "GitHub": [ "https://github.com/liujf1226/mono-vifi" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1189 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CC-SAM: Enhancing SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation", "id": "main", "arxiv_id": "2408.00181", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1190 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Efficient and Effective Transformer Decoder-Based Framework for Multi-Task Visual Grounding", "id": "main", "arxiv_id": "2408.01120", "GitHub": [ "https://github.com/chenwei746/eevg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1191 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Think2Drive: Efficient Reinforcement Learning by Thinking with Latent World Model for Autonomous Driving (in CARLA-v2)", "id": "main", "arxiv_id": "2402.16720", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1192 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PanGu-Draw: Advancing Resource-Efficient Text-to-Image Synthesis with Time-Decoupled Training and Reusable Coop-Diffusion", "id": "main", "arxiv_id": "2312.16486", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.16486", "n_linked_authors": 0, "upvotes": 6, "num_comments": 1, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1193 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "X-InstructBLIP: A Framework for Aligning Image, 3D, Audio, Video to LLMs and its Emergent Cross-modal Reasoning", "id": "main", "arxiv_id": "2311.18799", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.18799", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1194 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Neural Volumetric Pose Features for Camera Localization", "id": "main", "arxiv_id": "2403.12800", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1195 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation", "id": "main", "arxiv_id": "2311.17893", "GitHub": [ "https://github.com/shvdiwnkozbw/ssl-uvos" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1196 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices", "id": "main", "arxiv_id": "2403.16481", "GitHub": [ "https://github.com/MARVELOUSJI/REFRAME" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1197 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Training Room Layout via Geometry-aware Ray-casting", "id": "main", "arxiv_id": "2407.15041", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1198 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Closed-Loop Unsupervised Representation Disentanglement with $\\beta$-VAE Distillation and Diffusion Probabilistic Feedback", "id": "main", "arxiv_id": "2402.02346", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1199 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Weakly-supervised Video Temporal Grounding From a Game Perspective", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1200 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization", "id": "main", "arxiv_id": "2407.04245", "GitHub": [ "https://github.com/Kaminyou/Dense-Normalization" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1201 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ZoLA: Zero-Shot Creative Long Animation Generation with Short Video Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1202 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach", "id": "main", "arxiv_id": "2407.06964", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1203 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Restore Anything with Masks: Leveraging Mask Image Modeling for Blind All-in-One Image Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1204 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "When Fast Fourier Transform Meets Transformer for Image Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1205 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dolphins: Multimodal Language Model for Driving", "id": "main", "arxiv_id": "2312.00438", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.00438", "n_linked_authors": 1, "upvotes": 12, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1206 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Video Deblurring with Wavelet-Aware Dynamic Transformer and Diffusion Model", "id": "main", "arxiv_id": "2408.13459", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1207 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection", "id": "main", "arxiv_id": "2408.08050", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1208 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Placing Objects in Context via Inpainting for Out-of-distribution Segmentation", "id": "main", "arxiv_id": "2402.16392", "GitHub": [ "https://github.com/naver/poc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1209 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Textual Grounding for Open-vocabulary Visual Information Extraction in Layout-diversified Documents", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1210 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Teddy: Efficient Large-Scale Dataset Distillation via Taylor-Approximated Matching", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1211 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking and Improving Visual Prompt Selection for In-Context Learning Segmentation Framework", "id": "main", "arxiv_id": "2407.10233", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1212 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "D4-VTON: Dynamic Semantics Disentangling for Differential Diffusion based Virtual Try-On", "id": "main", "arxiv_id": "2407.15111", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1213 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TC4D: Trajectory-Conditioned Text-to-4D Generation", "id": "main", "arxiv_id": "2403.17920", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.17920", "n_linked_authors": 6, "upvotes": 15, "num_comments": 1, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1214 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Blind Image Deconvolution by Generative-based Kernel Prior and Initializer via Latent Encoding", "id": "main", "arxiv_id": "2407.14816", "GitHub": [ "https://github.com/jtaoz/gkpile-deconvolution" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1215 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models", "id": "main", "arxiv_id": "2307.12499", "GitHub": [ "https://github.com/EricDai0/advdiff" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1216 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Text-guided Object Inpainting with Semantic Pre-inpainting", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1217 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Personalized Federated Domain-Incremental Learning based on Adaptive Knowledge Matching", "id": "main", "arxiv_id": "2407.05005", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1218 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ST-LDM: A Universal Framework for Text-Grounded Object Generation in Real Images", "id": "main", "arxiv_id": "2403.10004", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1219 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RS-NeRF: Neural Radiance Fields from Rolling Shutter Images", "id": "main", "arxiv_id": "2407.10267", "GitHub": [ "https://github.com/myniuuu/rs-nerf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1220 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Region-Adaptive Transform with Segmentation Prior for Image Compression", "id": "main", "arxiv_id": "2403.00628", "GitHub": [ "https://github.com/GityuxiLiu/Region-Adaptive-Transform-with-Segmentation-Prior-for-Image-Compression" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1221 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Tracking Robustness with Auxiliary Adversarial Defense Networks", "id": "main", "arxiv_id": "2402.17976", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1222 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SLIM: Spuriousness Mitigation with Minimal Human Annotations", "id": "main", "arxiv_id": "2407.05594", "GitHub": [ "https://github.com/xiweix/slim" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1223 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset", "id": "main", "arxiv_id": "2407.12330", "GitHub": [ "https://github.com/mijoo308/energy-calibration" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1224 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "X-Pose: Detecting Any Keypoints", "id": "main", "arxiv_id": "2310.08530", "GitHub": [ "https://github.com/IDEA-Research/UniPose" ], "paper_page": "https://huggingface.co/papers/2310.08530", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1225 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "M^2Depth: Self-supervised Two-Frame Multi-camera Metric Depth Estimation", "id": "main", "arxiv_id": "2405.02004", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1226 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniMD: Towards Unifying Moment Retrieval and Temporal Action Detection", "id": "main", "arxiv_id": "2404.04933", "GitHub": [ "https://github.com/yingsen1/unimd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1227 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DyFADet: Dynamic Feature Aggregation for Temporal Action Detection", "id": "main", "arxiv_id": "2407.03197", "GitHub": [ "https://github.com/yangle15/DyFADet-pytorch" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1228 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models", "id": "main", "arxiv_id": "2311.17043", "GitHub": [ "https://github.com/dvlab-research/llama-vid" ], "paper_page": "https://huggingface.co/papers/2311.17043", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [ "YanweiLi/llama-vid-7b-full-224-long-video", "YanweiLi/llama-vid-7b-full-224-video-fps-1", "YanweiLi/llama-vid-13b-full-224-video-fps-1", "YanweiLi/llama-vid-7b-full-224", "YanweiLi/llama-vid-7b-pretrain-224-video-fps-1", "YanweiLi/llama-vid-7b-pretrain-224", "YanweiLi/llama-vid-13b-pretrain-336", "YanweiLi/llama-vid-7b-full-336", "YanweiLi/llama-vid-13b-pretrain-224-video-fps-1", "YanweiLi/llama-vid-7b-pretrain-336", "YanweiLi/llama-vid-13b-full-336" ], "Datasets": [], "Spaces": [ "Kamakshi88/YanweiLi-llama-vid-7b-pretrain-224" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1229 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MetaCap: Meta-learning Priors from Multi-View Imagery for Sparse-view Human Performance Capture and Rendering", "id": "main", "arxiv_id": "2403.18820", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1230 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffPMAE: Diffusion Masked Autoencoders for Point Cloud Reconstruction", "id": "main", "arxiv_id": "2312.03298", "GitHub": [ "https://github.com/tyraeldlee/diffpmae" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1231 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-branch Collaborative Learning Network for 3D Visual Grounding", "id": "main", "arxiv_id": "2407.05363", "GitHub": [ "https://github.com/qzp2018/MCLN" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1232 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors", "id": "main", "arxiv_id": "2310.12190", "GitHub": [ "https://github.com/Doubiiu/DynamiCrafter" ], "paper_page": "https://huggingface.co/papers/2310.12190", "n_linked_authors": 5, "upvotes": 10, "num_comments": 1, "n_authors": 9, "Models": [ "Doubiiu/DynamiCrafter_1024", "Kijai/DynamiCrafter_pruned", "Doubiiu/DynamiCrafter_512_Interp", "Doubiiu/DynamiCrafter", "Doubiiu/DynamiCrafter_512", "pharaouk/DynamiCrafter_1024", "pharaouk/DynamiCrafter_512", "ReySajju742/VideoCrafter" ], "Datasets": [], "Spaces": [ "Doubiiu/tooncrafter", "Doubiiu/DynamiCrafter", "Doubiiu/DynamiCrafter_interp_loop", "MohamedRashad/PaintsUndo", "kadirnar/Paints-UNDO", "fffiloni/Paints-UNDO", "ChristianHappy/tooncrafter", "Xiang-cd/DynamiCrafter-CIL", "ifire/painting-undo", "jbilcke-hf/ai-tube-model-dynamicrafter", "nwmjncs/DynamiCrafter", "cocktailpeanut/DynamiCrafter", "BasicNp/Dragreal", "tsi-org/pixio-toon", "SIGMitch/tooncrafter", "AIMage2024/tooncrafter", "YUIUUOP/tooncrafter", "TRaw/tooncrafter", "TDN-M/DimCart", "Al00f/DynamiCrafter_interp_loop", "Nymbo/Paints-UNDO", "Sham786/PaintsUndo", "fantaxy/dynamcraf2", "seawolf2357/dynamcraf2", "seawolf2357/kaimoviestud", "dharmendraGupta/VideoCrafter" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1233 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion Aware Event Representation-driven Image Deblurring", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1234 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Turbo: Informativity-Driven Acceleration Plug-In for Vision-Language Large Models", "id": "main", "arxiv_id": "2407.11717", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1235 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WildRefer: 3D Object Localization in Large-scale Dynamic Scenes with Multi-modal Visual Data and Natural Language", "id": "main", "arxiv_id": "2304.05645", "GitHub": [ "https://github.com/4dvlab/wildrefer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1236 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RCS-Prompt: Learning Prompt to Rearrange Class Space for Prompt-based Continual Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1237 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text-Anchored Score Composition: Tackling Condition Misalignment in Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2306.14408", "GitHub": [ "https://github.com/EnVision-Research/Decompose-and-Realign" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1238 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection", "id": "main", "arxiv_id": "2303.05499", "GitHub": [ "https://github.com/idea-research/groundingdino" ], "paper_page": "https://huggingface.co/papers/2303.05499", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 11, "Models": [ "ShilongLiu/GroundingDINO", "IDEA-Research/grounding-dino-base", "IDEA-Research/grounding-dino-tiny", "camenduru/GroundingDINO", "mart9992/nervn", "kelvinou01/GroundingDINO", "mart9992/eri2", "mart9992/vierundvi" ], "Datasets": [ "roomtour3d/roomtour3d" ], "Spaces": [ "yizhangliu/Grounded-Segment-Anything", "zheyangqin/VADER", "IDEA-Research/Grounded-SAM", "segments/panoptic-segment-anything", "ShilongLiu/Grounding_DINO_demo", "sam-hq-team/sam-hq", "merve/Grounding_DINO_demo", "merve/GroundingDINO_OWL", "finegrain/finegrain-object-cutter", "linfanluntan/Grounded-SAM", "merve/GroundingSAM", "codelion/Grounding_DINO_demo", "EduardoPacheco/Grounding-Dino-Inference", "LuxOAI/videodiffusion", "Caoyunkang/Segment-Any-Anomaly", "jesoteric/Grounded-SAM", "YouLiXiya/Mobile-SAM", "xhk/ASAM", "jackyccl/segment-anything", "vinay123/panoptic-segment-anything", "martintomov/InsectSAM", "aodianyun/panoptic-segment-anything", "martintomov/InsectModelZoo", "dragonSwing/annotate-anything", "ASAM-Team/ASAM", "MingGatsby/Grounding_DINO_demo", "andrewkatumba/GroundingDINO_DSA2024", "wendys-llc/panoptic-segment-anything", "Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model", "dwb2023/omniscience", "sunnychenxiwang/EasyDetect", "Aedelon/LangEfficientSAM", "Yugang998/Grounded-Segment-Anything", "xuan2k/Thesis-Demo", "VTechAI/Segment-Anything", "sky24h/Training-Free_Zero-Shot_Semantic_Segmentation_with_LLM_Refinement", "luminousncc/RoadProjectDemo", "Ermond/grounding-dino-tiny", "zeabin/Grounded-Segment-Anything", "Vishakaraj/GroundingDino", "xinglilu/Vadhwid", "grv805/GSAM-AD", "hikerxu/Grounded-Segment-Anything", "fantaxy/VADER", "Roopalav/MarineLitter", "NeoLee/DINO", "black-agenta/black_agenta", "kiiwee/RB_IBDM_ModelZoo", "hlydecker/Grounded-Segment-Anything", "yansong1616/3dilize_anything", "Gaejoon/GroundingDINO_OWL", "luminousncc/RoadProject", "Gaejoon/OWLv2_Demo", "Jeney/Matte-Anything", "fantos/textcutobject", "Jhoeel/AutoMarcaDino2", "Sam10155/499demo", "jbilcke-hf/segmentation-api", "luminousncc/foodDetectionDemo", "indigoman/text_image_editing", "aikenml/Segment_and_track_Anything", "eyemabhishek/det-gpt-space-v10", "aikenml/SAMmodel", "aikenml/Segment_and_track_Anything-Duplicated2", "merve/grounding_sam_inpainting", "aikenml/Segment-And-Track-Anything-Model", "aikenml/data_mining", "aikenml/Segment-And-Track-Anything-Model_duplicated2", "aikenml/Segment-And-Track-Anything-Model_dup", "aikenml/SAM_Track_Duplicated2", "aikenti/Segment-And-Track-Anything-Model", "aikenml/samtrack", "noni27/Shift_and_Inpaint", "oliva92/Grounded-SAM", "Zeeshan01/Segment_and_track_Anything", "Schrodingers/gradio_deploy", "JOHANhuynhhhhh/Object-Detection", "joseangel77/Detect-Segment-Anything", "DoruC/Grounded-Segment-Anything", "joseangel77/Detect-Objects-Grounding", "caltech-animal-tracking/Primate-Detection-GPU", "svjack/panoptic-segment-anything", "pgkwon1/foodDetectionDemo", "Yakova/Mobile-SAM", "anfruizhu/Grounded-Segment-Anything", "anfruizhu/gsam", "wyjlu/Grounded-Segment-Anything", "AndreasLH/Weakly-Supervised-3DOD", "NRbones/Grounded-Segment-Anything", "Kato-AIhayabusa/tomato_checker" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1239 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Make Your ViT-based Multi-view 3D Detectors Faster via Token Compression", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/dyzhang09/toc3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1240 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation", "id": "main", "arxiv_id": "2403.19580", "GitHub": [ "https://github.com/zhenyuw16/uni3detr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1241 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CatchBackdoor: Backdoor Detection via Critical Trojan Neural Path Fuzzing", "id": "main", "arxiv_id": "2112.13064", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1242 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UCIP: A Universal Framework for Compressed Image Super-Resolution using Dynamic Prompt", "id": "main", "arxiv_id": "2407.13108", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1243 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents", "id": "main", "arxiv_id": "2311.05437", "GitHub": [ "https://github.com/LLaVA-VL/LLaVA-Plus-Codebase" ], "paper_page": "https://huggingface.co/papers/2311.05437", "n_linked_authors": 8, "upvotes": 42, "num_comments": 4, "n_authors": 13, "Models": [ "Straive/llava-1.5-13b-lora-100k-8-mar", "saurabh-straive/llava-1-5", "GDinesh/llava-1-5", "starriver030515/LLaVA", "csuhan/LLaVA_EF" ], "Datasets": [], "Spaces": [ "Aranya31/ft_LLaVA-Med" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1244 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference", "id": "main", "arxiv_id": "2407.12442", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1245 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Two-Stage Active Learning for Efficient Temporal Action Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1246 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TexDreamer: Towards Zero-Shot High-Fidelity 3D Human Texture Generation", "id": "main", "arxiv_id": "2403.12906", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12906", "n_linked_authors": 4, "upvotes": 4, "num_comments": 1, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1247 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1248 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domain-Adaptive 2D Human Pose Estimation via Dual Teachers in Extremely Low-Light Conditions", "id": "main", "arxiv_id": "2407.15451", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1249 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards More Practical Group Activity Detection: A New Benchmark and Model", "id": "main", "arxiv_id": "2312.02878", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1250 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models", "id": "main", "arxiv_id": "2312.08962", "GitHub": [ "https://github.com/XPixelGroup/DepictQA" ], "paper_page": "https://huggingface.co/papers/2312.08962", "n_linked_authors": 3, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "zhiyuanyou/DataDepictQA" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1251 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-Shot Image Feature Consensus with Deep Functional Maps", "id": "main", "arxiv_id": "2403.12038", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1252 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WindPoly: Polygonal Mesh Reconstruction via Winding Numbers", "id": "main", "arxiv_id": "2407.19208", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1253 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MinD-3D: Reconstruct High-quality 3D objects in Human Brain", "id": "main", "arxiv_id": "2312.07485", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.07485", "n_linked_authors": 1, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "Fudan-fMRI/fMRI-Shape" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1254 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tokenize Anything via Prompting", "id": "main", "arxiv_id": "2312.09128", "GitHub": [ "https://github.com/baaivision/tokenize-anything" ], "paper_page": "https://huggingface.co/papers/2312.09128", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [ "BAAI/tokenize-anything" ], "Datasets": [], "Spaces": [ "BAAI/tokenize-anything" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1255 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views", "id": "main", "arxiv_id": "2407.08061", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.08061", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [ "GDAlab/GeoContext-v1" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1256 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scissorhands: Scrub Data Influence via Connection Sensitivity in Networks", "id": "main", "arxiv_id": "2401.06187", "GitHub": [ "https://github.com/jingwu321/scissorhands" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1257 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web", "id": "main", "arxiv_id": "2312.16457", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.16457", "n_linked_authors": 0, "upvotes": 13, "num_comments": 1, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1258 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRAPE: Generalizable and Robust Multi-view Facial Capture", "id": "main", "arxiv_id": "2407.10193", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1259 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Training-Free Model Merging for Multi-target Domain Adaptation", "id": "main", "arxiv_id": "2407.13771", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1260 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-RoI Human Mesh Recovery with Camera Consistency and Contrastive Losses", "id": "main", "arxiv_id": "2402.02074", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1261 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Co-Student: Collaborating Strong and Weak Students for Sparsely Annotated Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1262 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Vocabulary Camouflaged Object Segmentation", "id": "main", "arxiv_id": "2311.11241", "GitHub": [ "https://github.com/lartpang/ovcamo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1263 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions", "id": "main", "arxiv_id": "2404.06451", "GitHub": [ "https://github.com/liuxiaoyu1104/smartcontrol" ], "paper_page": "https://huggingface.co/papers/2404.06451", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1264 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InterFusion: Text-Driven Generation of 3D Human-Object Interaction", "id": "main", "arxiv_id": "2403.15612", "GitHub": [ "https://github.com/sisidai/InterFusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1265 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval", "id": "main", "arxiv_id": "2407.12431", "GitHub": [ "https://github.com/lowlevelai/glare" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1266 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving", "id": "main", "arxiv_id": "2309.09777", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2309.09777", "n_linked_authors": 2, "upvotes": 2, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1267 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flow-Assisted Motion Learning Network for Weakly-Supervised Group Activity Recognition", "id": "main", "arxiv_id": "2405.18012", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1268 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeRF-XL: NeRF at Any Scale with Multi-GPU", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1269 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems", "id": "main", "arxiv_id": "2407.12676", "GitHub": [ "https://github.com/biomed-ai-lab-u-michgan/cosign" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1270 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The First to Know: How Token Distributions Reveal Hidden Knowledge in Large Vision-Language Models?", "id": "main", "arxiv_id": "2403.09037", "GitHub": [ "https://github.com/qinyu-allen-zhao/lvlm-lp" ], "paper_page": "https://huggingface.co/papers/2403.09037", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1271 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Compositional Substitutivity of Visual Reasoning for Visual Question Answering", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1272 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models", "id": "main", "arxiv_id": "2407.08939", "GitHub": [ "https://github.com/jianghaiscu/lightendiffusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1273 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DNI: Dilutional Noise Initialization for Diffusion Video Editing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1274 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Two-Stage Video Shadow Detection via Temporal-Spatial Adaption", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1275 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Physical World Backdoor Attacks against Skeleton Action Recognition", "id": "main", "arxiv_id": "2408.08671", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1276 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAM-guided Graph Cut for 3D Instance Segmentation", "id": "main", "arxiv_id": "2312.08372", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1277 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fully Authentic Visual Question Answering Dataset from Online Communities", "id": "main", "arxiv_id": "2311.15562", "GitHub": [ "https://github.com/vqaonline/vqaonlinevisualization" ], "paper_page": "https://huggingface.co/papers/2311.15562", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "ChongyanChen/VQAonline" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1278 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Active Generation for Image Classification", "id": "main", "arxiv_id": "2403.06517", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1279 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FuseTeacher: Modality-fused Encoders are Strong Vision Supervisors", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1280 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Local Pattern Modularization for Point Cloud Reconstruction from Unseen Classes", "id": "main", "arxiv_id": "2408.14279", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1281 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Understanding Multi-compositional learning in Vision and Language models via Category Theory", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1282 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the Power of Heterogeneous Clients", "id": "main", "arxiv_id": "2311.11227", "GitHub": [ "https://github.com/leondada/fedra" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1283 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Panel-Specific Degradation Representation for Raw Under-Display Camera Image Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1284 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unlocking Textual and Visual Wisdom: Open-Vocabulary 3D Object Detection Enhanced by Comprehensive Guidance from Text and Image", "id": "main", "arxiv_id": "2407.05256", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1285 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion-Guided Weakly Supervised Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1286 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weakly-Supervised Spatio-Temporal Video Grounding with Variational Cross-Modal Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1287 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "When Pedestrian Detection Meets Multi-Modal Learning: Generalist Model and Benchmark Dataset", "id": "main", "arxiv_id": "2407.10125", "GitHub": [ "https://github.com/BubblyYi/MMPedestron" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1288 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NVS-Adapter: Plug-and-Play Novel View Synthesis from a Single Image", "id": "main", "arxiv_id": "2312.07315", "GitHub": [ "https://github.com/POSTECH-CVLab/nvsadapter" ], "paper_page": "https://huggingface.co/papers/2312.07315", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1289 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Segment and Recognize Anything at Any Granularity", "id": "main", "arxiv_id": "2307.04767", "GitHub": [ "https://github.com/ux-decoder/semantic-sam" ], "paper_page": "https://huggingface.co/papers/2307.04767", "n_linked_authors": 7, "upvotes": 20, "num_comments": 1, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1290 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Real-time Holistic Robot Pose Estimation with Unknown States", "id": "main", "arxiv_id": "2402.05655", "GitHub": [ "https://github.com/Oliverbansk/Hollistic-Robot-Pose-Estimation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1291 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1292 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars", "id": "main", "arxiv_id": "2401.04730", "GitHub": [ "https://github.com/FangyunWei/SLRT" ], "paper_page": "https://huggingface.co/papers/2401.04730", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1293 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An accurate detection is not all you need to combat label noise in web-noisy datasets", "id": "main", "arxiv_id": "2407.05528", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.05528", "n_linked_authors": 2, "upvotes": 3, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1294 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Online Vectorized HD Map Construction using Geometry", "id": "main", "arxiv_id": "2312.03341", "GitHub": [ "https://github.com/cnzzx/gemap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1295 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image-adaptive 3D Lookup Tables for Real-time Image Enhancement with Bilateral Grids", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1296 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learned HDR Image Compression for Perceptually Optimal Storage and Display", "id": "main", "arxiv_id": "2407.13179", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13179", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1297 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sparse Beats Dense: Rethinking Supervision in Radar-Camera Depth Completion", "id": "main", "arxiv_id": "2312.00844", "GitHub": [ "https://github.com/megvii-research/sparse-beats-dense" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1298 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Non-Exemplar Domain Incremental Learning via Cross-Domain Concept Integration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1299 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Free-VSC: Free Semantics from Visual Foundation Models for Unsupervised Video Semantic Compression", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1300 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Virtual Try-On with Garment-focused Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1301 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ray Denoising: Depth-aware Hard Negative Sampling for Multi-view 3D Object Detection", "id": "main", "arxiv_id": "2402.03634", "GitHub": [ "https://github.com/liewfeng/raydn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1302 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Disentangled Generation and Aggregation for Robust Radiance Fields", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1303 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UNIKD: UNcertainty-Filtered Incremental Knowledge Distillation for Neural Implicit Representation", "id": "main", "arxiv_id": "2212.10950", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1304 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Subspace Prototype Guidance for Mitigating Class Imbalance in Point Cloud Semantic Segmentation", "id": "main", "arxiv_id": "2408.10537", "GitHub": [ "https://github.com/Javion11/PointLiBR" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1305 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MoAI: Mixture of All Intelligence for Large Language and Vision Models", "id": "main", "arxiv_id": "2403.07508", "GitHub": [ "https://github.com/ByungKwanLee/MoAI" ], "paper_page": "https://huggingface.co/papers/2403.07508", "n_linked_authors": 4, "upvotes": 75, "num_comments": 4, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1306 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semantic-guided Robustness Tuning for Few-Shot Transfer Across Extreme Domain Shift", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1307 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisit Event Generation Model: Self-Supervised Learning of Event-to-Video Reconstruction with Implicit Neural Representations", "id": "main", "arxiv_id": "2407.18500", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1308 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SDPT: Synchronous Dual Prompt Tuning for Fusion-based Visual-Language Pre-trained Models", "id": "main", "arxiv_id": "2407.11414", "GitHub": [ "https://github.com/wuyongjiancode/sdpt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1309 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-World Dynamic Prompt and Continual Visual Representation Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1310 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Video Context as Interleaved Multimodal Sequences", "id": "main", "arxiv_id": "2407.21757", "GitHub": [ "https://github.com/showlab/movieseq" ], "paper_page": "https://huggingface.co/papers/2407.21757", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1311 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Unsigned Distance Functions from Multi-view Images with Volume Rendering Priors", "id": "main", "arxiv_id": "2407.16396", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1312 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding", "id": "main", "arxiv_id": "2407.09781", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.09781", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1313 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Feature Surgery: Towards Accurate and Efficient Multi-Exit Networks", "id": "main", "arxiv_id": "2407.13986", "GitHub": [ "https://github.com/gongcheng1919/dfs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1314 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-scale Cross Distillation for Object Detection in Aerial Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1315 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Progressive Proxy Anchor Propagation for Unsupervised Semantic Segmentation", "id": "main", "arxiv_id": "2407.12463", "GitHub": [ "https://github.com/hynnsk/PPAP" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1316 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence", "id": "main", "arxiv_id": "2403.19160", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1317 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisit Human-Scene Interaction via Space Occupancy", "id": "main", "arxiv_id": "2312.02700", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1318 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control", "id": "main", "arxiv_id": "2405.12970", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2405.12970", "n_linked_authors": 4, "upvotes": 22, "num_comments": 3, "n_authors": 10, "Models": [ "FaceAdapter/FaceAdapter", "Warlord-K/Adapter" ], "Datasets": [], "Spaces": [ "FaceAdapter/FaceAdapter" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1319 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WeConvene: Learned Image Compression with Wavelet-Domain Convolution and Entropy Model", "id": "main", "arxiv_id": "2407.09983", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1320 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Grid-Attention: Enhancing Computational Efficiency of Large Vision Models without Fine-Tuning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1321 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mitigating Background Shift in Class-Incremental Semantic Segmentation", "id": "main", "arxiv_id": "2407.11859", "GitHub": [ "https://github.com/roadonep/eccv2024_mbs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1322 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Relation DETR: Exploring Explicit Position Relation Prior for Object Detection", "id": "main", "arxiv_id": "2407.11699", "GitHub": [ "https://github.com/xiuqhou/relation-detr" ], "paper_page": "https://huggingface.co/papers/2407.11699", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "xiuqhou/SA-Det-100k" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1323 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BKDSNN: Enhancing the Performance of Learning-based Spiking Neural Networks Training with Blurred Knowledge Distillation", "id": "main", "arxiv_id": "2407.09083", "GitHub": [ "https://github.com/intelligent-computing-research-group/bkdsnn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1324 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Agent Attention: On the Integration of Softmax and Linear Attention", "id": "main", "arxiv_id": "2312.08874", "GitHub": [ "https://github.com/leaplabthu/agent-attention" ], "paper_page": "https://huggingface.co/papers/2312.08874", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1325 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning by Aligning 2D Skeleton Sequences and Multi-Modality Fusion", "id": "main", "arxiv_id": "2305.19480", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1326 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Resolving Scale Ambiguity in Multi-view 3D Reconstruction using Dual-Pixel Sensors", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1327 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Object-Oriented Anchoring and Modal Alignment in Multimodal Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1328 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Stable 3D Object Detection", "id": "main", "arxiv_id": "2407.04305", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1329 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FYI: Flip Your Images for Dataset Distillation", "id": "main", "arxiv_id": "2407.08113", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1330 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On-the-fly Category Discovery for LiDAR Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1331 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-Camera Smooth Zoom on Mobile Phones", "id": "main", "arxiv_id": "2404.04908", "GitHub": [ "https://github.com/zcsrenlongz/zoomgs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1332 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProtoComp: Diverse Point Cloud Completion with Controllable Prototype", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1333 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CONDA: Condensed Deep Association Learning for Co-Salient Object Detection.", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1334 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cascade Prompt Learning for Visual-Language Model Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1335 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PolyRoom: Room-aware Transformer for Floorplan Reconstruction", "id": "main", "arxiv_id": "2407.10439", "GitHub": [ "https://github.com/3dv-casia/polyroom" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1336 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BenchLMM: Benchmarking Cross-style Visual Capability of Large Multimodal Models", "id": "main", "arxiv_id": "2312.02896", "GitHub": [ "https://github.com/aifeg/benchgpt" ], "paper_page": "https://huggingface.co/papers/2312.02896", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [ "AIFEG/BenchLMM" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1337 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SMFANet: A Lightweight Self-Modulation Feature Aggregation Network for Efficient Image Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1338 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras", "id": "main", "arxiv_id": "2404.02517", "GitHub": [ "https://github.com/vdigpku/henet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1339 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchical Unsupervised Relation Distillation for Source Free Domain Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1340 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Customized Generation Reimagined: Fidelity and Editability Harmonized", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1341 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AUFormer: Vision Transformers are Parameter-Efficient Facial Action Unit Detectors", "id": "main", "arxiv_id": "2403.04697", "GitHub": [ "https://github.com/yuankaishen2001/auformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1342 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Video Segmentation via Dynamic Anchor Queries", "id": "main", "arxiv_id": "2404.00086", "GitHub": [ "https://github.com/skyworkai/daq-vs" ], "paper_page": "https://huggingface.co/papers/2404.00086", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [ "zhouyik/DVIS-DAQ" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1343 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Controllable Contextualized Image Captioning: Directing the Visual Narrative through User-Defined Highlights", "id": "main", "arxiv_id": "2407.11449", "GitHub": [ "https://github.com/shunqim/ctrl-cic" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1344 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Models as Optimizers for Efficient Planning in Offline RL", "id": "main", "arxiv_id": "2407.16142", "GitHub": [ "https://github.com/renming-huang/trajectorydiffuser" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1345 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhanced Sparsification via Stimulative Training", "id": "main", "arxiv_id": "2403.06417", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1346 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "How Many Unicorns Are in This Image? A Safety Evaluation Benchmark for Vision LLMs", "id": "main", "arxiv_id": "2311.16101", "GitHub": [ "https://github.com/ucsc-vlaa/vllm-safety-benchmark" ], "paper_page": "https://huggingface.co/papers/2311.16101", "n_linked_authors": 3, "upvotes": 1, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [ "PahaII/vllm_safety_evaluation" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1347 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation", "id": "main", "arxiv_id": "2403.18211", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.18211", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1348 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Coarse-to-Fine Implicit Representation Learning for 3D Hand-Object Reconstruction from a Single RGB-D Image", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1349 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Snapshot Spectral Imaging: Calibration-Free Parallel Structure with Aperture Diffraction Fusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1350 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Recipe Retrieval with Foundation Models: A Data Augmentation Perspective", "id": "main", "arxiv_id": "2312.04763", "GitHub": [ "https://github.com/noah888/dar" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1351 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PapMOT: Exploring Adversarial Patch Attack against Multiple Object Tracking", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1352 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HiDiffusion: Unlocking Higher-Resolution Creativity and Efficiency in Pretrained Diffusion Models", "id": "main", "arxiv_id": "2311.17528", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17528", "n_linked_authors": 0, "upvotes": 4, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [ "multimodalart/HiDiffusion" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1353 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Approximation Risk of Few-Shot Class-Incremental Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1354 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Syn-to-Real Domain Adaptation for Point Cloud Completion via Part-based Approach", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1355 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization", "id": "main", "arxiv_id": "2407.15085", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.15085", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1356 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCOMatch: Alleviating Overtrusting in Open-set Semi-supervised Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1357 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning", "id": "main", "arxiv_id": "2403.10252", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1358 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MasterWeaver: Taming Editability and Face Identity for Personalized Text-to-Image Generation", "id": "main", "arxiv_id": "2405.05806", "GitHub": [ "https://github.com/csyxwei/masterweaver" ], "paper_page": "https://huggingface.co/papers/2405.05806", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "csyxwei/Filtered-Laion-Face" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1359 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training", "id": "main", "arxiv_id": "2407.14054", "GitHub": [ "https://github.com/chen-suyi/pointreggpt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1360 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "General Geometry-aware Weakly Supervised 3D Object Detection", "id": "main", "arxiv_id": "2407.13748", "GitHub": [ "https://github.com/gwenzhang/GGA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1361 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Long-CLIP: Unlocking the Long-Text Capability of CLIP", "id": "main", "arxiv_id": "2403.15378", "GitHub": [ "https://github.com/beichenzbc/long-clip" ], "paper_page": "https://huggingface.co/papers/2403.15378", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1362 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dolfin: Diffusion Layout Transformers without Autoencoder", "id": "main", "arxiv_id": "2310.16305", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1363 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Real-time 3D-aware Portrait Editing from a Single Image", "id": "main", "arxiv_id": "2402.14000", "GitHub": [ "https://github.com/ezioby/3dpe" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1364 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StructLDM: Structured Latent Diffusion for 3D Human Generation", "id": "main", "arxiv_id": "2404.01241", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1365 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image Compression for Machine and Human Vision With Spatial-Frequency Adaptation", "id": "main", "arxiv_id": "2407.09853", "GitHub": [ "https://github.com/qingshi9974/eccv2024-adpaticmh" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1366 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models", "id": "main", "arxiv_id": "2401.12978", "GitHub": [ "https://github.com/snuvclab/coma" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1367 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Norma: A Noise Robust Memory-Augmented Framework for Whole Slide Image Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1368 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Continuous Memory Representation for Anomaly Detection", "id": "main", "arxiv_id": "2402.18293", "GitHub": [ "https://github.com/tae-mo/GRAD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1369 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser", "id": "main", "arxiv_id": "2311.15040", "GitHub": [ "https://github.com/cuixing100876/instastyle" ], "paper_page": "https://huggingface.co/papers/2311.15040", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1370 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PACE: Pose Annotations in Cluttered Environments", "id": "main", "arxiv_id": "2312.15130", "GitHub": [ "https://github.com/qq456cvb/pace" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1371 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring", "id": "main", "arxiv_id": "2408.14930", "GitHub": [ "https://github.com/intelpro/cmta" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1372 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CountFormer: Multi-View Crowd Counting Transformer", "id": "main", "arxiv_id": "2407.02047", "GitHub": [ "https://github.com/MandyMo/ECCV_Countformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1373 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Textual Knowledge Matters: Cross-Modality Co-Teaching for Generalized Visual Class Discovery", "id": "main", "arxiv_id": "2403.07369", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1374 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Continuous SO(3) Equivariant Convolution for 3D Point Cloud Analysis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1375 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EA-VTR: Event-Aware Video-Text Retrieval", "id": "main", "arxiv_id": "2407.07478", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.07478", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1376 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Privacy-Preserving Adaptive Re-Identification without Image Transfer", "id": "main", "arxiv_id": "2407.12589", "GitHub": [ "https://github.com/ramiMMhamza/Fed-Protoid" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1377 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Simple Low-bit Quantization Framework for Video Snapshot Compressive Imaging", "id": "main", "arxiv_id": "2407.21517", "GitHub": [ "https://github.com/mcao92/quantizedsci" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1378 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks", "id": "main", "arxiv_id": "2306.09124", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1379 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation", "id": "main", "arxiv_id": "2402.13729", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1380 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Background Adaptation with Residual Modeling for Exemplar-Free Class-Incremental Semantic Segmentation", "id": "main", "arxiv_id": "2407.09838", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1381 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Diffusion-Driven Corruption Editor for Test-Time Adaptation", "id": "main", "arxiv_id": "2403.10911", "GitHub": [ "https://github.com/oyt9306/decorruptor" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1382 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Unlearn for Robust Machine Unlearning", "id": "main", "arxiv_id": "2407.10494", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1383 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Emergent Visual-Semantic Hierarchies in Image-Text Representations", "id": "main", "arxiv_id": "2407.08521", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1384 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Context-Guided Spatial Feature Reconstruction for Efficient Semantic Segmentation", "id": "main", "arxiv_id": "2405.06228", "GitHub": [ "https://github.com/nizhenliang/cgrseg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1385 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DriveLM: Driving with Graph Visual Question Answering", "id": "main", "arxiv_id": "2312.14150", "GitHub": [ "https://github.com/opendrivelab/drivelm" ], "paper_page": "https://huggingface.co/papers/2312.14150", "n_linked_authors": 2, "upvotes": 3, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1386 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural Spectral Decomposition for Dataset Distillation", "id": "main", "arxiv_id": "2408.16236", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1387 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond Viewpoint: Robust 3D Object Recognition under Arbitrary Views through Joint Multi-Part Representation", "id": "main", "arxiv_id": "2407.03842", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1388 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection", "id": "main", "arxiv_id": "2407.04022", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1389 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dynamic Retraining-Updating Mean Teacher for Source-Free Object Detection", "id": "main", "arxiv_id": "2407.16497", "GitHub": [ "https://github.com/lbktrinh/DRU" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1390 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Knowledge-enhanced Visual-Language Pretraining for Computational Pathology", "id": "main", "arxiv_id": "2404.09942", "GitHub": [ "https://github.com/magic-ai4med/kep" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1391 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Multi-modal Fusion of Spatially Variant Kernel Refinement with Diffusion Model for Blind Image Super-Resolution", "id": "main", "arxiv_id": "2403.05808", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1392 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Disentangled Clothed Avatar Generation from Text Descriptions", "id": "main", "arxiv_id": "2312.05295", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1393 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Real Appearance Modeling for More General Deepfake Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1394 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "6DGS: 6D Pose Estimation from a Single Image and a 3D Gaussian Splatting Model", "id": "main", "arxiv_id": "2407.15484", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1395 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning", "id": "main", "arxiv_id": "2407.18624", "GitHub": [ "https://github.com/jiahaoxxx/ssmll-d2l_mat" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1396 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "V2X-Real: a Largs-Scale Dataset for Vehicle-to-Everything Cooperative Perception", "id": "main", "arxiv_id": "2403.16034", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1397 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VQ-HPS: Human Pose and Shape Estimation in a Vector-Quantized Latent Space", "id": "main", "arxiv_id": "2312.08291", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1398 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Attention Beats Linear for Fast Implicit Neural Representation Generation", "id": "main", "arxiv_id": "2407.15355", "GitHub": [ "https://github.com/roninton/anr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1399 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HARIVO: Harnessing Text-to-Image Models for Video Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1400 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Online Probability Aggregation Clustering", "id": "main", "arxiv_id": "2407.05246", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1401 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WRIM-Net: Wide-Ranging Information Mining Network for Visible-Infrared Person Re-Identification", "id": "main", "arxiv_id": "2408.10624", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1402 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2407.12383", "GitHub": [ "https://github.com/charlesgong12/rece" ], "paper_page": "https://huggingface.co/papers/2407.12383", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [ "ChaoGong/RECE" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1403 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visual Text Generation in the Wild", "id": "main", "arxiv_id": "2407.14138", "GitHub": [ "https://github.com/alibabaresearch/advancedliteratemachinery" ], "paper_page": "https://huggingface.co/papers/2407.14138", "n_linked_authors": 6, "upvotes": 8, "num_comments": 3, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1404 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Length-Aware Motion Synthesis via Latent Diffusion", "id": "main", "arxiv_id": "2407.11532", "GitHub": [ "https://github.com/alessiosam/ladiff" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1405 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Attention-Challenging Multiple Instance Learning for Whole Slide Image Classification", "id": "main", "arxiv_id": "2311.07125", "GitHub": [ "https://github.com/dazhangyu123/acmil" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1406 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Optimal Control View of LoRA and Binary Controller Design for Vision Transformers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1407 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Phrase-Level Grounding with Text-to-Image Diffusion Model", "id": "main", "arxiv_id": "2407.05352", "GitHub": [ "https://github.com/nini0919/diffpng" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1408 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FocusDiffuser: Perceiving Local Disparities for Camouflaged Object Detection", "id": "main", "arxiv_id": "2407.13133", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1409 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving image synthesis with diffusion-negative sampling", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1410 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AvatarPose: Avatar-guided 3D Pose Estimation of Close Human Interaction from Sparse Multi-view Videos", "id": "main", "arxiv_id": "2408.02110", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1411 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FedVAD: Enhancing Federated Video Anomaly Detection with GPT-Driven Semantic Distillation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1412 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SignGen: End-to-End Sign Language Video Generation with Latent Diffusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1413 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Idling Neurons, Appropriately Lenient Workload During Fine-tuning Leads to Better Generalization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1414 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems", "id": "main", "arxiv_id": "2407.16125", "GitHub": [ "https://github.com/mlvlab/davi" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1415 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1416 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Accelerating Image Generation with Sub-path Linear Approximation Model", "id": "main", "arxiv_id": "2404.13903", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.13903", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [ "alimama-creative/slam-lora-sdxl", "alimama-creative/slam-dreamshaper7", "alimama-creative/slam-sd1.5" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1417 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models", "id": "main", "arxiv_id": "2311.16254", "GitHub": [ "https://github.com/aimagelab/safe-clip" ], "paper_page": "https://huggingface.co/papers/2311.16254", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [ "aimagelab/safeclip_vit-l_14", "aimagelab/safeclip_sd_20", "aimagelab/safeclip_vit-h_14", "aimagelab/safeclip_vit-l_14_336" ], "Datasets": [ "aimagelab/ViSU-Text" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1418 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TetraDiffusion: Tetrahedral Diffusion Models for 3D Shape Generation", "id": "main", "arxiv_id": "2211.13220", "GitHub": [ "https://github.com/PeterTor/TetraDiffusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1419 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Camera Calibration using a Collimator System", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1420 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Label-free Neural Semantic Image Synthesis", "id": "main", "arxiv_id": "2407.01790", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.01790", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1421 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Reliable Matching with Phase Enhancement for Night-time Semantic Segmentation", "id": "main", "arxiv_id": "2408.13838", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1422 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multiscale Sliced Wasserstein Distances as Perceptual Color Difference Measures", "id": "main", "arxiv_id": "2407.10181", "GitHub": [ "https://github.com/real-hjq/ms-swd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1423 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiscoMatch: Fast Discrete Optimisation for Geometrically Consistent 3D Shape Matching", "id": "main", "arxiv_id": "2310.08230", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1424 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Switch Diffusion Transformer: Synergizing Denoising Tasks with Sparse Mixture-of-Experts", "id": "main", "arxiv_id": "2403.09176", "GitHub": [ "https://github.com/byeongjun-park/Switch-DiT" ], "paper_page": "https://huggingface.co/papers/2403.09176", "n_linked_authors": 2, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1425 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FARSE-CNN: Fully Asynchronous, Recurrent and Sparse Event-Based CNN", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1426 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ConDense: Consistent 2D-3D Pre-training for Dense and Sparse Features from Multi-View Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1427 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MTA-CLIP: Language-Guided Semantic Segmentation with Mask-Text Alignment", "id": "main", "arxiv_id": "2407.21654", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.21654", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1428 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event-Aided Time-To-Collision Estimation for Autonomous Driving", "id": "main", "arxiv_id": "2407.07324", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1429 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Devil is in the Statistics: Mitigating and Exploiting Statistics Difference for Generalizable Semi-supervised Medical Image Segmentation", "id": "main", "arxiv_id": "2407.11356", "GitHub": [ "https://github.com/qiumuyang/siab" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1430 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VEON: Vocabulary-Enhanced Occupancy Prediction", "id": "main", "arxiv_id": "2407.12294", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1431 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adapt without Forgetting: Distill Proximity from Dual Teachers in Vision-Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1432 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Sky's the Limit: Relightable Outdoor Scenes via a Sky-pixel Constrained Illumination Prior and Outside-In Visibility", "id": "main", "arxiv_id": "2311.16937", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1433 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffFAS: Face Anti-Spoofing via Generative Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1434 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hetecooper: Feature Collaboration Graph for Heterogeneous Collaborative Perception", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1435 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning-based Axial Video Motion Magnification", "id": "main", "arxiv_id": "2312.09551", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1436 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Simplifying Source-Free Domain Adaptation for Object Detection: Effective Self-Training Strategies and Performance Insights", "id": "main", "arxiv_id": "2407.07586", "GitHub": [ "https://github.com/epfl-imos/simple-sfod" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1437 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion", "id": "main", "arxiv_id": "2407.14143", "GitHub": [ "https://github.com/linlany/rapf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1438 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process", "id": "main", "arxiv_id": "2407.11448", "GitHub": [ "https://github.com/hku-medai/cdpmil" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1439 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Causality-inspired Discriminative Feature Learning in Triple Domains for Gait Recognition", "id": "main", "arxiv_id": "2407.12519", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1440 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Retargeting Visual Data with Deformation Fields", "id": "main", "arxiv_id": "2311.13297", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.13297", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1441 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Delving Deep into Engagement Prediction of Short Videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1442 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flexible Distribution Alignment: Towards Long-tailed Semi-supervised Learning with Proper Calibration", "id": "main", "arxiv_id": "2306.04621", "GitHub": [ "https://github.com/emasa/adello-ltssl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1443 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLEO: Continual Learning of Evolving Ontologies", "id": "main", "arxiv_id": "2407.08411", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1444 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization", "id": "main", "arxiv_id": "2402.03317", "GitHub": [ "https://github.com/microsoft/robustlearn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1445 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Wavelet Convolutions for Large Receptive Fields", "id": "main", "arxiv_id": "2407.05848", "GitHub": [ "https://github.com/bgu-cs-vil/wtconv" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1446 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion", "id": "main", "arxiv_id": "2305.15798", "GitHub": [ "https://github.com/Nota-NetsPresso/BK-SDM" ], "paper_page": "https://huggingface.co/papers/2305.15798", "n_linked_authors": 4, "upvotes": 4, "num_comments": 1, "n_authors": 4, "Models": [ "segmind/tiny-sd", "nota-ai/bk-sdm-small", "nota-ai/bk-sdm-tiny", "segmind/small-sd", "nota-ai/bk-sdm-base", "nota-ai/bk-sdm-tiny-2m", "segmind/portrait-finetuned", "nota-ai/bk-sdm-base-2m", "nota-ai/bk-sdm-small-2m", "nota-ai/coreml-bk-sdm", "segmind/tiny-sd-mxfinetune", "vivym/bk-sdm-tiny-vpred", "segmind/tiny_lora_mxtun3_style", "nota-ai/bk-sdm-v2-base", "treksis/bk-sdm-tiny", "treksis/bk-sdm-small", "treksis/bk-sdm-base", "sdfhg5243/pepe", "celestialli/fork-tiny-sd", "ckpt/bk-sdm-tiny-2m", "takuoko/tiny_sd_xl_pokemon_blip", "nota-ai/bk-sdm-v2-tiny", "nota-ai/bk-sdm-v2-small" ], "Datasets": [], "Spaces": [ "Nymbo/HH-ImgGen", "nota-ai/compressed-stable-diffusion", "Nymbo/image_gen_supaqueue", "Sijuade/Stable-Diffusion", "allknowingroger/Image-Models-Test34", "Dagfinn1962/prodia2", "iohanngrig/text2image", "BeppeSvensson/HH-ImgGen", "akameswa/DiffusionDemo", "anilbhatt1/ImageAlchemy-StableDiffusion", "pikto/prodia", "PeepDaSlan9/segmind-portrait-finetuned", "awacke1/Lightweight-Text-to-Image-Generation", "mygyasir/nota-ai-bk-sdm-small", "allknowingroger/Image-Models-Test99", "qbikmuzik/Newgenimg", "as-cle-bert/awesome-tiny-sd", "sdfhg5243/segmind-tiny-sd", "neuralorbs/ImageAlchemy-StableDiffusion", "LeviathAnjelo/Image-Models-Test34", "marcchicoine/nota-ai-bk-sdm-small", "K00B404/image_gen_supaqueue_game_assets", "mochifz/StableDiffusionPipeline_webui", "BeppeSvensson/HIHI", "waredot32189/segmind-portrait-finetuned", "Pfs2021Funny/HH-ImgGen", "lingkoai/segmind-small-sd", "xco2/small_diffusion", "piyushgrover/Stable-Diffusion-Image-Generation", "sanjanatule/stable-diffusion-guidance-loss", "philipp-zettl/philipp-zettl-jon_juarez-lora", "nkanungo/Generative_Art_Stable_Diffusion", "iamkprasad/segmind-tiny_lora_mxtun3_style" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1447 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Language-Assisted Skeleton Action Understanding for Skeleton-Based Temporal Action Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1448 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging scale- and orientation-covariant features for planar motion estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1449 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning", "id": "main", "arxiv_id": "2403.06289", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1450 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Parametric Activation", "id": "main", "arxiv_id": "2407.08567", "GitHub": [ "https://github.com/kostas1515/aglu" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1451 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distractor-Free Novel View Synthesis via Exploiting Memorization Effect in Optimization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1452 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VEGS: View Extrapolation of Urban Scenes in 3D Gaussian Splatting using Learned Priors", "id": "main", "arxiv_id": "2407.02945", "GitHub": [ "https://github.com/deepshwang/vegs" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1453 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation", "id": "main", "arxiv_id": "2407.12387", "GitHub": [ "https://github.com/tpzou/hgl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1454 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting", "id": "main", "arxiv_id": "2312.13308", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1455 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporal-Mapping Photography for Event Cameras", "id": "main", "arxiv_id": "2403.06443", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1456 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Shape2Scene: 3D Scene Representation Learning Through Pre-training on Shape Data", "id": "main", "arxiv_id": "2407.10200", "GitHub": [ "https://github.com/fengzicai/s2s" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1457 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LineFit: A Geometric Approach for Fitting Line Segments in Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1458 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Six-Point Method for Multi-Camera Systems with Reduced Solution Space", "id": "main", "arxiv_id": "2402.18066", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1459 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network", "id": "main", "arxiv_id": "2407.17857", "GitHub": [ "https://github.com/unites-lab/mew" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1460 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance", "id": "main", "arxiv_id": "2403.14781", "GitHub": [ "https://github.com/fudan-generative-vision/champ" ], "paper_page": "https://huggingface.co/papers/2403.14781", "n_linked_authors": 3, "upvotes": 14, "num_comments": 2, "n_authors": 8, "Models": [ "fudan-generative-ai/champ", "benjamin-paine/champ" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1461 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaDistill: Adaptive Knowledge Distillation for Deep Face Recognition", "id": "main", "arxiv_id": "2407.01332", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1462 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HERGen: Elevating Radiology Report Generation with Longitudinal Data", "id": "main", "arxiv_id": "2407.15158", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1463 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Labeled Data Selection for Category Discovery", "id": "main", "arxiv_id": "2406.04898", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1464 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dependency-aware Differentiable Neural Architecture Search", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1465 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WAS: Dataset and Methods for Artistic Text Segmentation", "id": "main", "arxiv_id": "2408.00106", "GitHub": [ "https://github.com/xdxie/WAS_WordArt-Segmentation" ], "paper_page": "https://huggingface.co/papers/2408.00106", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1466 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLIFF: Continual Latent Diffusion for Open-Vocabulary Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1467 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1468 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Norface: Improving Facial Expression Analysis by Identity Normalization", "id": "main", "arxiv_id": "2407.15617", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1469 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unlocking Attributes' Contribution to Successful Camouflage: A Combined Textual and Visual Analysis Strategy", "id": "main", "arxiv_id": "2408.12086", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1470 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SNeRV: Spectra-preserving Neural Representation for Video", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1471 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COMO: Compact Mapping and Odometry", "id": "main", "arxiv_id": "2404.03531", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1472 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction", "id": "main", "arxiv_id": "2407.13335", "GitHub": [ "https://github.com/hkust-nisl/oat_eccv24" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1473 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SelfSwapper: Self-Supervised Face Swapping via Shape Agnostic Masked AutoEncoder", "id": "main", "arxiv_id": "2402.07370", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.07370", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1474 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation", "id": "main", "arxiv_id": "2403.18080", "GitHub": [ "https://github.com/chenhongyiyang/egoposeformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1475 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Information Theoretical View for Out-Of-Distribution Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1476 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DMiT: Deformable Mipmapped Tri-Plane Representation for Dynamic Scenes", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1477 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation", "id": "main", "arxiv_id": "2407.11954", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1478 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gradient-Aware for Class-Imbalanced Semi-supervised Medical Image Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1479 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HowToCaption: Prompting LLMs to Transform Video Annotations at Scale", "id": "main", "arxiv_id": "2310.04900", "GitHub": [ "https://github.com/ninatu/howtocaption" ], "paper_page": "https://huggingface.co/papers/2310.04900", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1480 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection", "id": "main", "arxiv_id": "2407.10164", "GitHub": [ "https://github.com/sanmin0312/labeldistill" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1481 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond the Data Imbalance: Employing the Heterogeneous Datasets for Vehicle Maneuver Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1482 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On Pretraining Data Diversity for Self-Supervised Learning", "id": "main", "arxiv_id": "2403.13808", "GitHub": [ "https://github.com/hammoudhasan/diversityssl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1483 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Look Around and Learn: Self-Training Object Detection by Exploration", "id": "main", "arxiv_id": "2302.03566", "GitHub": [ "https://github.com/iit-pavis/look_around_and_learn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1484 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bayesian Self-Training for Semi-Supervised 3D Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1485 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion and Structure from Event-based Normal Flow", "id": "main", "arxiv_id": "2407.12239", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1486 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ParCo: Part-Coordinating Text-to-Motion Synthesis", "id": "main", "arxiv_id": "2403.18512", "GitHub": [ "https://github.com/qrzou/parco" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1487 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Complement and to Defer to Multiple Users", "id": "main", "arxiv_id": "2407.07003", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1488 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tiny Models are the Computational Saver for Large Models", "id": "main", "arxiv_id": "2403.17726", "GitHub": [ "https://github.com/QingyuanWang/tinysaver" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1489 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DragVideo: Interactive Drag-style Video Editing", "id": "main", "arxiv_id": "2312.02216", "GitHub": [ "https://github.com/rickyskywalker/dragvideo-official" ], "paper_page": "https://huggingface.co/papers/2312.02216", "n_linked_authors": 3, "upvotes": 10, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1490 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Sentence Grounding for Long-term Instructional Video", "id": "main", "arxiv_id": "2312.14055", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.14055", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [ "zeqianli/HowToStep-NSVA" ], "Datasets": [ "zeqianli/HowToStep" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1491 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Do Generalised Classifiers really work on Human Drawn Sketches?", "id": "main", "arxiv_id": "2407.03893", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1492 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/ffxzh/kmtalk" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1493 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Head360: Learning a Parametric 3D Full-Head for Free-View Synthesis in 360\u00b0", "id": "main", "arxiv_id": "2408.00296", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1494 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MotionDirector: Motion Customization of Text-to-Video Diffusion Models", "id": "main", "arxiv_id": "2310.08465", "GitHub": [ "https://github.com/showlab/MotionDirector" ], "paper_page": "https://huggingface.co/papers/2310.08465", "n_linked_authors": 7, "upvotes": 14, "num_comments": 5, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [ "ruizhaocv/MotionDirector", "victor/MotionDirector", "cocktailpeanut/MotionDirector", "drdanilosa/MotionDirector" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1495 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text2LiDAR: Text-guided LiDAR Point Clouds Generation via Equirectangular Transformer", "id": "main", "arxiv_id": "2407.19628", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1496 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhanced Motion Forecasting with Visual Relation Reasoning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1497 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rate-Distortion-Cognition Controllable Versatile Neural Image Compression", "id": "main", "arxiv_id": "2407.11700", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1498 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporal As a Plugin: Unsupervised Video Denoising with Pre-Trained Image Denoisers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1499 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LiDAR-based All-weather 3D Object Detection via Prompting and Distilling 4D Radar", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1500 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models", "id": "main", "arxiv_id": "2311.17600", "GitHub": [ "https://github.com/isxinliu/mm-safetybench" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1501 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Post-training Quantization with Progressive Calibration and Activation Relaxing for Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2311.06322", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1502 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scene Coordinate Reconstruction: Posing of Image Collections via Incremental Learning of a Relocalizer", "id": "main", "arxiv_id": "2404.14351", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.14351", "n_linked_authors": 1, "upvotes": 5, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1503 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors", "id": "main", "arxiv_id": "2403.11503", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.11503", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1504 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weakly Supervised Co-training with Swapping Assignments for Semantic Segmentation", "id": "main", "arxiv_id": "2402.17891", "GitHub": [ "https://github.com/youshyee/cosa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1505 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StoryImager: A Unified and Efficient Framework for Coherent Story Visualization and Completion", "id": "main", "arxiv_id": "2404.05979", "GitHub": [ "https://github.com/tobran/storyimager" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1506 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ST-LLM: Large Language Models Are Effective Temporal Learners", "id": "main", "arxiv_id": "2404.00308", "GitHub": [ "https://github.com/TencentARC/ST-LLM" ], "paper_page": "https://huggingface.co/papers/2404.00308", "n_linked_authors": 0, "upvotes": 4, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1507 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exact Diffusion Inversion via Bidirectional Integration Approximation", "id": "main", "arxiv_id": "2307.10829", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1508 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Textual Query-Driven Mask Transformer for Domain Generalized Segmentation", "id": "main", "arxiv_id": "2407.09033", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1509 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EmoTalk3D: High-Fidelity Free-View Synthesis of Emotional 3D Talking Head", "id": "main", "arxiv_id": "2408.00297", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1510 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Arbitrary-Scale Video Super-Resolution with Structural and Textural Priors", "id": "main", "arxiv_id": "2407.09919", "GitHub": [ "https://github.com/shangwei5/st-avsr" ], "paper_page": "https://huggingface.co/papers/2407.09919", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1511 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Object-Centric Diffusion for Efficient Video Editing", "id": "main", "arxiv_id": "2401.05735", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.05735", "n_linked_authors": 2, "upvotes": 6, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1512 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Single-Mask Inpainting for Voxel-based Neural Radiance Fields", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1513 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1514 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Freeview Sketching: View-Aware Fine-Grained Sketch-Based Image Retrieval", "id": "main", "arxiv_id": "2407.01810", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1515 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adapt2Reward: Adapting Video-Language Models to Generalizable Robotic Rewards via Failure Prompts", "id": "main", "arxiv_id": "2407.14872", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1516 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion for Natural Image Matting", "id": "main", "arxiv_id": "2312.05915", "GitHub": [ "https://github.com/yihanhu-2022/diffmatte" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1517 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Agglomerative Token Clustering", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1518 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CMD: A Cross Mechanism Domain Adaptation Dataset for 3D Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1519 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unleashing Text-to-Image Diffusion Prior for Zero-Shot Image Captioning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1520 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ClusteringSDF: Self-Organized Neural Implicit Surfaces for 3D Decomposition", "id": "main", "arxiv_id": "2403.14619", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1521 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NAMER: Non-Autoregressive Modeling for Handwritten Mathematical Expression Recognition", "id": "main", "arxiv_id": "2407.11380", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1522 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GIVT: Generative Infinite-Vocabulary Transformers", "id": "main", "arxiv_id": "2312.02116", "GitHub": [ "https://github.com/google-research/big_vision" ], "paper_page": "https://huggingface.co/papers/2312.02116", "n_linked_authors": 1, "upvotes": 10, "num_comments": 1, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1523 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mismatch Quest: Visual and Textual Feedback for Image-Text Misalignment", "id": "main", "arxiv_id": "2312.03766", "GitHub": [ "https://github.com/mismatchquest/mismatchquest" ], "paper_page": "https://huggingface.co/papers/2312.03766", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1524 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density", "id": "main", "arxiv_id": "2407.04370", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1525 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Modal Video Dialog State Tracking in the Wild", "id": "main", "arxiv_id": "2407.02218", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1526 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Factorized Diffusion: Perceptual Illusions by Noise Decomposition", "id": "main", "arxiv_id": "2404.11615", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.11615", "n_linked_authors": 1, "upvotes": 2, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1527 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now", "id": "main", "arxiv_id": "2310.11868", "GitHub": [ "https://github.com/optml-group/diffusion-mu-attack" ], "paper_page": "https://huggingface.co/papers/2310.11868", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [ "Intel/UnlearnDiffAtk", "xinchen9/SD_Offense", "Kaixuanliu/SD_Offense_gaudi", "Kaixuanliu/SD_Offense_public" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1528 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dissecting Dissonance: Benchmarking Large Multimodal Models Against Self-Contradictory Instructions", "id": "main", "arxiv_id": "2408.01091", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1529 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StereoGlue: Joint Feature Matching and Robust Estimation", "id": "main", "arxiv_id": "2307.15381", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2307.15381", "n_linked_authors": 0, "upvotes": 0, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1530 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Boosting Transferability in Vision-Language Attacks via Diversification along the Intersection Region of Adversarial Trajectory", "id": "main", "arxiv_id": "2403.12445", "GitHub": [ "https://github.com/sensengao/vlptransferattack" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1531 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Enhanced Queries of Point Sets for Vectorized Map Construction", "id": "main", "arxiv_id": "2402.17430", "GitHub": [ "https://github.com/hxmap/mapqr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1532 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Zero-Shot Crowd Counting and Localization with Adaptive Resolution SAM", "id": "main", "arxiv_id": "2402.17514", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1533 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AWOL: Analysis WithOut synthesis using Language", "id": "main", "arxiv_id": "2404.03042", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1534 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OneVOS: Unifying Video Object Segmentation with All-in-One Transformer Framework", "id": "main", "arxiv_id": "2403.08682", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1535 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "M3DBench: Towards Omni 3D Assistant with Interleaved Multi-modal Instructions", "id": "main", "arxiv_id": "2312.10763", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.10763", "n_linked_authors": 5, "upvotes": 18, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1536 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MSD: A Benchmark Dataset for Floor Plan Generation of Building Complexes", "id": "main", "arxiv_id": "2407.10121", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1537 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "End-to-End Rate-Distortion Optimized 3D Gaussian Representation", "id": "main", "arxiv_id": "2406.01597", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1538 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Temporal Residual Jacobians for Rig-free Motion Transfer", "id": "main", "arxiv_id": "2407.14958", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.14958", "n_linked_authors": 3, "upvotes": 5, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1539 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LetsMap: Unsupervised Representation Learning for Label-Efficient Semantic BEV Mapping", "id": "main", "arxiv_id": "2405.18852", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1540 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deblurring 3D Gaussian Splatting", "id": "main", "arxiv_id": "2401.00834", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.00834", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1541 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Taming Lookup Tables for Efficient Image Retouching", "id": "main", "arxiv_id": "2403.19238", "GitHub": [ "https://github.com/stephen0808/icelut" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1542 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DualDn: Dual-domain Denoising via Differentiable ISP", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1543 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Quantization-Friendly Winograd Transformations for Convolutional Neural Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1544 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Task is Worth One Word: Learning with Task Prompts for High-Quality Versatile Image Inpainting", "id": "main", "arxiv_id": "2312.03594", "GitHub": [ "https://github.com/open-mmlab/mmagic/tree/main/projects/powerpaint" ], "paper_page": "https://huggingface.co/papers/2312.03594", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 5, "Models": [ "JunhaoZhuang/PowerPaint-v2-1", "JunhaoZhuang/PowerPaint-v1", "JunhaoZhuang/PowerPaint_v2", "bdsqlsz/PowerPaint-V1-stable-diffusion-inpainting", "krnl/PowerPaint-v2-1" ], "Datasets": [], "Spaces": [ "sachinkidzure/PowerPaint" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1545 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-supervised Shape Completion via Involution and Implicit Correspondences", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1546 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition", "id": "main", "arxiv_id": "2308.04553", "GitHub": [ "https://github.com/mqraitem/from-fake-to-real" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1547 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector", "id": "main", "arxiv_id": "2402.03094", "GitHub": [ "https://github.com/lovelyqian/CDFSOD-benchmark" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1548 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NICP: Neural ICP for 3D Human Registration at Scale", "id": "main", "arxiv_id": "2312.14024", "GitHub": [ "https://github.com/riccardomarin/nicp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1549 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PredBench: Benchmarking Spatio-Temporal Prediction across Diverse Disciplines", "id": "main", "arxiv_id": "2407.08418", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1550 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FontStudio: Shape-Adaptive Diffusion Model for Coherent and Consistent Font Effect Generation", "id": "main", "arxiv_id": "2406.08392", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2406.08392", "n_linked_authors": 4, "upvotes": 18, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1551 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models", "id": "main", "arxiv_id": "2407.15408", "GitHub": [ "https://github.com/line/ChronAccRet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [ "https://huggingface.co/line-corporation/ChronAccRet" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1552 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StableDrag: Stable Dragging for Point-based Image Editing", "id": "main", "arxiv_id": "2403.04437", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.04437", "n_linked_authors": 0, "upvotes": 25, "num_comments": 4, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1553 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Feature Stability during Upsampling -- Spectral Artifacts and the Importance of Spatial Context", "id": "main", "arxiv_id": "2311.17524", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1554 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dynamic Data Selection for Efficient SSL via Coarse-to-Fine Refinement", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1555 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural Surface Detection for Unsigned Distance Fields", "id": "main", "arxiv_id": "2407.18381", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1556 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "One-Shot Diffusion Mimicker for Handwritten Text Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1557 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Event-Based Motion Magnification", "id": "main", "arxiv_id": "2402.11957", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1558 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Neural Surface Reconstruction with Feature Priors from Multi-View Images", "id": "main", "arxiv_id": "2408.02079", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1559 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Multimodal Sentiment Analysis Debiasing via Bias Purification", "id": "main", "arxiv_id": "2403.05023", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1560 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Kernel Diffusion: An Alternate Approach to Blind Deconvolution", "id": "main", "arxiv_id": "2312.02319", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1561 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MUSES: The Multi-Sensor Semantic Perception Dataset for Driving under Uncertainty", "id": "main", "arxiv_id": "2401.12761", "GitHub": [ "https://github.com/timbroed/MUSES" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1562 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Discovering Novel Actions from Open World Egocentric Videos with Object-Grounded Visual Commonsense Reasoning", "id": "main", "arxiv_id": "2305.16602", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1563 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bidirectional Progressive Transformer for Interaction Intention Anticipation", "id": "main", "arxiv_id": "2405.05552", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1564 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reinforcement Learning Meets Visual Odometry", "id": "main", "arxiv_id": "2407.15626", "GitHub": [ "https://github.com/uzh-rpg/rl_vo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1565 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bucketed Ranking-based Losses for Efficient Training of Object Detectors", "id": "main", "arxiv_id": "2407.14204", "GitHub": [ "https://github.com/blisgard/bucketedrankingbasedlosses" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1566 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robustness Tokens: Towards Adversarial Robustness of Transformers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1567 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RSL-BA: Rolling Shutter Line Bundle Adjustment", "id": "main", "arxiv_id": "2408.05409", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1568 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DecentNeRFs: Decentralized Neural Radiance Fields from Crowdsourced Images", "id": "main", "arxiv_id": "2403.13199", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1569 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1570 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unveiling Typographic Deceptions: Insights of the Typographic Vulnerability in Large Vision-Language Models", "id": "main", "arxiv_id": "2402.19150", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.19150", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [ "erjiaxiao/Typographic-Dataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1571 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "N2F2: Hierarchical Scene Understanding with Nested Neural Feature Fields", "id": "main", "arxiv_id": "2403.10997", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.10997", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1572 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ConceptExpress: Harnessing Diffusion Models for Single-image Unsupervised Concept Extraction", "id": "main", "arxiv_id": "2407.07077", "GitHub": [ "https://github.com/haoosz/conceptexpress" ], "paper_page": "https://huggingface.co/papers/2407.07077", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1573 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PairingNet: A Learning-based Pair-searching and -matching Network for Image Fragments", "id": "main", "arxiv_id": "2312.08704", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.08704", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "zhourxin/Fragments-dataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1574 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Skeleton-based Group Activity Recognition via Spatial-Temporal Panoramic Graph", "id": "main", "arxiv_id": "2407.19497", "GitHub": [ "https://github.com/mgiant/mp-gcn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1575 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Multimodal Open-Set Domain Generalization and Adaptation through Self-supervision", "id": "main", "arxiv_id": "2407.01518", "GitHub": [ "https://github.com/donghao51/moosa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1576 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ReCON: Training-Free Acceleration for Text-to-Image Synthesis with Retrieval of Concept Prompt Trajectories", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1577 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AMES: Asymmetric and Memory-Efficient Similarity Estimation for Instance-level Retrieval", "id": "main", "arxiv_id": "2408.03282", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1578 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TCAN: Animating Human Images with Temporally Consistent Pose Guidance using Diffusion Models", "id": "main", "arxiv_id": "2407.09012", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.09012", "n_linked_authors": 1, "upvotes": 8, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1579 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Hand Sequence Recovery from Real Blurry Images and Event Stream", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1580 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation", "id": "main", "arxiv_id": "2407.13537", "GitHub": [ "https://github.com/wu-cvgl/GlobalPointer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1581 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dissolving Is Amplifying: Towards Fine-Grained Anomaly Detection", "id": "main", "arxiv_id": "2302.14696", "GitHub": [ "https://github.com/shijianjian/dia" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1582 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "StyleCity: Large-Scale 3D Urban Scenes Stylization", "id": "main", "arxiv_id": "2404.10681", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1583 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViG-Bias: Visually Grounded Bias Discovery and Mitigation", "id": "main", "arxiv_id": "2407.01996", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1584 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffBIR: Toward Blind Image Restoration with Generative Diffusion Prior", "id": "main", "arxiv_id": "2308.15070", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2308.15070", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1585 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Assessing Sample Quality via the Latent Space of Generative Models", "id": "main", "arxiv_id": "2407.15171", "GitHub": [ "https://github.com/cvlab-stonybrook/ls-sample-quality" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1586 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Relightable Neural Actor with Intrinsic Decomposition and Pose Control", "id": "main", "arxiv_id": "2312.11587", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1587 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sur^2f: A Hybrid Representation for High-Quality and Efficient Surface Reconstruction from Multi-view Images", "id": "main", "arxiv_id": "2401.03704", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1588 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes", "id": "main", "arxiv_id": "2403.20032", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1589 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pseudo-keypoint RKHS Learning for Self-supervised 6DoF Pose Estimation", "id": "main", "arxiv_id": "2311.09500", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1590 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Consistent 3D Line Mapping", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1591 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distributed Active Client Selection With Noisy Clients Using Model Association Scores", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1592 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PixOOD: Pixel-Level Out-of-Distribution Detection", "id": "main", "arxiv_id": "2405.19882", "GitHub": [ "https://github.com/vojirt/pixood" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1593 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns", "id": "main", "arxiv_id": "2405.17609", "GitHub": [ "https://github.com/maria-korosteleva/garmentcode" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1594 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards a Density Preserving Objective Function for Learning on Point Sets", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1595 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AnatoMask: Enhancing Medical Image Segmentation with Reconstruction-guided Self-masking", "id": "main", "arxiv_id": "2407.06468", "GitHub": [ "https://github.com/ricklisz/anatomask" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1596 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VF-NeRF: Viewshed Fields for Rigid NeRF Registration", "id": "main", "arxiv_id": "2404.03349", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1597 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction", "id": "main", "arxiv_id": "2405.18527", "GitHub": [ "https://github.com/jwen307/taskuq" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1598 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Trainable Highly-expressive Activation Functions", "id": "main", "arxiv_id": "2407.07564", "GitHub": [ "https://github.com/bgu-cs-vil/ditac" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1599 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Region-Aware Sequence-to-Sequence Learning for Hyperspectral Denoising", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1600 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Representation Learning for Adversarial Attack Detection", "id": "main", "arxiv_id": "2407.04382", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1601 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Do text-free diffusion models learn discriminative visual representations?", "id": "main", "arxiv_id": "2311.17921", "GitHub": [ "https://github.com/soumik-kanad/diffssl" ], "paper_page": "https://huggingface.co/papers/2311.17921", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1602 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Clean & Compact: Efficient Data-Free Backdoor Defense with Model Compactness", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1603 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DOCCI: Descriptions of Connected and Contrasting Images", "id": "main", "arxiv_id": "2404.19753", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.19753", "n_linked_authors": 6, "upvotes": 10, "num_comments": 1, "n_authors": 12, "Models": [], "Datasets": [ "google/docci", "BaiqiL/NaturalBench" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1604 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EAS-SNN: End-to-End Adaptive Sampling and Representation for Event-based Detection with Recurrent Spiking Neural Networks", "id": "main", "arxiv_id": "2403.12574", "GitHub": [ "https://github.com/windere/eas-snn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1605 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AttentionHand: Text-driven Controllable Hand Image Generation for 3D Hand Reconstruction in the Wild", "id": "main", "arxiv_id": "2407.18034", "GitHub": [ "https://github.com/redorangeyellowy/AttentionHand" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1606 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dataset Quantization with Active Learning based Adaptive Sampling", "id": "main", "arxiv_id": "2407.07268", "GitHub": [ "https://github.com/ichbill/DQAS" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1607 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LogoSticker: Inserting Logos into Diffusion Models for Customized Generation", "id": "main", "arxiv_id": "2407.13752", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13752", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1608 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LEROjD: Lidar Extended Radar-Only Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1609 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProCreate, Don't Reproduce! Propulsive Energy Diffusion for Creative Generation", "id": "main", "arxiv_id": "2408.02226", "GitHub": [ "https://github.com/agentic-learning-ai-lab/procreate-diffusion-public" ], "paper_page": "https://huggingface.co/papers/2408.02226", "n_linked_authors": 3, "upvotes": 10, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1610 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching", "id": "main", "arxiv_id": "2403.10755", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1611 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Probabilistic Image-Driven Traffic Modeling via Remote Sensing", "id": "main", "arxiv_id": "2403.05521", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1612 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination", "id": "main", "arxiv_id": "2404.11593", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1613 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoStudio: Generating Consistent-Content and Multi-Scene Videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1614 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semantic Residual Prompts for Continual Learning", "id": "main", "arxiv_id": "2403.06870", "GitHub": [ "https://github.com/aimagelab/mammoth" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1615 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TransCAD: A Hierarchical Transformer for CAD Sequence Inference from Point Clouds", "id": "main", "arxiv_id": "2407.12702", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1616 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViGoR: Improving Visual Grounding of Large Vision Language Models with Fine-Grained Reward Modeling", "id": "main", "arxiv_id": "2402.06118", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.06118", "n_linked_authors": 3, "upvotes": 13, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1617 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mixture of Efficient Diffusion Experts Through Automatic Interval and Sub-Network Selection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1618 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Occupancy as Set of Points", "id": "main", "arxiv_id": "2407.04049", "GitHub": [ "https://github.com/hustvl/osp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1619 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UAV First-Person Viewers Are Radiance Field Learners", "id": "main", "arxiv_id": "2408.05533", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1620 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Few-shot Class-incremental Learning: Learning from Yourself", "id": "main", "arxiv_id": "2407.07468", "GitHub": [ "https://github.com/isee-laboratory/revisting_fscil" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1621 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProSub: Probabilistic Open-Set Semi-Supervised Learning with Subspace-Based Out-of-Distribution Detection", "id": "main", "arxiv_id": "2407.11735", "GitHub": [ "https://github.com/walline/prosub" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1622 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Fair Ranking and New Model for Panoptic Scene Graph Generation", "id": "main", "arxiv_id": "2407.09216", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1623 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pick-a-back: Selective Device-to-Device Knowledge Transfer in Federated Continual Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1624 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Compensation Sampling for Improved Convergence in Diffusion Models", "id": "main", "arxiv_id": "2312.06285", "GitHub": [ "https://github.com/hotfinda/Compensation-sampling" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1625 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Situated Instruction Following", "id": "main", "arxiv_id": "2407.12061", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1626 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Holodepth: Programmable Depth-Varying Projection via Computer-Generated Holography", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1627 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model", "id": "main", "arxiv_id": "2403.13064", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.13064", "n_linked_authors": 7, "upvotes": 31, "num_comments": 2, "n_authors": 14, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1628 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GalLop: Learning global and local prompts for vision-language models", "id": "main", "arxiv_id": "2407.01400", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1629 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Depth on Demand: Streaming Dense Depth from a Low Frame Rate Active Sensor", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1630 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lossy Image Compression with Foundation Diffusion Models", "id": "main", "arxiv_id": "2404.08580", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1631 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLIP-DINOiser: Teaching CLIP a few DINO tricks for open-vocabulary semantic segmentation", "id": "main", "arxiv_id": "2312.12359", "GitHub": [ "https://github.com/wysoczanska/clip_dinoiser" ], "paper_page": "https://huggingface.co/papers/2312.12359", "n_linked_authors": 1, "upvotes": 2, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1632 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FMBoost: Boosting Latent Diffusion with Flow Matching", "id": "main", "arxiv_id": "2312.07360", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.07360", "n_linked_authors": 2, "upvotes": 3, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1633 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COMPOSE: Comprehensive Portrait Shadow Editing", "id": "main", "arxiv_id": "2408.13922", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1634 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LNL+K: Enhancing Learning with Noisy Labels Through Noise Source Knowledge Integration", "id": "main", "arxiv_id": "2306.11911", "GitHub": [ "https://github.com/sunnysiqi/lnl_k" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1635 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Models as Data Mining Tools", "id": "main", "arxiv_id": "2408.02752", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.02752", "n_linked_authors": 1, "upvotes": 13, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1636 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Graph Neural Network Causal Explanation via Neural Causal Models", "id": "main", "arxiv_id": "2407.09378", "GitHub": [ "https://github.com/armanbehnam/cxgnn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1637 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised, Online and On-The-Fly Anomaly Detection For Non-Stationary Image Distributions", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1638 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering", "id": "main", "arxiv_id": "2408.09702", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.09702", "n_linked_authors": 0, "upvotes": 9, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1639 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GAReT: Cross-view Video Geolocalization with Adapters and Auto-Regressive Transformers", "id": "main", "arxiv_id": "2408.02840", "GitHub": [ "https://github.com/manupillai308/garet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1640 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAMFusion: Sensor-Adaptive Multimodal Fusion for 3D Object Detection in Adverse Weather", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1641 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generating Physically Realistic and Directable Human Motions from Multi-Modal Inputs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1642 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoTracker: It is Better to Track Together", "id": "main", "arxiv_id": "2307.07635", "GitHub": [ "https://github.com/facebookresearch/co-tracker" ], "paper_page": "https://huggingface.co/papers/2307.07635", "n_linked_authors": 1, "upvotes": 10, "num_comments": 0, "n_authors": 6, "Models": [ "facebook/cotracker" ], "Datasets": [], "Spaces": [ "facebook/cotracker" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1643 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPHINX: A Mixer of Weights, Visual Embeddings and Image Scales for Multi-modal Large Language Models", "id": "main", "arxiv_id": "2311.07575", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.07575", "n_linked_authors": 4, "upvotes": 13, "num_comments": 0, "n_authors": 16, "Models": [ "HuggingFaceM4/idefics2-8b", "HuggingFaceM4/idefics2-8b-chatty", "HuggingFaceM4/idefics2-8b-base", "Trelis/idefics2-8b-chatty-bf16", "huz-relay/idefics2-8b-ocr", "peterpeter8585/ai2" ], "Datasets": [], "Spaces": [ "HuggingFaceM4/idefics2_playground", "HuggingFaceM4/idefics-8b", "thobuiq/GPT-4o", "EPFL-VILAB/ViPer", "m-ric/rate_coolness", "dwb2023/model_explorer2", "awacke1/idefics_and_chatty", "Saee/vQA-exploration", "AchilleDev/perpetron", "Rooni/OpenGPT-4o", "Cesarcr/GPT-4o", "fardinkai/GPT-4o", "pettah/PETTAHAI-Chatgpt4o-Demo", "sherrybabe1978/OpenGPT-4o", "HuggingFaceH4/idefics2-8b-playground", "dwb2023/model_explorer4", "dwb2023/omniscience", "dineth554/novafulldemov2", "LuxOAI/OpenGPT-4o", "rodrigomasini/dbkjff", "HuggingFaceH4/idefics2-8b-vdpoed-playground", "marc-mao/idefics2_playground", "sapan3012/OpenGPT-4o", "dorosara/OpenGPT-4o", "Unfaithful/Xts", "Mandeep20/GPT-4o", "poulpy5/OpenGPT-4o_duplicated", "KalbeDigitalLab/IDEFICS2-8B-MedicalVQA", "vakilrathod67/Owngpt", "Mareks1993/testing123", "Rahulhuggingface/AAnh", "YanMASTER/OpenGPT-4o", "amanavinash/GPT-4o", "sonar2377/OpenGPT-4o", "saicharan1234/idefics2_playground", "raghu8096/OpenGPT-4o", "MasterDee/OpenGPH-4o", "pysenii/OpenGPT-4o", "acecalisto3/IDE-play", "rphrp1985/idefics2_playground", "sumitmeharwade/visionmodel", "gloqoai/idefics-8b", "Aleko514/HuggingFaceM4-idefics2-8b", "Intelligaroo/VLM", "taronsarkisyan/GPT-4o", "tnzly/TAI.o", "mattsjohnston/HuggingFaceM4-idefics2-8b", "IncinerateZ/chatbot", "vijaykumar85601/idefics2_playground", "iiced/OpenGPT-4o", "SalmanFaroz/idefics8b-docvqa", "Stable-Human/idefics2_playground", "Losthack777/mohamedsalem", "Losthack777/OpenGPT-4o", "arptakash/GPT-4o", "Jayanath1987/JBL-OpenGPT-4o", "Satyam-Singh/OpenAi_GPT_4-o", "LuxOAI/LUXX", "jihadzakki/idefics2_deploy", "Kalbe-x-Bangkit/IDEFICS2-8B-MedicalVQA", "minhdang/OpenGPT-4o", "tsi-org/OpenGPT-4o-aitutor", "dawood/idefics2_playground", "SSamson/Hackathon_AI_Chatbot", "figh8back/fynd-idefics2-bb", "Tech-Meld/Hajax_MultiModal", "jayyd/idefics2_playground", "ThinkAI-Morocco/KYA_idefics2_yalla", "Abhinay45/OpenGPT-4o", "ignitariumcloud/idefics2", "Almaatla/OpenGPT-4o", "jcheng5/multimodal", "Jayanath1987/OpenGPT-4o", "Vinfinity/OpenGPT-4o", "Zafer01/OpenGPT4", "peterpeter8585/GPT4", "LuxOAI/NEARVIDIA-GPT-4o", "Meliba/OpenGPH-Full", "xi0v/Omni4All", "askned/siya", "Tamqeen/Chatbot-Llama", "Anon0777/chat-app-model-hf", "peterpeter8585/SungYoon_AI", "mebinjo/OpenGPT-4o", "gloqoai/mmlm", "pettah/pettahaiGPT40", "piealamodewhitebread/GPT-4o", "bala0o8o0/hexoticlabs-OpenGPT-4o", "anjanprasad112/OpenGPT", "awacke1/idefics2_playground-demo", "ka1kuk/fastapi-demo", "JoPmt/Quantized_Web_RWKV_agents_RAG_tools_1", "AnViFedotov/OpenGPT-4o", "oscarwang2/OPENCHAT", "NekonekoID/GPT-4o", "vaugheu/Idefics2_8B_Chatty", "Kalbe-x-Bangkit/medVQA-tester", "cocktailpeanut/idefics-8b", "ggilabert/idefics2_playground", "Kalbe-x-Bangkit/Virtual_Question_Answering_Kalbe" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1644 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PathMMU: A Massive Multimodal Expert-Level Benchmark for Understanding and Reasoning in Pathology", "id": "main", "arxiv_id": "2401.16355", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.16355", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 13, "Models": [], "Datasets": [ "jamessyx/PathMMU" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1645 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Adversarial Transferability via Model Alignment", "id": "main", "arxiv_id": "2311.18495", "GitHub": [ "https://github.com/averyma/model-alignment" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1646 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios", "id": "main", "arxiv_id": "2312.13303", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1647 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation", "id": "main", "arxiv_id": "2408.09042", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1648 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Embodied Understanding of Driving Scenarios", "id": "main", "arxiv_id": "2403.04593", "GitHub": [ "https://github.com/opendrivelab/elm" ], "paper_page": "https://huggingface.co/papers/2403.04593", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1649 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Drive via Asymmetric Self-Play", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1650 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OpenIns3D: Snap and Lookup for 3D Open-vocabulary Instance Segmentation", "id": "main", "arxiv_id": "2309.00616", "GitHub": [ "https://github.com/Pointcept/OpenIns3D" ], "paper_page": "https://huggingface.co/papers/2309.00616", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1651 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViLA: Efficient Video-Language Alignment for Video Question Answering", "id": "main", "arxiv_id": "2312.08367", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.08367", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1652 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Factorizing Text-to-Video Generation by Explicit Image Conditioning", "id": "main", "arxiv_id": "2311.10709", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.10709", "n_linked_authors": 4, "upvotes": 24, "num_comments": 3, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1653 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MobileDiffusion: Instant Text-to-Image Generation on Mobile Devices", "id": "main", "arxiv_id": "2311.16567", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.16567", "n_linked_authors": 0, "upvotes": 22, "num_comments": 11, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1654 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Set Biometrics: Beyond Good Closed-Set Models", "id": "main", "arxiv_id": "2407.16133", "GitHub": [ "https://github.com/prevso1088/open-set-biometrics" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1655 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UNIT: Backdoor Mitigation via Automated Neural Distribution Tightening", "id": "main", "arxiv_id": "2407.11372", "GitHub": [ "https://github.com/megum1/unit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1656 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Which Model Generated This Image? A Model-Agnostic Approach for Origin Attribution", "id": "main", "arxiv_id": "2404.02697", "GitHub": [ "https://github.com/uwFengyuan/OCC-CLIP" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1657 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Osmosis: RGBD Diffusion Prior for Underwater Image Restoration", "id": "main", "arxiv_id": "2403.14837", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1658 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Adaptive Pseudo-label Learning for Semi-Supervised Temporal Action Localization", "id": "main", "arxiv_id": "2407.07673", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1659 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Computing the Lipschitz constant needed for fast scene recovery from CASSI measurements", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1660 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields", "id": "main", "arxiv_id": "2311.12063", "GitHub": [ "https://github.com/genintel/datasetnerf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1661 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flowed Time of Flight Radiance Fields", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1662 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D-GOI: 3D GAN Omni-Inversion for Multifaceted and Multi-object Editing", "id": "main", "arxiv_id": "2311.12050", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1663 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Registration of Photorealistic Avatars for VR Facial Animation", "id": "main", "arxiv_id": "2401.11002", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.11002", "n_linked_authors": 2, "upvotes": 1, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1664 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1665 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HiFi-Score: Fine-grained Image Description Evaluation with Hierarchical Parsing Graphs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1666 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image-to-Lidar Relational Distillation for Autonomous Driving Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1667 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Thinking Outside the BBox: Unconstrained Generative Object Compositing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1668 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Large-scale Reinforcement Learning for Diffusion Models", "id": "main", "arxiv_id": "2401.12244", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.12244", "n_linked_authors": 2, "upvotes": 28, "num_comments": 1, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1669 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoMusion: Towards Consistent Stochastic Human Motion Prediction via Motion Diffusion", "id": "main", "arxiv_id": "2305.12554", "GitHub": [ "https://github.com/jsun57/comusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1670 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FedHARM: Harmonizing Model Architectural Diversity in Federated Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1671 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS", "id": "main", "arxiv_id": "2312.04564", "GitHub": [ "https://github.com/sharath-girish/efficientgaussian" ], "paper_page": "https://huggingface.co/papers/2312.04564", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1672 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Global Counterfactual Directions", "id": "main", "arxiv_id": "2404.12488", "GitHub": [ "https://github.com/sobieskibj/gcd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1673 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TCLC-GS: Tightly Coupled LiDAR-Camera Gaussian Splatting for Autonomous Driving", "id": "main", "arxiv_id": "2404.02410", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1674 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RT-Pose: A 4D Radar-Tensor based 3D Human Pose Estimation and Localization Benchmark", "id": "main", "arxiv_id": "2407.13930", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.13930", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "uwipl/RT-Pose" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1675 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EditShield: Protecting Unauthorized Image Editing by Instruction-guided Diffusion Models", "id": "main", "arxiv_id": "2311.12066", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1676 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RICA^2: Rubric-Informed, Calibrated Assessment of Actions", "id": "main", "arxiv_id": "2408.02138", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1677 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Region-centric Image-Language Pretraining for Open-Vocabulary Detection", "id": "main", "arxiv_id": "2310.00161", "GitHub": [ "https://github.com/google-research/google-research/tree/master/fvlm/dito" ], "paper_page": "https://huggingface.co/papers/2310.00161", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1678 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Commonly Interesting Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1679 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities", "id": "main", "arxiv_id": "2407.20337", "GitHub": [ "https://github.com/aimagelab/code" ], "paper_page": "https://huggingface.co/papers/2407.20337", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1680 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CriSp: Leveraging Tread Depth Maps for Enhanced Crime-Scene Shoeprint Matching", "id": "main", "arxiv_id": "2404.16972", "GitHub": [ "https://github.com/samia067/crisp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1681 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Caltech Aerial RGB-Thermal Dataset in the Wild", "id": "main", "arxiv_id": "2403.08997", "GitHub": [ "https://github.com/aerorobotics/caltech-aerial-rgbt-dataset" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1682 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Soup: Model Merging for Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2406.08431", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2406.08431", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1683 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Volumetric Rendering with Baked Quadrature Fields", "id": "main", "arxiv_id": "2312.02202", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1684 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CityGuessr: City-Level Video Geo-Localization on a Global Scale", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1685 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pseudo-Labelling Should Be Aware of Disguising Channel Activations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1686 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bayesian Detector Combination for Object Detection with Crowdsourced Annotations", "id": "main", "arxiv_id": "2407.07958", "GitHub": [ "https://github.com/zhiqin1998/bdc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1687 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revising Densification in Gaussian Splatting", "id": "main", "arxiv_id": "2404.06109", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.06109", "n_linked_authors": 0, "upvotes": 8, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1688 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FlexiEdit: Frequency-Aware Latent Refinement for Enhanced Non-Rigid Editing", "id": "main", "arxiv_id": "2407.17850", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1689 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Smoothness, Synthesis, and Sampling: Re-thinking Unsupervised Multi-View Stereo with DIV Loss", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1690 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text Motion Translator: A Bi-Directional Model for Enhanced 3D Human Motion Generation from Open-Vocabulary Descriptions", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1691 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UL-VIO: Ultra-lightweight Visual-Inertial Odometry with Noise Robust Test-time Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1692 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PolyOculus: Simultaneous Multi-view Image-based Novel View Synthesis", "id": "main", "arxiv_id": "2402.17986", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1693 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "R3DS: Reality-linked 3D Scenes for Panoramic Scene Understanding", "id": "main", "arxiv_id": "2403.12301", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.12301", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [ "3dlg-hcvc/r3ds" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1694 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Graph-Based Approach for Category-Agnostic Pose Estimation", "id": "main", "arxiv_id": "2311.17891", "GitHub": [ "https://github.com/orhir/PoseAnything" ], "paper_page": "https://huggingface.co/papers/2311.17891", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [ "orhir/PoseAnything", "sonta7/PoseAnything" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1695 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Depth-guided NeRF Training via Earth Mover\u2019s Distance", "id": "main", "arxiv_id": "2403.13206", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1696 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "INTRA: Interaction Relationship-aware Weakly Supervised Affordance Grounding", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1697 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DEPICT: Diffusion-Enabled Permutation Importance for Image Classification Tasks", "id": "main", "arxiv_id": "2407.14509", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1698 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time", "id": "main", "arxiv_id": "2407.01851", "GitHub": [ "https://github.com/schowdhury671/meerkat" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1699 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diagnosing and Re-learning for Balanced Multimodal Learning", "id": "main", "arxiv_id": "2407.09705", "GitHub": [ "https://github.com/gewu-lab/diagnosing_relearning_eccv2024" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1700 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contribution-based Low-Rank Adaptation with Pre-training Model for Real Image Restoration", "id": "main", "arxiv_id": "2408.01099", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1701 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1702 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BeyondScene: Higher-Resolution Human-Centric Scene Generation With Pretrained Diffusion", "id": "main", "arxiv_id": "2404.04544", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.04544", "n_linked_authors": 2, "upvotes": 20, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1703 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views", "id": "main", "arxiv_id": "2408.10195", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.10195", "n_linked_authors": 2, "upvotes": 12, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [ "sudo-ai/SpaRP" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1704 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MMEarth: Exploring Multi-Modal Pretext Tasks For Geospatial Representation Learning", "id": "main", "arxiv_id": "2405.02771", "GitHub": [ "https://github.com/vishalned/MMEarth-data" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1705 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Discovering Unwritten Visual Classifiers with Large Language Models", "id": "main", "arxiv_id": "2404.09941", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1706 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LITA: Language Instructed Temporal-Localization Assistant", "id": "main", "arxiv_id": "2403.19046", "GitHub": [ "https://github.com/nvlabs/lita" ], "paper_page": "https://huggingface.co/papers/2403.19046", "n_linked_authors": 2, "upvotes": 17, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1707 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MARs: Multi-view Attention Regularizations for Patch-based Feature Recognition of Space Terrain", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/droneslab/mars/" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [ "https://github.com/droneslab/Luna-1/" ], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1708 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ferret-UI: Grounded Mobile UI Understanding with Multimodal LLMs", "id": "main", "arxiv_id": "2404.05719", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.05719", "n_linked_authors": 3, "upvotes": 62, "num_comments": 3, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1709 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridging the Pathology Domain Gap: Efficiently Adapting CLIP for Pathology Image Analysis with Limited Labeled Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1710 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation", "id": "main", "arxiv_id": "2310.09739", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1711 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CARB-Net: Camera-Assisted Radar-Based Network for Vulnerable Road User Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1712 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAH-SCI: Self-Supervised Adapter for Efficient Hyperspectral Snapshot Compressive Imaging", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1713 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Minimalist Vision with Freeform Pixels", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1714 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "All You Need is Your Voice: Emotional Face Representation with Audio Perspective for Emotional Talking Face Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1715 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LatentEditor: Text Driven Local Editing of 3D Scenes", "id": "main", "arxiv_id": "2312.09313", "GitHub": [ "https://github.com/umarkhalidAI/LatentEditor" ], "paper_page": "https://huggingface.co/papers/2312.09313", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1716 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Single-Photon 3D Imaging with Equi-Depth Photon Histograms", "id": "main", "arxiv_id": "2408.16150", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1717 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Asynchronous Bioplausible Neuron for Spiking Neural Networks for Event-Based Vision", "id": "main", "arxiv_id": "2311.11853", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1718 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Viewpoint textual inversion: discovering scene representations and 3D view control in 2D diffusion models", "id": "main", "arxiv_id": "2309.07986", "GitHub": [ "https://github.com/jmhb0/view_neti" ], "paper_page": "https://huggingface.co/papers/2309.07986", "n_linked_authors": 2, "upvotes": 3, "num_comments": 1, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1719 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "POET: Prompt Offset Tuning for Continual Human Action Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1720 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domain Generalization of 3D Object Detection by Density-Resampling", "id": "main", "arxiv_id": "2311.10845", "GitHub": [ "https://github.com/xingyu-group/3d-density-resampling-sdg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1721 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IG Captioner: Information Gain Captioners are Strong Zero-shot Classifiers", "id": "main", "arxiv_id": "2311.17072", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1722 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MRSP: Learn Multi-Representations of Single Primitive for Compositional Zero-Shot Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1723 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-Domain Semantic Segmentation on Inconsistent Taxonomy using VLMs", "id": "main", "arxiv_id": "2408.02261", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1724 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TrafficNight : An Aerial Multimodal Benchmark For Nighttime Vehicle Surveillance", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1725 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Loc3Diff: Local Diffusion for 3D Human Head Synthesis and Editing", "id": "main", "arxiv_id": "2312.03763", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1726 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Open Domain Text-Driven Synthesis of Multi-Person Motions", "id": "main", "arxiv_id": "2405.18483", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1727 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generative End-to-End Autonomous Driving", "id": "main", "arxiv_id": "2402.11502", "GitHub": [ "https://github.com/wzzheng/genad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1728 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Distinguish Samples for Generalized Category Discovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1729 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COM Kitchens: An Unedited Overhead-view Procedural Videos Dataset a Vision-Language Benchmark", "id": "main", "arxiv_id": "2408.02272", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1730 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning", "id": "main", "arxiv_id": "2401.02094", "GitHub": [ "https://github.com/ghy0501/pilora" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1731 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diff-Reg: Diffusion Model in Doubly Stochastic Matrix Space for Registration Problem", "id": "main", "arxiv_id": "2403.19919", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1732 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WBP: Training-time Backdoor Attacks through Hardware-based Weight Bit Poisoning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1733 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Dual Transparent Liquid Level Estimation in Biomedical Lab: Dataset, Methods and Practice", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1734 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Encapsulating Knowledge in One Prompt", "id": "main", "arxiv_id": "2407.11902", "GitHub": [ "https://github.com/liqiiiii/encapsulating-knowledge-in-one-prompt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1735 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cross-Input Certified Training for Universal Perturbations", "id": "main", "arxiv_id": "2405.09176", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1736 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Visual Relationship Transformation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1737 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Not Just Change the Labels, Learn the Features: Watermarking Deep Neural Networks with Multi-View Data", "id": "main", "arxiv_id": "2403.10663", "GitHub": [ "https://github.com/liyuxuan-github/mat" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1738 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Delving into Adversarial Robustness on Document Tampering Localization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1739 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Selection of Sampling-Reconstruction in Fourier Compressed Sensing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1740 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Confidence-Based Iterative Generation for Real-World Image Super-Resolution", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1741 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Scalable Model Soup on a Single GPU: An Efficient Subspace Training Strategy", "id": "main", "arxiv_id": "2407.03641", "GitHub": [ "https://github.com/nblt/mehl-soup" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1742 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Correspondences of the Third Kind: Camera Pose Estimation from Object Reflection", "id": "main", "arxiv_id": "2312.04527", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1743 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Seeing Faces in Things: A Model and Dataset for Pareidolia", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1744 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Cocktail Universal Adversarial Attack on Deep Neural Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1745 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gaussian Frosting: Editable Complex Radiance Fields with Real-Time Rendering", "id": "main", "arxiv_id": "2403.14554", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14554", "n_linked_authors": 2, "upvotes": 12, "num_comments": 1, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1746 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AMD: Automatic Multi-step Distillation of Large-scale Vision Models", "id": "main", "arxiv_id": "2407.04208", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1747 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FairViT: Fair Vision Transformer via Adaptive Masking", "id": "main", "arxiv_id": "2407.14799", "GitHub": [ "https://github.com/abdd68/Fair-Vision-Transformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1748 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TrojVLM: Backdoor Attack Against Vision Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1749 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VisionLLaMA: A Unified LLaMA Backbone for Vision Tasks", "id": "main", "arxiv_id": "2403.00522", "GitHub": [ "https://github.com/meituan-automl/visionllama" ], "paper_page": "https://huggingface.co/papers/2403.00522", "n_linked_authors": 2, "upvotes": 44, "num_comments": 4, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1750 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Frugal 3D Point Cloud Model Training via Progressive Near Point Filtering and Fused Aggregation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1751 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HVCLIP: High-dimensional Vector in CLIP for Unsupervised Domain Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1752 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving 3D Semi-supervised Learning by Effectively Utilizing All Unlabelled Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1753 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation", "id": "main", "arxiv_id": "2407.11487", "GitHub": [ "https://github.com/isee-laboratory/vln-pret" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1754 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction", "id": "main", "arxiv_id": "2407.21635", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1755 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Expanding Scene Graph Boundaries: Fully Open-vocabulary Scene Graph Generation via Visual-Concept Alignment and Retention", "id": "main", "arxiv_id": "2311.10988", "GitHub": [ "https://github.com/gpt4vision/OvSGTR" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1756 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Few-shot NeRF by Adaptive Rendering Loss Regularization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1757 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Investigating Style Similarity in Diffusion Models", "id": "main", "arxiv_id": "2404.01292", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.01292", "n_linked_authors": 1, "upvotes": 15, "num_comments": 1, "n_authors": 8, "Models": [ "tomg-group-umd/CSD-ViT-L" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1758 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "JDT3D: Addressing the Gaps in LiDAR-Based Tracking-by-Attention", "id": "main", "arxiv_id": "2407.04926", "GitHub": [ "https://github.com/trailab/jdt3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1759 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MagicMirror: Fast and High-Quality Avatar Generation with Constrained Search Space", "id": "main", "arxiv_id": "2404.01296", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.01296", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 12, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1760 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1761 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Timestep-Aware Correction for Quantized Diffusion Models", "id": "main", "arxiv_id": "2407.03917", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1762 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPARO: Selective Attention for Robust and Compositional Transformer Encodings for Vision", "id": "main", "arxiv_id": "2404.15721", "GitHub": [ "https://github.com/ankitkv/sparo-clip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1763 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards compact reversible image representations for neural style transfer", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1764 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Out-of-Bounding-Box Triggers: A Stealthy Approach to Cheat Object Detectors", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1765 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GTMS: A Gradient-driven Tree-guided Mask-free Referring Image Segmentation Method", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1766 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Long-term Temporal Context Gathering for Neural Video Compression", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1767 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VQA-Diff: Exploiting VQA and Diffusion for Zero-Shot Image-to-3D Vehicle Asset Generation in Autonomous Driving", "id": "main", "arxiv_id": "2407.06516", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.06516", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1768 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "From Pixels to Objects: A Hierarchical Approach for Part and Object Segmentation Using Local and Global Aggregation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1769 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Text Localization for Scene Text Removal via Text-aware Masked Image Modeling", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1770 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unmasking Bias in Diffusion Model Training", "id": "main", "arxiv_id": "2310.08442", "GitHub": [ "https://github.com/yuhuustc/debias" ], "paper_page": "https://huggingface.co/papers/2310.08442", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1771 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multimodal Label Relevance Ranking via Reinforcement Learning", "id": "main", "arxiv_id": "2407.13221", "GitHub": [ "https://github.com/chazzygordon/lr2ppo" ], "paper_page": "https://huggingface.co/papers/2407.13221", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "ChazzyGordon/LRMovieNet" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1772 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Animate Your Motion: Turning Still Images into Dynamic Videos", "id": "main", "arxiv_id": "2403.10179", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.10179", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1773 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Layered Rendering Diffusion Model for Controllable Zero-Shot Image Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1774 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CIC-BART-SSA: : Controllable Image Captioning with Structured Semantic Augmentation", "id": "main", "arxiv_id": "2407.11393", "GitHub": [ "https://github.com/SamsungLabs/CIC-BART-SSA" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1775 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Simple Background Augmentation Method for Object Detection with Diffusion Model", "id": "main", "arxiv_id": "2408.00350", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1776 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Echoes of the Past: Boosting Long-tail Recognition via Reflective Learning", "id": "main", "arxiv_id": "2407.12568", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1777 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BlinkVision: A Benchmark for Optical Flow, Scene Flow and Point Tracking Estimation using RGB Frames and Events", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1778 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization", "id": "main", "arxiv_id": "2407.09359", "GitHub": [ "https://github.com/cqylunlun/glass" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1779 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Polarization Cues for Single-shot Shape and Subsurface Scattering Estimation", "id": "main", "arxiv_id": "2407.08149", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1780 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Features-Fused-Pyramid-Neck for Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1781 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spatial-Temporal Multi-level Association for Video Object Segmentation", "id": "main", "arxiv_id": "2404.06265", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1782 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sparse Refinement for Efficient High-Resolution Semantic Segmentation", "id": "main", "arxiv_id": "2407.19014", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1783 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion", "id": "main", "arxiv_id": "2407.21032", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1784 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Explainable Vision Question Answer Model via Diffusion Chain-of-Thought", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1785 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RaFE: Generative Radiance Fields Restoration", "id": "main", "arxiv_id": "2404.03654", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1786 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniProcessor: A Text-induced Unified Low-level Image Processor", "id": "main", "arxiv_id": "2407.20928", "GitHub": [ "https://github.com/intmegroup/uniprocessor" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1787 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Sprite Decomposition from Animated Graphics", "id": "main", "arxiv_id": "2408.03923", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.03923", "n_linked_authors": 3, "upvotes": 7, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [ "cyberagent/crello-animation" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1788 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection", "id": "main", "arxiv_id": "2403.11561", "GitHub": [ "https://github.com/hlr7999/rlr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1789 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection", "id": "main", "arxiv_id": "2407.07520", "GitHub": [ "https://github.com/ipic-lab/irsam" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1790 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PatchRefiner: Leveraging Synthetic Data for Real-Domain High-Resolution Monocular Metric Depth Estimation", "id": "main", "arxiv_id": "2406.06679", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1791 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Geometric Distortion Immunized Deep Watermarking Framework with Robustness Generalizability", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1792 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Robust Event-based Networks for Nighttime via Unpaired Day-to-Night Event Translation", "id": "main", "arxiv_id": "2407.10703", "GitHub": [ "https://github.com/jeongyh98/udnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1793 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLAMP-ViT: Contrastive Data-Free Learning for Adaptive Post-Training Quantization of ViTs", "id": "main", "arxiv_id": "2407.05266", "GitHub": [ "https://github.com/georgia-tech-synergy-lab/clamp-vit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1794 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Riemannian Approach for Spatiotemporal Analysis and Generation of 4D Tree-shaped Structures", "id": "main", "arxiv_id": "2408.12443", "GitHub": [ "https://github.com/tahmina979/4dtreeshape_project" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1795 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-Path Adversarial Lifting for Domain Shift Correction in Online Test-time Adaptation", "id": "main", "arxiv_id": "2408.13983", "GitHub": [ "https://github.com/yushuntang/dpal" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1796 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design", "id": "main", "arxiv_id": "2407.02813", "GitHub": [ "https://github.com/coulsonlee/dy-dca-eccv2024" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1797 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Role of Masking for Efficient Supervised Knowledge Distillation of Vision Transformers", "id": "main", "arxiv_id": "2302.10494", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1798 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Training A Small Emotional Vision Language Model for Visual Art Comprehension", "id": "main", "arxiv_id": "2403.11150", "GitHub": [ "https://github.com/betterzh/sevlm-for-visual-art-comprehension" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1799 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UGG: Unified Generative Grasping", "id": "main", "arxiv_id": "2311.16917", "GitHub": [ "https://github.com/autonomousvision/shape_as_points" ], "paper_page": "https://huggingface.co/papers/2311.16917", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1800 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FrePolad: Frequency-Rectified Point Latent Diffusion for Point Cloud Generation", "id": "main", "arxiv_id": "2311.12090", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1801 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1802 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GAMMA-FACE: GAussian Mixture Models Amend Diffusion Models for Bias Mitigation in Face Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1803 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reinforcement Learning Friendly Vision-Language Model for Minecraft", "id": "main", "arxiv_id": "2303.10571", "GitHub": [ "https://github.com/PKU-RL/CLIP4MC" ], "paper_page": "https://huggingface.co/papers/2303.10571", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1804 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pseudo-RIS: Distinctive Pseudo-supervision Generation for Referring Image Segmentation", "id": "main", "arxiv_id": "2407.07412", "GitHub": [ "https://github.com/seonghoon-yu/pseudo-ris" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1805 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Training-free Composite Scene Generation for Layout-to-Image Synthesis", "id": "main", "arxiv_id": "2407.13609", "GitHub": [ "https://github.com/Papple-F/csg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1806 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robustness Preserving Fine-tuning using Neuron Importance", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1807 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ProxyCLIP: Proxy Attention Improves CLIP for Open-Vocabulary Segmentation", "id": "main", "arxiv_id": "2408.04883", "GitHub": [ "https://github.com/mc-lan/proxyclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1808 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PEA-Diffusion: Parameter-Efficient Adapter with Knowledge Distillation in non-English Text-to-Image Generation", "id": "main", "arxiv_id": "2311.17086", "GitHub": [ "https://github.com/OPPO-Mente-Lab/PEA-Diffusion" ], "paper_page": "https://huggingface.co/papers/2311.17086", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1809 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Similarity of Neural Architectures using Adversarial Attack Transferability", "id": "main", "arxiv_id": "2210.11407", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1810 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dual-Rain: Video Rain Removal using Assertive and Gentle Teachers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1811 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1812 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web", "id": "main", "arxiv_id": "2402.17553", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.17553", "n_linked_authors": 6, "upvotes": 21, "num_comments": 3, "n_authors": 7, "Models": [], "Datasets": [ "Writer/omniact" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1813 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering", "id": "main", "arxiv_id": "2311.14906", "GitHub": [ "https://github.com/xiuyuan-chen/autoeval-video" ], "paper_page": "https://huggingface.co/papers/2311.14906", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [ "khhuiyh/AutoEval-Video_LeaderBoard" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1814 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reflective Instruction Tuning: Mitigating Hallucinations in Large Vision-Language Models", "id": "main", "arxiv_id": "2407.11422", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1815 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Variational Translator for Bridging Image Restoration and High-Level Vision Tasks", "id": "main", "arxiv_id": "2408.08149", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1816 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion Model for Robust Multi-Sensor Fusion in 3D Object Detection and BEV Segmentation", "id": "main", "arxiv_id": "2404.04629", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1817 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos", "id": "main", "arxiv_id": "2407.08414", "GitHub": [ "https://github.com/shad0wta9/meshavatar" ], "paper_page": "https://huggingface.co/papers/2407.08414", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1818 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement", "id": "main", "arxiv_id": "2408.02966", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1819 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scene-Conditional 3D Object Stylization and Composition", "id": "main", "arxiv_id": "2312.12419", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.12419", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1820 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning", "id": "main", "arxiv_id": "2403.12003", "GitHub": [ "https://github.com/xiaojieli0903/genview" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1821 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisit Anything: Visual Place Recognition via Image Segment Retrieval", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1822 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EcoMatcher: Efficient Clustering Oriented Matcher for Detector-free Image Matching", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1823 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DGD: Dynamic 3D Gaussians Distillation", "id": "main", "arxiv_id": "2405.19321", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1824 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semantic Diversity-aware Prototype-based Learning for Unbiased Scene Graph Generation", "id": "main", "arxiv_id": "2407.15396", "GitHub": [ "https://github.com/jeonjaehyeong/dpl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1825 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffuMatting: Synthesizing Arbitrary Objects with Matting-level Annotation", "id": "main", "arxiv_id": "2403.06168", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1826 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Guided Generation of Minority Samples Using Diffusion Models", "id": "main", "arxiv_id": "2407.11555", "GitHub": [ "https://github.com/soobin-um/sg-minority" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1827 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DEVIAS: Learning Disentangled Video Representations of Action and Scene", "id": "main", "arxiv_id": "2312.00826", "GitHub": [ "https://github.com/khu-vll/devias" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1828 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AD3: Introducing a score for Anomaly Detection Dataset Difficulty assessment using VIADUCT dataset", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1829 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoomTex: Texturing Compositional Indoor Scenes via Iterative Inpainting", "id": "main", "arxiv_id": "2406.02461", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2406.02461", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1830 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Class-Agnostic Object Counting with Text-to-Image Diffusion Model", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1831 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mask2Map: Vectorized HD Map Construction Using Bird's Eye View Segmentation Masks", "id": "main", "arxiv_id": "2407.13517", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1832 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SUP-NeRF: A Streamlined Unification of Pose Estimation and NeRF for Monocular 3D Object Reconstruction", "id": "main", "arxiv_id": "2403.15705", "GitHub": [], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [ "yuliangguo/SUP-NeRF-ECCV2024" ], "Datasets": [ "datasets/yuliangguo/SUP-NeRF-ECCV2024" ], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1833 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Forbes: Face Obfuscation Rendering via Backpropagation Refinement Scheme", "id": "main", "arxiv_id": "2407.14170", "GitHub": [ "https://github.com/mcljtkim/forbes" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1834 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pyramid Diffusion for Fine 3D Large Scene Generation", "id": "main", "arxiv_id": "2311.12085", "GitHub": [ "https://github.com/Yuheng-SWJTU/pyramid-discrete-diffusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1835 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ShoeModel: Learning to Wear on the User-specified Shoes via Diffusion Model", "id": "main", "arxiv_id": "2404.04833", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1836 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Watermark-Conditioned Diffusion Model for IP Protection", "id": "main", "arxiv_id": "2403.10893", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1837 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Finding NeMo: Negative-mined Mosaic Augmentation for Referring Image Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1838 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning", "id": "main", "arxiv_id": "2407.03036", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.03036", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1839 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FTBC: Forward Temporal Bias Correction for Optimizing ANN-SNN Conversion", "id": "main", "arxiv_id": "2403.18388", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1840 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Vision and Language Concepts Understanding with Multimodal Counterfactual Samples", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1841 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation", "id": "main", "arxiv_id": "2407.11344", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1842 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GTPT: Group-based Token Pruning Transformer for Efficient Human Pose Estimation", "id": "main", "arxiv_id": "2407.10756", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1843 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lost in Translation: Modern Neural Networks Still Struggle With Small Realistic Image Transformations", "id": "main", "arxiv_id": "2404.07153", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.07153", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1844 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1845 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Normalization Layers for Domain Generalizable Person Re-identification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1846 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generalizing to Unseen Domains via Text-guided Augmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1847 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VCP-CLIP: A visual context prompting model for zero-shot anomaly segmentation", "id": "main", "arxiv_id": "2407.12276", "GitHub": [ "https://github.com/xiaozhen228/vcp-clip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1848 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lost in Translation: Latent Concept Misalignment in Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2408.00230", "GitHub": [ "https://github.com/rossonerizhao/iced_coke" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1849 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Crowd-SAM:SAM as a smart annotator for object detection in crowded scenes", "id": "main", "arxiv_id": "2407.11464", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1850 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-shot Text-guided Infinite Image Synthesis with LLM guidance", "id": "main", "arxiv_id": "2407.12642", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1851 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution", "id": "main", "arxiv_id": "2403.10925", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1852 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Boosting Gaze Object Prediction via Pixel-level Supervision from Vision Foundation Model", "id": "main", "arxiv_id": "2408.01044", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1853 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pro2SAM: Mask Prompt to SAM with Grid Points for Weakly Supervised Object Localization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1854 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Multi-head Contrastive Learning", "id": "main", "arxiv_id": "2310.05615", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1855 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rotated Orthographic Projection for Self-Supervised 3D Human Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1856 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Easing 3D Pattern Reasoning with Side-view Features for Semantic Scene Completion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1857 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DSMix: Distortion-Induced Saliency Map Based Pre-training for No-Reference Image Quality Assessment", "id": "main", "arxiv_id": "2407.03886", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1858 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MO-EMT-NAS: Multi-Objective Continuous Transfer of Architectural Knowledge Between Tasks from Different Datasets", "id": "main", "arxiv_id": "2407.13122", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1859 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text-to-Sticker: Style Tailoring Latent Diffusion Models for Human Expression", "id": "main", "arxiv_id": "2311.10794", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.10794", "n_linked_authors": 9, "upvotes": 24, "num_comments": 1, "n_authors": 17, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1860 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Annealing for Robust Averaging", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1861 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRIDS: Grouped Multiple-Degradation Restoration with Image Degradation Similarity", "id": "main", "arxiv_id": "2407.12273", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1862 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MaxMI: A Maximal Mutual Information Criterion for Manipulation Concept Discovery", "id": "main", "arxiv_id": "2407.15086", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1863 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Quality Mesh Blendshape Generation from Face Videos via Neural Inverse Rendering", "id": "main", "arxiv_id": "2401.08398", "GitHub": [ "https://github.com/grignarder/high-quality-blendshape-generation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1864 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Disentangling Masked Autoencoders for Unsupervised Domain Generalization", "id": "main", "arxiv_id": "2407.07544", "GitHub": [ "https://github.com/rookiehb/dismae" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1865 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Early Anticipation of Driving Maneuvers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1866 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bottom-Up Domain Prompt Tuning for Generalized Face Anti-Spoofing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1867 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization", "id": "main", "arxiv_id": "2407.12667", "GitHub": [ "https://github.com/iris-cyy/sg-nerf" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1868 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Evaluation Consistency of Attribution-based Explanations", "id": "main", "arxiv_id": "2407.19471", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1869 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unified Embedding Alignment for Open-Vocabulary Video Instance Segmentation", "id": "main", "arxiv_id": "2407.07427", "GitHub": [ "https://github.com/fanghaook/ovformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1870 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction", "id": "main", "arxiv_id": "2407.12661", "GitHub": [ "https://github.com/muliphein/infonorm" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1871 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamReward: Aligning Human Preference in Text-to-3D Generation", "id": "main", "arxiv_id": "2403.14613", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14613", "n_linked_authors": 4, "upvotes": 34, "num_comments": 2, "n_authors": 8, "Models": [], "Datasets": [ "yejunliang23/3DRewardDB" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1872 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Action2Sound: Ambient-Aware Generation of Action Sounds from Egocentric Videos", "id": "main", "arxiv_id": "2406.09272", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1873 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Frontier-enhanced Topological Memory with Improved Exploration Awareness for Embodied Visual Navigation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1874 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders", "id": "main", "arxiv_id": "2407.02228", "GitHub": [ "https://github.com/envision-research/mtmamba" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1875 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VITATECS: A Diagnostic Dataset for Temporal Concept Understanding of Video-Language Models", "id": "main", "arxiv_id": "2311.17404", "GitHub": [ "https://github.com/lscpku/vitatecs" ], "paper_page": "https://huggingface.co/papers/2311.17404", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [ "lscpku/VITATECS" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1876 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning a Dynamic Privacy-preserving Camera Robust to Inversion Attacks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1877 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CadVLM: Bridging Language and Vision in the Generation of Parametric CAD Sketches", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1878 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Image Ambient Lighting Normalization", "id": "main", "arxiv_id": "2403.18730", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1879 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FedHide: Federated Learning by Hiding in the Neighbors", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1880 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Toward INT4 Fixed-Point Training via Exploring Quantization Error for Gradients", "id": "main", "arxiv_id": "2407.12637", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12637", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1881 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SelEx: Self-Expertise in Fine-Grained Generalized Category Discovery", "id": "main", "arxiv_id": "2408.14371", "GitHub": [ "https://github.com/sarahrastegar/selex" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1882 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Cooperation Knowledge Distillation for Novel Class Discovery", "id": "main", "arxiv_id": "2407.01930", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1883 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EventBind: Learning a Unified Representation to Bind Them All for Event-based Open-world Understanding", "id": "main", "arxiv_id": "2308.03135", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1884 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection", "id": "main", "arxiv_id": "2406.07487", "GitHub": [ "https://github.com/hyao1/glad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1885 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MedRAT: Unpaired Medical Report Generation via Auxiliary Tasks", "id": "main", "arxiv_id": "2407.03919", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1886 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Are Synthetic Data Useful for Egocentric Hand-Object Interaction Detection?", "id": "main", "arxiv_id": "2312.02672", "GitHub": [ "https://github.com/fpv-iplab/HOI-Synth" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1887 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PoseEmbroider: Towards a 3D, Visual, Semantic-aware Human Pose Representation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1888 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Comparative Study of Image Restoration Networks for General Backbone Network Design", "id": "main", "arxiv_id": "2310.11881", "GitHub": [ "https://github.com/andrew0613/x-restormer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1889 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learned Image Enhancement via Color Naming", "id": "main", "arxiv_id": "2407.09892", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1890 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synthesizing Time-varying BRDFs via Latent Space", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1891 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HoloADMM: High-Quality Holographic Complex Field Recovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1892 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fundamental Matrix Estimation Using Relative Depths", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1893 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion", "id": "main", "arxiv_id": "2403.13327", "GitHub": [ "https://github.com/spectacularai/3dgs-deblur" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1894 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MTaDCS: Moving Trace and Feature Density-based Confidence Sample Selection under Label Noise", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1895 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Open-World Object-based Anomaly Detection via Self-Supervised Outlier Synthesis", "id": "main", "arxiv_id": "2407.15763", "GitHub": [ "https://github.com/kostadinovshalon/oln-ssos" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1896 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GroundUp: Rapid Sketch-Based 3D City Massing", "id": "main", "arxiv_id": "2407.12739", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1897 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Guide-and-Rescale: Self-Guidance Mechanism for Effective Tuning-Free Real Image Editing", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/fusionbrainlab/guide-and-rescale" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1898 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DataDream: Few-shot Guided Dataset Generation", "id": "main", "arxiv_id": "2407.10910", "GitHub": [ "https://github.com/explainableml/datadream" ], "paper_page": "https://huggingface.co/papers/2407.10910", "n_linked_authors": 0, "upvotes": 7, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1899 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LPViT: Low-Power Semi-structured Pruning for Vision Transformers", "id": "main", "arxiv_id": "2407.02068", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1900 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CipherDM: Secure Three-Party Inference for Diffusion Model Sampling", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1901 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weighted Ensemble Models Are Strong Continual Learners", "id": "main", "arxiv_id": "2312.08977", "GitHub": [ "https://github.com/iemprog/cofima" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1902 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GGRt: Towards Generalizable 3D Gaussians without Pose Priors in Real-Time", "id": "main", "arxiv_id": "2403.10147", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1903 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Unified Image Compression Method for Human Perception and Multiple Vision Tasks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1904 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniVoxel: Fast Inverse Rendering by Unified Voxelization of Scene Representation", "id": "main", "arxiv_id": "2407.19542", "GitHub": [ "https://github.com/freemantom/univoxel" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1905 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Audio-visual Generalized Zero-shot Learning the Easy Way", "id": "main", "arxiv_id": "2407.13095", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1906 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PartImageNet++ Dataset: Scaling up Part-based Models for Robust Recognition", "id": "main", "arxiv_id": "2407.10918", "GitHub": [ "https://github.com/LixiaoTHU/PartImageNetPP" ], "paper_page": "https://huggingface.co/papers/2407.10918", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1907 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Equilibrium Transformation for Gamut Expansion and Color Restoration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1908 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dyn-Adapter: Towards Disentangled Representation for Efficient Visual Recognition", "id": "main", "arxiv_id": "2407.14302", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1909 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Physics-informed Knowledge Transfer for Underwater Monocular Depth Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1910 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Robust Nearest Neighbors for Source-Free Domain Adaptation under Class Distribution Shift", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1911 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Chains of Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1912 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Time-Efficient and Identity-Consistent Virtual Try-On Using A Variant of Altered Diffusion Models", "id": "main", "arxiv_id": "2403.07371", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.07371", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1913 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Feature Diversification and Adaptation for Federated Domain Generalization", "id": "main", "arxiv_id": "2407.08245", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1914 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Grounding Image Matching in 3D with MASt3R", "id": "main", "arxiv_id": "2406.09756", "GitHub": [ "https://github.com/naver/mast3r" ], "paper_page": "https://huggingface.co/papers/2406.09756", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [ "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric" ], "Datasets": [], "Spaces": [ "naver/MASt3R", "geyongtao/HumanWild", "zino36/MASt3R", "zino36/Demo" ], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1915 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TP2O: Creative Text Pair-to-Object Generation using Balance Swap-Sampling", "id": "main", "arxiv_id": "2310.01819", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1916 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RoDUS: Robust Decomposition of Static and Dynamic Elements in Urban Scenes", "id": "main", "arxiv_id": "2403.09419", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.09419", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1917 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RecurrentBEV: A Long-term Temporal Fusion Framework for Multi-view 3D Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1918 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Bias Mitigation Without Privileged Information", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1919 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MC-PanDA: Mask Confidence for Panoptic Domain Adaptation", "id": "main", "arxiv_id": "2407.14110", "GitHub": [ "https://github.com/helen1c/mc-panda" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1920 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Neural Deformation Representation for 4D Dynamic Shape Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1921 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dynamic Guidance Adversarial Distillation with Enhanced Teacher Knowledge", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/kunsaram01/DGAD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1922 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Decomposition Betters Tracking Everything Everywhere", "id": "main", "arxiv_id": "2407.06531", "GitHub": [ "https://github.com/qianduoduolr/decomotion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1923 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Straightforward Layer-wise Pruning for More Efficient Visual Adaptation", "id": "main", "arxiv_id": "2407.14330", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1924 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synchronization is All You Need: Exocentric-to-Egocentric Transfer for Temporal Action Segmentation with Unlabeled Synchronized Video Pairs", "id": "main", "arxiv_id": "2312.02638", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1925 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models", "id": "main", "arxiv_id": "2407.08966", "GitHub": [ "https://github.com/ybzh/lapt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1926 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Domain Shifting: A Generalized Solution for Heterogeneous Cross-Modality Person Re-Identification", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1927 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Video Desmoking for Laparoscopic Surgery", "id": "main", "arxiv_id": "2403.11192", "GitHub": [ "https://github.com/zcsrenlongz/selfsvd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1928 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Removing Rows and Columns of Tokens in Vision Transformer enables Faster Dense Prediction without Retraining", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1929 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Continuity Preserving Online CenterLine Graph Learning", "id": "main", "arxiv_id": "2407.11337", "GitHub": [ "https://github.com/xiaomi/cgnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1930 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Decomposition of Neural Discrete Representations for Large-Scale 3D Mapping", "id": "main", "arxiv_id": "2407.15554", "GitHub": [ "https://github.com/minseong-p/dnmap" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1931 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections", "id": "main", "arxiv_id": "2405.11921", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1932 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection", "id": "main", "arxiv_id": "2402.19091", "GitHub": [ "https://github.com/mever-team/rine" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1933 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Vulnerabilities in Spiking Neural Networks: Direct Adversarial Attacks on Raw Event Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1934 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HSR: Holistic 3D Human-Scene Reconstruction from Monocular Videos", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1935 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Online Video Quality Enhancement with Spatial-Temporal Look-up Tables", "id": "main", "arxiv_id": "2311.13616", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1936 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model", "id": "main", "arxiv_id": "2404.03836", "GitHub": [ "https://github.com/amrinkareem/paris3d" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1937 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance", "id": "main", "arxiv_id": "2403.17377", "GitHub": [ "https://github.com/KU-CVLAB/Perturbed-Attention-Guidance" ], "paper_page": "https://huggingface.co/papers/2403.17377", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 9, "Models": [ "multimodalart/sdxl_perturbed_attention_guidance", "hyoungwoncho/sd_perturbed_attention_guidance", "jyoung105/sdxl_perturbed_attention_guidance_i2i", "hyoungwoncho/sd_perturbed_attention_guidance_inpaint", "hyoungwoncho/sd_perturbed_attention_guidance_controlnet", "hyoungwoncho/sd_perturbed_attention_guidance_sr", "jyoung105/sd15_perturbed_attention_guidance_i2i", "wanghx47/sdxl_perturbed_attention_guidance" ], "Datasets": [ "diffusers/community-pipelines-mirror" ], "Spaces": [ "multimodalart/perturbed-attention-guidance-sdxl", "common-canvas/CommonCanvas", "multimodalart/perturbed-attention-guidance-mobius" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1938 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Localization and Expansion: A Decoupled Framework for Point Cloud Few-shot Semantic Segmentation", "id": "main", "arxiv_id": "2408.13752", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1939 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Think before Placement: Common Sense Enhanced Transformer for Object Placement", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1940 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Oulu Remote-photoplethysmography Physical Domain Attacks Database (ORPDAD)", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1941 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Leveraging Imperfect Restoration for Data Availability Attack", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1942 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Weakly Supervised Semantic Segmentation with 2D Vision-Language Guidance", "id": "main", "arxiv_id": "2407.09826", "GitHub": [ "https://github.com/xuxiaoxxxx/3DSS-VLG" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1943 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-set Domain Adaptation via Joint Error based Multi-class Positive and Unlabeled Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1944 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DoubleTake: Geometry Guided Depth Estimation", "id": "main", "arxiv_id": "2406.18387", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1945 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Empowering Embodied Visual Tracking with Visual Foundation Models and Offline RL", "id": "main", "arxiv_id": "2404.09857", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1946 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting", "id": "main", "arxiv_id": "2401.01339", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.01339", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1947 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models", "id": "main", "arxiv_id": "2403.09792", "GitHub": [ "https://github.com/rucaibox/hades" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1948 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Edge-Guided Fusion and Motion Augmentation for Event-Image Stereo", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1949 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MetaWeather: Few-Shot Weather-Degraded Image Restoration", "id": "main", "arxiv_id": "2308.14334", "GitHub": [ "https://github.com/rangewing/metaweather" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1950 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CPT-VR: Improving Surface Rendering via Closest Point Transform with View-Reflection Appearance", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1951 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Close, But Not There: Boosting Geographic Distance Sensitivity in Visual Place Recognition", "id": "main", "arxiv_id": "2407.02422", "GitHub": [ "https://github.com/serizba/cliquemining" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1952 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HiFi-123: Towards High-fidelity One Image to 3D Content Generation", "id": "main", "arxiv_id": "2310.06744", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2310.06744", "n_linked_authors": 2, "upvotes": 2, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1953 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View", "id": "main", "arxiv_id": "2407.12870", "GitHub": [ "https://github.com/camwew/Cellular-Recognition_DA_CC" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1954 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Good Teachers Explain: Explanation-Enhanced Knowledge Distillation", "id": "main", "arxiv_id": "2402.03119", "GitHub": [ "https://github.com/m-parchami/goodteachersexplain" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1955 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation", "id": "main", "arxiv_id": "2407.11820", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1956 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models", "id": "main", "arxiv_id": "2312.03517", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1957 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "M\u00f6bius Transform for Mitigating Perspective Distortions in Representation Learning", "id": "main", "arxiv_id": "2405.02296", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1958 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TAG: Text Prompt Augmentation for Zero-Shot Out-of-Distribution Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1959 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CVT-Occ: Cost Volume Temporal Fusion for 3D Occupancy Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1960 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments", "id": "main", "arxiv_id": "2404.10527", "GitHub": [ "https://github.com/fraunhoferhhi/spvloc" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1961 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Continual Learning and Unknown Object Discovery in 3D Scenes via Self-Distillation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1962 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffCD: A Symmetric Differentiable Chamfer Distance for Neural Implicit Surface Fitting", "id": "main", "arxiv_id": "2407.17058", "GitHub": [ "https://github.com/linusnie/diffcd" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1963 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking", "id": "main", "arxiv_id": "2407.10151", "GitHub": [ "https://github.com/lorenzovaquero/busca" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1964 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection", "id": "main", "arxiv_id": "2407.15771", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1965 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Region-Native Visual Tokenization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1966 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization", "id": "main", "arxiv_id": "2407.14257", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.14257", "n_linked_authors": 1, "upvotes": 4, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [ "maeyounes/SparseCraft-dataset" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1967 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sketch2Vox: Learning 3D Reconstruction from a Single Monocular Sketch Image", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1968 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing", "id": "main", "arxiv_id": "2404.18929", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1969 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "The Lottery Ticket Hypothesis in Denoising: Towards Semantic-Driven Initialization", "id": "main", "arxiv_id": "2312.08872", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1970 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diffusion for Out-of-Distribution Detection on Road Scenes and Beyond", "id": "main", "arxiv_id": "2407.15739", "GitHub": [ "https://github.com/lmb-freiburg/diffusion-for-ood" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1971 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Directional Parameterization in Neural Implicit Surface Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1972 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Comprehensive Study of Multimodal Large Language Models for Image Quality Assessment", "id": "main", "arxiv_id": "2403.10854", "GitHub": [ "https://github.com/tianhewu/mllms-for-iqa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1973 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semi-Supervised Teacher-Reference-Student Architecture for Action Quality Assessment", "id": "main", "arxiv_id": "2407.19675", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1974 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Neural Video Representation with Temporally Coherent Modulation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1975 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ref-AVS: Refer and Segment Objects in Audio-Visual Scenes", "id": "main", "arxiv_id": "2407.10957", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.10957", "n_linked_authors": 2, "upvotes": 23, "num_comments": 3, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1976 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamScene: 3D Gaussian-based Text-to-3D Scene Generation via Formation Pattern Sampling", "id": "main", "arxiv_id": "2404.03575", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1977 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-modal Crowd Counting via a Broker Modality", "id": "main", "arxiv_id": "2407.07518", "GitHub": [ "https://github.com/henrycilence/broker-modality-crowd-counting" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1978 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FastPCI: Motion-Structure Guided Fast Point Cloud Frame Interpolation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1979 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Made to Order: Discovering monotonic temporal changes via self-supervised video ordering", "id": "main", "arxiv_id": "2404.16828", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1980 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration", "id": "main", "arxiv_id": "2407.10142", "GitHub": [ "https://github.com/yaorz97/parenet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1981 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Open-Vocabulary RGB-Thermal Semantic Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1982 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MeshVPR: Citywide Visual Place Recognition Using 3D Meshes", "id": "main", "arxiv_id": "2406.02776", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1983 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Can Textual Semantics Mitigate Sounding Object Segmentation Preference?", "id": "main", "arxiv_id": "2407.10947", "GitHub": [ "https://github.com/gewu-lab/sounding-object-segmentation-preference" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1984 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Concise Plane Arrangements for Low-Poly Surface and Volume Modelling", "id": "main", "arxiv_id": "2404.06154", "GitHub": [ "https://github.com/raphaelsulzer/compod" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1985 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "KeypointDETR: An End-to-End 3D Keypoint Detector", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1986 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ViPer: Visual Personalization of Generative Models via Individual Preference Learning", "id": "main", "arxiv_id": "2407.17365", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.17365", "n_linked_authors": 3, "upvotes": 11, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1987 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MLPHand: Real Time Multi-View 3D Hand Reconstruction via MLP Modeling", "id": "main", "arxiv_id": "2406.16137", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1988 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "uCAP: An Unsupervised Prompting Method for Vision-Language Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1989 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LHRS-Bot: Empowering Remote Sensing with VGI-Enhanced Large Multimodal Language Model", "id": "main", "arxiv_id": "2402.02544", "GitHub": [ "https://github.com/NJU-LHRS/LHRS-Bot" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1990 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "How Far Can a 1-Pixel Camera Go? Solving Vision Tasks using Photoreceptors and Computationally Designed Visual Morphology", "id": "main", "arxiv_id": "2406.11769", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1991 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MONTAGE: Monitoring Training for Attribution of Generative Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1992 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Affective Visual Dialog: A Large-Scale Benchmark for Emotional Reasoning Based on Visually Grounded Conversations", "id": "main", "arxiv_id": "2308.16349", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2308.16349", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [ "Kilich/affect-visdial" ], "Spaces": [ "Kilich/affective-visdial" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1993 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Watching it in Dark: A Target-aware Representation Learning Framework for High-Level Vision Tasks in Low Illumination", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1994 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-supervised visual learning from interactions with objects", "id": "main", "arxiv_id": "2407.06704", "GitHub": [ "https://github.com/trieschlab/aassl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1995 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation", "id": "main", "arxiv_id": "2408.16547", "GitHub": [ "https://github.com/yc-che/op-align" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 1996 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BAFFLE: A Baseline of Backpropagation-Free Federated Learning", "id": "main", "arxiv_id": "2301.12195", "GitHub": [ "https://github.com/fenghz/baffle" ], "paper_page": "https://huggingface.co/papers/2301.12195", "n_linked_authors": 2, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 1997 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Sequential Representation Learning via Static-Dynamic Conditional Disentanglement", "id": "main", "arxiv_id": "2408.05599", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 1998 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OmniNOCS: A unified NOCS dataset and model for 3D lifting of 2D objects", "id": "main", "arxiv_id": "2407.08711", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.08711", "n_linked_authors": 2, "upvotes": 5, "num_comments": 2, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 1999 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3R-INN: How to be climate friendly while consuming/delivering videos?", "id": "main", "arxiv_id": "2403.11760", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2000 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Deep Unrolled Model for Accelerated MRI Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2001 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Robust Full Low-bit Quantization of Super Resolution Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2002 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Omni6DPose: A Benchmark and Model for Universal 6D Object Pose Estimation and Tracking", "id": "main", "arxiv_id": "2406.04316", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2003 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Diverse Text-to-3D Synthesis with Augmented Text Embedding", "id": "main", "arxiv_id": "2312.02192", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2004 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation", "id": "main", "arxiv_id": "2403.14429", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2005 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLMCO4MR: LLMs-aided Neural Combinatorial Optimization for Ancient Manuscript Restoration from Fragments with Case Studies on Dunhuang", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2006 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks", "id": "main", "arxiv_id": "2312.06795", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06795", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2007 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdversariaLeak: External Information Leakage Attack Using Adversarial Samples on Face Recognition Systems", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2008 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "iHuman: Instant Animatable Digital Humans From Monocular Videos", "id": "main", "arxiv_id": "2407.11174", "GitHub": [ "https://github.com/pramishp/ihuman" ], "paper_page": "https://huggingface.co/papers/2407.11174", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2009 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SphereHead: Stable 3D Full-head Synthesis with Spherical Tri-plane Representation", "id": "main", "arxiv_id": "2404.05680", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2010 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond Pixels: Semi-Supervised Semantic Segmentation with a Multi-scale Patch-based Multi-Label Classifier", "id": "main", "arxiv_id": "2407.04036", "GitHub": [ "https://github.com/prantikbubun/beyond-pixels" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2011 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering", "id": "main", "arxiv_id": "2403.09622", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.09622", "n_linked_authors": 3, "upvotes": 16, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [ "GlyphByT5/GlyphByT5Pretraining" ], "Spaces": [ "LPDoctor/Glyph-SDXL-v2", "bghira/Glyph-SDXL-v2" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2012 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Solving the inverse problem of microscopy deconvolution with a residual Beylkin-Coifman-Rokhlin neural network", "id": "main", "arxiv_id": "2407.03239", "GitHub": [ "https://github.com/leeroyhannover/m-rbcr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2013 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Face Reconstruction Transfer Attack as Out-of-Distribution Generalization", "id": "main", "arxiv_id": "2407.02403", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2014 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models", "id": "main", "arxiv_id": "2312.00947", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2015 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems", "id": "main", "arxiv_id": "2407.10641", "GitHub": [ "https://github.com/hj-harry/ddip3d" ], "paper_page": "https://huggingface.co/papers/2407.10641", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2016 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weighting Pseudo-Labels via High-Activation Feature Index Similarity and Object Detection for Semi-Supervised Segmentation", "id": "main", "arxiv_id": "2407.12630", "GitHub": [ "https://github.com/cvlab-stonybrook/Weighting-Pseudo-Labels" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2017 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PartGLEE: A Foundation Model for Recognizing and Parsing Any Objects", "id": "main", "arxiv_id": "2407.16696", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2018 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WTS: A Pedestrian-Centric Traffic Video Dataset for Fine-grained Spatial-Temporal Understanding", "id": "main", "arxiv_id": "2407.15350", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2019 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spiking Wavelet Transformer", "id": "main", "arxiv_id": "2403.11138", "GitHub": [ "https://github.com/bic-l/spiking-wavelet-transformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2020 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WAVE: Warping DDIM Inversion Features for Zero-shot Text-to-Video Editing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2021 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PDT Uav Target Detection Dataset for Pests and Diseases Tree", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2022 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hypernetworks for Generalizable BRDF Representation", "id": "main", "arxiv_id": "2311.15783", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2023 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Photon Inhibition for Energy-Efficient Single-Photon Imaging", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2024 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "COD: Learning Conditional Invariant Representation for Domain Adaptation Regression", "id": "main", "arxiv_id": "2408.06638", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2025 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RANRAC: Robust Neural Scene Representations via Random Ray Consensus", "id": "main", "arxiv_id": "2312.09780", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2026 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LayerDiff: Exploring Text-guided Multi-layered Composable Image Synthesis via Layer-Collaborative Diffusion Model", "id": "main", "arxiv_id": "2403.11929", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2027 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Characterizing Model Robustness via Natural Input Gradients", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2028 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UpFusion: Novel View Diffusion from Unposed Sparse View Observations", "id": "main", "arxiv_id": "2312.06661", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06661", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2029 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding", "id": "main", "arxiv_id": "2309.04561", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2309.04561", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2030 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SIMBA: Split Inference - Mechanisms, Benchmarks and Attacks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2031 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tuning-Free Image Customization with Image and Text Guidance", "id": "main", "arxiv_id": "2403.12658", "GitHub": [ "https://github.com/zrealli/TIGIC" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2032 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification", "id": "main", "arxiv_id": "2407.08813", "GitHub": [ "https://github.com/harvard-ophthalmology-ai-lab/fairdomain" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2033 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Emerging Property of Masked Token for Effective Pre-training", "id": "main", "arxiv_id": "2404.08330", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2034 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DQ-DETR: DETR with Dynamic Query for Tiny Object Detection", "id": "main", "arxiv_id": "2404.03507", "GitHub": [ "https://github.com/katie0723/dq-detr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2035 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation", "id": "main", "arxiv_id": "2405.01527", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2036 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians", "id": "main", "arxiv_id": "2403.10427", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.10427", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2037 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Gaussian in the wild: 3D Gaussian Splatting for Unconstrained Image Collections", "id": "main", "arxiv_id": "2403.15704", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.15704", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2038 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Few-shot Defect Image Generation based on Consistency Modeling", "id": "main", "arxiv_id": "2408.00372", "GitHub": [ "https://github.com/ffdd-diffusion/defectdiffu" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2039 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Taming CLIP for Fine-grained and Structured Visual Understanding of Museum Exhibits", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/insait-institute/muze" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2040 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CLIP-DPO: Vision-Language Models as a Source of Preference for Fixing Hallucinations in LVLMs", "id": "main", "arxiv_id": "2408.10433", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2041 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Masked Motion Prediction with Semantic Contrast for Point Cloud Sequence Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2042 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Prompt-Based Test-Time Real Image Dehazing: A Novel Pipeline", "id": "main", "arxiv_id": "2309.17389", "GitHub": [ "https://github.com/cecret3350/PTTD-Dehazing" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2043 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Video Editing via Factorized Diffusion Distillation", "id": "main", "arxiv_id": "2403.09334", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.09334", "n_linked_authors": 6, "upvotes": 21, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [ "facebook/tgve_plus" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2044 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Trackastra: Transformer-based cell tracking for live-cell microscopy", "id": "main", "arxiv_id": "2405.15700", "GitHub": [ "https://github.com/weigertlab/trackastra" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2045 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion", "id": "main", "arxiv_id": "2403.05121", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.05121", "n_linked_authors": 4, "upvotes": 20, "num_comments": 2, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2046 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers", "id": "main", "arxiv_id": "2401.08740", "GitHub": [ "https://github.com/willisma/sit" ], "paper_page": "https://huggingface.co/papers/2401.08740", "n_linked_authors": 4, "upvotes": 11, "num_comments": 1, "n_authors": 6, "Models": [], "Datasets": [ "cloneofsimo/imagenet.int8" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2047 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM", "id": "main", "arxiv_id": "2407.13338", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2048 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Forecasting Future Videos from Novel Views via Disentangled 3D Scene Representation", "id": "main", "arxiv_id": "2407.21450", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2049 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GMM-IKRS: Gaussian Mixture Models for Interpretable Keypoint Refinement and Scoring", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2050 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Get Your Embedding Space in Order: Domain-Adaptive Regression for Forest Monitoring", "id": "main", "arxiv_id": "2405.00514", "GitHub": [ "https://github.com/sizhuoli/Domain_adaptive_regression_GOL" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2051 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ObjectDrop: Bootstrapping Counterfactuals for Photorealistic Object Removal and Insertion", "id": "main", "arxiv_id": "2403.18818", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.18818", "n_linked_authors": 0, "upvotes": 24, "num_comments": 3, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2052 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CoDA: Instructive Chain-of-Domain Adaptation with Severity-Aware Visual Prompt Tuning", "id": "main", "arxiv_id": "2403.17369", "GitHub": [ "https://github.com/Cuzyoung/CoDA" ], "paper_page": "https://huggingface.co/papers/2403.17369", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2053 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Curved Diffusion: A Generative Model With Optical Geometry Control", "id": "main", "arxiv_id": "2311.17609", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2054 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians", "id": "main", "arxiv_id": "2403.14166", "GitHub": [ "https://github.com/fatpeter/mini-splatting" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2055 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MeshSegmenter: Zero-Shot Mesh Segmentation via Texture Synthesis", "id": "main", "arxiv_id": "2407.13675", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2056 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation", "id": "main", "arxiv_id": "2403.14183", "GitHub": [ "https://github.com/cubeyoung/OTSeg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2057 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures", "id": "main", "arxiv_id": "2404.03010", "GitHub": [ "https://github.com/MIC-DKFZ/Skeleton-Recall" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2058 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Conceptual Codebook Learning for Vision-Language Models", "id": "main", "arxiv_id": "2407.02350", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2059 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LingoQA: Video Question Answering for Autonomous Driving", "id": "main", "arxiv_id": "2312.14115", "GitHub": [ "https://github.com/wayveai/lingoqa" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2060 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AnimateMe: 4D Facial Expressions via Diffusion Models", "id": "main", "arxiv_id": "2403.17213", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2061 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HaloQuest: A Visual Hallucination Dataset for Advancing Multimodal Reasoning", "id": "main", "arxiv_id": "2407.15680", "GitHub": [ "https://github.com/google/haloquest" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2062 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LATTE3D: Large-scale Amortized Text-To-Enhanced3D Synthesis", "id": "main", "arxiv_id": "2403.15385", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.15385", "n_linked_authors": 3, "upvotes": 6, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2063 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PreSight: Enhancing Autonomous Vehicle Perception with City-Scale NeRF Priors", "id": "main", "arxiv_id": "2403.09079", "GitHub": [ "https://github.com/yuantianyuan01/presight" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2064 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention", "id": "main", "arxiv_id": "2403.11052", "GitHub": [ "https://github.com/renjie3/memattn" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2065 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning", "id": "main", "arxiv_id": "2407.09271", "GitHub": [ "https://github.com/fischer-tom/inemo" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2066 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Context Diffusion: In-Context Aware Image Generation", "id": "main", "arxiv_id": "2312.03584", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.03584", "n_linked_authors": 5, "upvotes": 14, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2067 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pose Guided Fine-Grained Sign Language Video Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2068 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RAP: Retrieval-Augmented Planner for Adaptive Procedure Planning in Instructional Videos", "id": "main", "arxiv_id": "2403.18600", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2069 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Certifiably Robust Image Watermark", "id": "main", "arxiv_id": "2407.04086", "GitHub": [ "https://github.com/zhengyuan-jiang/Watermark-Library" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2070 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery", "id": "main", "arxiv_id": "2407.14499", "GitHub": [ "https://github.com/neuroexplicit-saar/discover-then-name" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2071 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Online Zero-Shot Classification with CLIP", "id": "main", "arxiv_id": "2408.13320", "GitHub": [ "https://github.com/idstcv/onzeta" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2072 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SeA: Semantic Adversarial Augmentation for Last Layer Features from Unsupervised Representation Learning", "id": "main", "arxiv_id": "2408.13351", "GitHub": [ "https://github.com/idstcv/sea" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2073 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents", "id": "main", "arxiv_id": "2312.01537", "GitHub": [ "https://github.com/feddg23/feddg-main" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2074 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rethinking Fast Adversarial Training: A Splitting Technique To Overcome Catastrophic Overfitting", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2075 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Quality Assured: Rethinking Annotation Strategies in Imaging AI", "id": "main", "arxiv_id": "2407.17596", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2076 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BRIDGE: Bridging Gaps in Image Captioning Evaluation with Stronger Visual Cues", "id": "main", "arxiv_id": "2407.20341", "GitHub": [ "https://github.com/aimagelab/bridge-score" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2077 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Plausibility Evaluation for Generated Designs with Denoising Autoencoder", "id": "main", "arxiv_id": "2403.05352", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2078 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weakly-Supervised 3D Hand Reconstruction with Knowledge Prior and Uncertainty Guidance", "id": "main", "arxiv_id": "2407.12307", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2079 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Reconstruction of Objects in Hands without Real World 3D Supervision", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2080 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "To Supervise or Not to Supervise: Understanding and Addressing the Key Challenges of Point Cloud Transfer Learning", "id": "main", "arxiv_id": "2403.17869", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2081 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Parameterized Quasi-Physical Simulators for Dexterous Manipulations Transfer", "id": "main", "arxiv_id": "2404.07988", "GitHub": [ "https://github.com/meowuu7/quasisim" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2082 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "3D Hand Pose Estimation in Everyday Egocentric Images", "id": "main", "arxiv_id": "2312.06583", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06583", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2083 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops", "id": "main", "arxiv_id": "2312.06594", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2084 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Neuro-Symbolic Video Understanding", "id": "main", "arxiv_id": "2403.11021", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2085 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Optimization-based Uncertainty Attribution Via Learning Informative Perturbations", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2086 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Context-Aware Action Recognition: Introducing a Comprehensive Dataset for Behavior Contrast", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2087 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency", "id": "main", "arxiv_id": "2311.16447", "GitHub": [ "https://github.com/melon-xu/toposemiseg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2088 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Compressed Sensing with Diffusion-Based Posterior Sampling", "id": "main", "arxiv_id": "2407.08256", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2089 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Instant Uncertainty Calibration of NeRFs Using a Meta-Calibrator", "id": "main", "arxiv_id": "2312.02350", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2090 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MetaAT: Active Testing for Label-Efficient Evaluation of Dense Recognition Tasks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2091 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Salience-Based Adaptive Masking: Revisiting Token Dynamics for Enhanced Pre-training", "id": "main", "arxiv_id": "2404.08327", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2092 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Data Augmentation via Latent Diffusion for Saliency Prediction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2093 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Explorative Inbetweening of Time and Space", "id": "main", "arxiv_id": "2403.14611", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.14611", "n_linked_authors": 3, "upvotes": 11, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2094 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Diffusion Model for Simulation Ready Coronary Anatomy with Morpho-skeletal Control", "id": "main", "arxiv_id": "2407.15631", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2095 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Make Keypoints Sub-Pixel Accurate", "id": "main", "arxiv_id": "2407.11668", "GitHub": [ "https://github.com/kimsinjeong/keypt2subpx" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2096 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Imaging with Confidence: Uncertainty Quantification for High-dimensional Undersampled MR Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2097 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generalizable Human Gaussians for Sparse View Synthesis", "id": "main", "arxiv_id": "2407.12777", "GitHub": [ "https://github.com/humansensinglab/Generalizable-Human-Gaussians" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2098 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DrivingDiffusion: Layout-Guided Multi-View Driving Scenarios Video Generation with Latent Diffusion Model", "id": "main", "arxiv_id": "2310.07771", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2310.07771", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2099 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Evaluating the Adversarial Robustness of Semantic Segmentation: Trying Harder Pays Off", "id": "main", "arxiv_id": "2407.09150", "GitHub": [ "https://github.com/szegedai/robust-segmentation-evaluation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2100 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SkyScenes: A Synthetic Dataset for Aerial Scene Understanding", "id": "main", "arxiv_id": "2312.06719", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06719", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [ "hoffman-lab/SkyScenes" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2101 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Large-Scale Multi-Hypotheses Cell Tracking Using Ultrametric Contours Maps", "id": "main", "arxiv_id": "2308.04526", "GitHub": [ "https://github.com/royerlab/ultrack" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2102 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction", "id": "main", "arxiv_id": "2407.04237", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.04237", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 10, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2103 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation", "id": "main", "arxiv_id": "2309.17074", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2309.17074", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2104 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PFedEdit: Personalized Federated Learning via Automated Model Editing", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2105 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "De-Confusing Pseudo-Labels in Source-Free Domain Adaptation", "id": "main", "arxiv_id": "2401.01650", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2106 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GenerateCT: Text-Conditional Generation of 3D Chest CT Volumes", "id": "main", "arxiv_id": "2305.16037", "GitHub": [ "https://github.com/ibrahimethemhamamci/generatect" ], "paper_page": "https://huggingface.co/papers/2305.16037", "n_linked_authors": 3, "upvotes": 2, "num_comments": 0, "n_authors": 11, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2107 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EraseDraw : Learning to Insert Objects by Erasing Them from Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2108 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SuperFedNAS: Cost-Efficient Federated Neural Architecture Search for On-Device Inference", "id": "main", "arxiv_id": "2301.10879", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2109 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Reliable Evaluation and Fast Training of Robust Semantic Segmentation Models", "id": "main", "arxiv_id": "2306.12941", "GitHub": [ "https://github.com/nmndeep/robust-segmentation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2110 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contrastive Region Guidance: Improving Grounding in Vision-Language Models without Training", "id": "main", "arxiv_id": "2403.02325", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2111 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Keypoint Promptable Re-Identification", "id": "main", "arxiv_id": "2407.18112", "GitHub": [ "https://github.com/vlsomers/keypoint_promptable_reidentification" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2112 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas", "id": "main", "arxiv_id": "2408.15660", "GitHub": [ "https://github.com/aimagelab/mad" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2113 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting", "id": "main", "arxiv_id": "2312.00112", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2114 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Animal Avatars: Reconstructing Animatable 3D Animals from Casual Videos", "id": "main", "arxiv_id": "2403.17103", "GitHub": [ "https://github.com/facebookresearch/AnimalAvatar" ], "paper_page": "https://huggingface.co/papers/2403.17103", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2115 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Perceptual Evaluation of Audio-Visual Synchrony Grounded in Viewers\u2019 Opinion Scores", "id": "main", "arxiv_id": "2404.07336", "GitHub": [ "https://github.com/amazon-science/avgen-eval-toolkit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2116 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MMVR: Millimeter-wave Multi-View Radar Dataset and Benchmark for Indoor Perception", "id": "main", "arxiv_id": "2406.10708", "GitHub": [ "https://zenodo.org/record/12611978" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2117 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Training A Secure Model against Data-Free Model Extraction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2118 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EpipolarGAN: Omnidirectional Image Synthesis with Explicit Camera Control", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2119 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TriNeRFLet: A Wavelet Based Triplane NeRF Representation", "id": "main", "arxiv_id": "2401.06191", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.06191", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 2, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2120 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EgoBody3M: Egocentric Body Tracking on a VR Headset using a Diverse Dataset", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2121 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Photorealistic Video Generation with Diffusion Models", "id": "main", "arxiv_id": "2312.06662", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.06662", "n_linked_authors": 3, "upvotes": 23, "num_comments": 2, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2122 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "RAVE: Residual Vector Embedding for CLIP-Guided Backlit Image Enhancement", "id": "main", "arxiv_id": "2404.01889", "GitHub": [ "https://github.com/atmyre/rave" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2123 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models", "id": "main", "arxiv_id": "2312.01261", "GitHub": [ "https://github.com/TIBET-AI/TIBET" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2124 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Object-Aware Query Perturbation for Cross-Modal Image-Text Retrieval", "id": "main", "arxiv_id": "2407.12346", "GitHub": [ "https://github.com/NEC-N-SOGI/query-perturbation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2125 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation", "id": "main", "arxiv_id": "2408.00331", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2126 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Ex2Eg-MAE: A Framework for Adaptation of Exocentric Video Masked Autoencoders for Egocentric Social Role Understanding", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2127 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Audio-Visual Soundscape Stylization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2128 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAVE: Protagonist Diversification with Structure Agnostic Video Editing", "id": "main", "arxiv_id": "2312.02503", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2129 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VideoAgent: Long-form Video Understanding with Large Language Model as Agent", "id": "main", "arxiv_id": "2403.10517", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.10517", "n_linked_authors": 2, "upvotes": 30, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2130 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Meta-optimized Angular Margin Contrastive Framework for Video-Language Representation Learning", "id": "main", "arxiv_id": "2407.03788", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2131 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Source-Free Domain-Invariant Performance Prediction", "id": "main", "arxiv_id": "2408.02209", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2132 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Robustness to Model Inversion Attacks via Sparse Coding Architectures", "id": "main", "arxiv_id": "2403.14772", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2133 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort", "id": "main", "arxiv_id": "2407.08947", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2134 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Direct Distillation between Different Domains", "id": "main", "arxiv_id": "2401.06826", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2135 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contrastive ground-level image and remote sensing pre-training improves representation learning for natural world imagery", "id": "main", "arxiv_id": "", "GitHub": [], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [ "andyvhuynh/NatureMultiView" ], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2136 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "V-Trans4Style: Visual Transition Recommendation for Video Production Style Adaptation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2137 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GRiT: A Generative Region-to-text Transformer for Object Understanding", "id": "main", "arxiv_id": "2212.00280", "GitHub": [ "https://github.com/JialianW/GRiT" ], "paper_page": "https://huggingface.co/papers/2212.00280", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [ "Vishakaraj/Dense_Captioning_-_GRiT" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2138 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LRSLAM: Low-rank Representation of Signed Distance Fields in Dense Visual SLAM System", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2139 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Representation for Multitask Learning through Self-Supervised Auxiliary Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2140 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Neural Poisson Solver: A Universal and Continuous Framework for Natural Signal Blending", "id": "main", "arxiv_id": "2407.08457", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2141 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Geometry Fidelity for Spherical Images", "id": "main", "arxiv_id": "2407.18207", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2142 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling", "id": "main", "arxiv_id": "2403.04926", "GitHub": [ "https://github.com/snldmt/bags" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2143 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CroMo-Mixup: Augmenting Cross-Model Representations for Continual Self-Supervised Learning", "id": "main", "arxiv_id": "2407.12188", "GitHub": [ "https://github.com/erummushtaq/cromo-mixup" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2144 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "WoVoGen: World Volume-aware Diffusion for Controllable Multi-camera Driving Scene Generation", "id": "main", "arxiv_id": "2312.02934", "GitHub": [ "https://github.com/fudan-zvg/wovogen" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2145 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Benchmarking Spurious Bias in Few-Shot Image Classifiers", "id": "main", "arxiv_id": "", "GitHub": [ "https://github.com/gtzheng/fewstab" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2146 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TurboEdit: Real-time text-based disentangled real image editing", "id": "main", "arxiv_id": "2408.08332", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.08332", "n_linked_authors": 0, "upvotes": 16, "num_comments": 3, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2147 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Soft Shadow Diffusion (SSD): Physics-inspired Learning for 3D Computational Periscopy", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2148 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Augmented Neural Fine-tuning for Efficient Backdoor Purification", "id": "main", "arxiv_id": "2407.10052", "GitHub": [ "https://github.com/nazmul-karim170/NFT-Augmented-Backdoor-Purification" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2149 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "REDIR: Refocus-free Event-based De-occlusion Image Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2150 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Free-Editor: Zero-shot Text-driven 3D Scene Editing", "id": "main", "arxiv_id": "2312.13663", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2151 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DPA-Net: Structured 3D Abstraction from Sparse Views via Differentiable Primitive Assembly", "id": "main", "arxiv_id": "2404.00875", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2152 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Empirical Study and Analysis of Text-to-Image Generation Using Large Language Model-Powered Textual Representation", "id": "main", "arxiv_id": "2405.12914", "GitHub": [ "https://github.com/llm-conditioned-diffusion/llm-conditioned-diffusion.github.io" ], "paper_page": "https://huggingface.co/papers/2405.12914", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2153 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Few-shot Class Incremental Learning with Attention-Aware Self-Adaptive Prompt", "id": "main", "arxiv_id": "2403.09857", "GitHub": [ "https://github.com/dawnliu35/fscil-asp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2154 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models", "id": "main", "arxiv_id": "2403.06764", "GitHub": [ "https://github.com/pkunlp-icler/fastv" ], "paper_page": "https://huggingface.co/papers/2403.06764", "n_linked_authors": 5, "upvotes": 24, "num_comments": 2, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2155 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generalizable Symbolic Optimizer Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2156 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Online Continuous Generalized Category Discovery", "id": "main", "arxiv_id": "2408.13492", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2157 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bridging Different Language Models and Generative Vision Models for Text-to-Image Generation", "id": "main", "arxiv_id": "2403.07860", "GitHub": [ "https://github.com/shihaozhaozsh/lavi-bridge" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2158 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tackling Structural Hallucination in Image Translation with Local Diffusion", "id": "main", "arxiv_id": "2404.05980", "GitHub": [ "https://github.com/edshkim98/localdiffusion-hallucination" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2159 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchical Separable Video Transformer for Snapshot Compressive Imaging", "id": "main", "arxiv_id": "2407.11946", "GitHub": [ "https://github.com/pwangcs/hisvit" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2160 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unified Medical Image Pre-training in Language-Guided Common Semantic Space", "id": "main", "arxiv_id": "2311.14851", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2161 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Vulnerability of Skip Connections to Model Inversion Attacks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2162 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adversarial Robustification via Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2407.18658", "GitHub": [ "https://github.com/choidae1/robustify-t2i" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2163 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Overcome Modal Bias in Multi-modal Federated Learning via Balanced Modality Selection", "id": "main", "arxiv_id": "2401.00403", "GitHub": [ "https://github.com/fanyunfeng-bit/balanced-modality-selection-in-mfl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2164 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector", "id": "main", "arxiv_id": "2407.19308", "GitHub": [ "https://github.com/zood123/comet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2165 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reinforcement Learning via Auxillary Task Distillation", "id": "main", "arxiv_id": "2406.17168", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2166 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DHR: Dual Features-Driven Hierarchical Rebalancing in Inter- and Intra-Class Regions for Weakly-Supervised Semantic Segmentation", "id": "main", "arxiv_id": "2404.00380", "GitHub": [ "https://github.com/shjo-april/DHR" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2167 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pre-trained Visual Dynamics Representations for Efficient Policy Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2168 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields", "id": "main", "arxiv_id": "2405.19678", "GitHub": [ "https://github.com/hardyho/ultrametric_feature_fields" ], "paper_page": "https://huggingface.co/papers/2405.19678", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2169 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Plug and Play: A Representation Enhanced Domain Adapter for Collaborative Perception", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2170 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models", "id": "main", "arxiv_id": "2407.10299", "GitHub": [ "https://github.com/Yuchen413/AnomalyRuler" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2171 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SAM4MLLM: Enhance Multi-Modal Large Language Model for Referring Expression Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2172 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TTD: Text-Tag Self-Distillation Enhancing Image-Text Alignment in CLIP to Alleviate Single Tag Bias", "id": "main", "arxiv_id": "2404.00384", "GitHub": [ "https://github.com/shjo-april/TTD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2173 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Quantized Adaptive Conditions for Diffusion Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2174 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay", "id": "main", "arxiv_id": "2407.15773", "GitHub": [ "https://github.com/yuyongcan/stamp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2175 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Remove Projective LiDAR Depthmap Artifacts via Exploiting Epipolar Geometry", "id": "main", "arxiv_id": "2407.19154", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2176 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention", "id": "main", "arxiv_id": "2407.06683", "GitHub": [ "https://github.com/alfredgu001324/MapBEVPrediction" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2177 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "High-Fidelity Modeling of Generalizable Wrinkle Deformation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2178 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Instruction Tuning-free Visual Token Complement for Multimodal LLMs", "id": "main", "arxiv_id": "2408.05019", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2179 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection", "id": "main", "arxiv_id": "2408.02484", "GitHub": [ "https://github.com/ltttpku/cmmp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2180 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Training-free Video Temporal Grounding using Large-scale Pre-trained Models", "id": "main", "arxiv_id": "2408.16219", "GitHub": [ "https://github.com/minghangz/tfvtg" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2181 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Revisit Self-supervision with Local Structure-from-Motion", "id": "main", "arxiv_id": "2407.19166", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2182 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2183 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Learning of Event-based Dense Representation using Hierarchical Memories with Adaptive Update", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2184 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SNP: Structured Neuron-level Pruning to Preserve Attention Scores", "id": "main", "arxiv_id": "2404.11630", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2185 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Multi-Granularity Sparse Relationship Matrix Prediction Network for End-to-End Scene Graph Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2186 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2187 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PALM: Predicting Actions through Language Models", "id": "main", "arxiv_id": "2311.17944", "GitHub": [ "https://github.com/dandoge/palm" ], "paper_page": "https://huggingface.co/papers/2311.17944", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2188 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Motion Keyframe Interpolation for Any Human Skeleton using Point Cloud-based Human Motion Data Homogenisation", "id": "main", "arxiv_id": "2405.07444", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2189 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SwiftBrush v2: Make Your One-step Diffusion Model Better Than Its Teacher", "id": "main", "arxiv_id": "2408.14176", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.14176", "n_linked_authors": 6, "upvotes": 57, "num_comments": 5, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2190 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Localize Actions in Instructional Videos with LLM-Based Multi-Pathway Text-Video Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2191 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Hyperbolic Representations via Gromov-Wasserstein Regularization", "id": "main", "arxiv_id": "2407.10495", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2192 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VSViG: Real-time Video-based Seizure Detection via Skeleton-based Spatiotemporal ViG", "id": "main", "arxiv_id": "2311.14775", "GitHub": [ "https://github.com/xuyankun/vsvig" ], "paper_page": "https://huggingface.co/papers/2311.14775", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 7, "Models": [], "Datasets": [ "xuyankun/WU-SAHZU-EMU-Video" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2193 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffSurf: A Transformer-based Diffusion Model for Generating and Reconstructing 3D Surfaces in Pose", "id": "main", "arxiv_id": "2408.14860", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2194 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploiting Supervised Poison Vulnerability to Strengthen Self-Supervised Defense", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2195 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dense Hand-Object(HO) GraspNet with Full Grasping Taxonomy and Dynamics", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2196 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Human Pose Recognition via Occlusion-Preserving Abstract Images", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2197 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception", "id": "main", "arxiv_id": "2401.08687", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2198 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow", "id": "main", "arxiv_id": "2407.12718", "GitHub": [ "https://github.com/yuanzhi-zhu/SlimFlow" ], "paper_page": "https://huggingface.co/papers/2407.12718", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2199 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2200 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Depth-Aware Blind Image Decomposition for Real-World Adverse Weather Recovery", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2201 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DreamSampler: Unifying Diffusion Sampling and Score Distillation for Image Manipulation", "id": "main", "arxiv_id": "2403.11415", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.11415", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2202 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation", "id": "main", "arxiv_id": "2407.09367", "GitHub": [ "https://github.com/z1358/obao" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2203 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Personalized Privacy Protection Mask Against Unauthorized Facial Recognition", "id": "main", "arxiv_id": "2407.13975", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2204 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PosterLlama: Bridging Design Ability of Langauge Model to Content-Aware Layout Generation", "id": "main", "arxiv_id": "2404.00995", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2205 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PreciseControl: Enhancing Text-To-Image Diffusion Models with Fine-Grained Attribute Control", "id": "main", "arxiv_id": "2408.05083", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2408.05083", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2206 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LG-Gaze: Learning Geometry-aware Continuous Prompts for Language-Guided Gaze Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2207 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Training with Denoised Neural Weights", "id": "main", "arxiv_id": "2407.11966", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.11966", "n_linked_authors": 0, "upvotes": 8, "num_comments": 3, "n_authors": 9, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2208 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning", "id": "main", "arxiv_id": "2402.11816", "GitHub": [ "https://github.com/majordavidzhang/mcl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2209 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Integration of Global and Local Representations for Fine-grained Cross-modal Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2210 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Local and Global Flatness for Federated Domain Generalization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2211 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SRPose: Two-view Relative Pose Estimation with Sparse Keypoints", "id": "main", "arxiv_id": "2407.08199", "GitHub": [ "https://github.com/frickyinn/SRPose" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2212 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deep Reward Supervisions for Tuning Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2405.00760", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2213 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Paying More Attention to Images: A Training-Free Method for Alleviating Hallucination in LVLMs", "id": "main", "arxiv_id": "2407.21771", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2214 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Inf-DiT: Upsampling any-resolution image with memory-efficient diffusion transformer.", "id": "main", "arxiv_id": "2405.04312", "GitHub": [ "https://github.com/thudm/inf-dit" ], "paper_page": "https://huggingface.co/papers/2405.04312", "n_linked_authors": 0, "upvotes": 1, "num_comments": 1, "n_authors": 8, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2215 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Implicit Neural Models to Extract Heart Rate from Video", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2216 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Boost Your NeRF: A Model-Agnostic Mixture of Experts Framework for High Quality and Efficient Rendering", "id": "main", "arxiv_id": "2407.10389", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2217 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PFGS: High Fidelity Point Cloud Rendering via Feature Splatting", "id": "main", "arxiv_id": "2407.03857", "GitHub": [ "https://github.com/Mercerai/PFGS" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2218 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2219 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "E3M: Zero-Shot Spatio-Temporal Video Grounding with Expectation-Maximization Multimodal Modulation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2220 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions", "id": "main", "arxiv_id": "2402.17485", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2402.17485", "n_linked_authors": 2, "upvotes": 185, "num_comments": 19, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2221 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LMT-GP: Combined Latent Mean-Teacher and Gaussian Process for Semi-supervised Low-light Image Enhancement", "id": "main", "arxiv_id": "2408.16235", "GitHub": [ "https://github.com/hfut-cv/lmt-gp" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2222 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Veil Privacy on Visual Data: Concealing Privacy for Humans, Unveiling for DNNs", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2223 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient Vision Transformers with Partial Attention", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2224 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Generalized Coverage for More Robust Low-Budget Active Learning", "id": "main", "arxiv_id": "2407.12212", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2225 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Rasterized Edge Gradients: Handling Discontinuities Differentially", "id": "main", "arxiv_id": "2405.02508", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2226 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Cross-Subject fMRI-to-Video Decoding with Global-Local Functional Alignment", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2227 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FedTSA: A Cluster-based Two-Stage Aggregation Method for Model-heterogeneous Federated Learning", "id": "main", "arxiv_id": "2407.05098", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2228 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LLaVA-UHD: an LMM Perceiving any Aspect Ratio and High-Resolution Images", "id": "main", "arxiv_id": "2403.11703", "GitHub": [ "https://github.com/thunlp/llava-uhd" ], "paper_page": "https://huggingface.co/papers/2403.11703", "n_linked_authors": 6, "upvotes": 16, "num_comments": 1, "n_authors": 10, "Models": [ "openbmb/MiniCPM-V-2" ], "Datasets": [], "Spaces": [ "openbmb/MiniCPM-V-2", "bokesyo/MiniCPM_Visual_Document_Retriever_Demo", "hisabcloud/github-repo-test", "jiaqianjing/MiniCPM-V", "darkstar94/MiniCPM-V-2", "VanguardAI/MultiModal_OpenSource_AI", "Faustrix/SodokuSolver" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2229 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Natural Consistency Representation for Face Forgery Video Detection", "id": "main", "arxiv_id": "2407.10550", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2230 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ZeroI2V: Zero-Cost Adaptation of Pre-Trained Transformers from Image to Video", "id": "main", "arxiv_id": "2310.01324", "GitHub": [ "https://github.com/leexinhao/ZeroI2V" ], "paper_page": "https://huggingface.co/papers/2310.01324", "n_linked_authors": 1, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [ "MCG-NJU/ZeroI2V" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2231 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems", "id": "main", "arxiv_id": "2407.11288", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2232 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "R.A.C.E.: Robust Adversarial Concept Erasure for Secure Text-to-Image Diffusion Model", "id": "main", "arxiv_id": "2405.16341", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2233 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "OpenSight: A Simple Open-Vocabulary Framework for LiDAR-Based Object Detection", "id": "main", "arxiv_id": "2312.08876", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2234 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Few-Shot Image Generation by Conditional Relaxing Diffusion Inversion", "id": "main", "arxiv_id": "2407.07249", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2235 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Data Poisoning Quantization Backdoor Attack", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2236 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition", "id": "main", "arxiv_id": "2407.05106", "GitHub": [ "https://github.com/qiwang233/dailydvs-200" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2237 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On the Topology Awareness and Generalization Performance of Graph Neural Networks", "id": "main", "arxiv_id": "2403.04482", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2238 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "T-CorresNet: Template Guided 3D Point Cloud Completion with Correspondence Pooling Query Generation Strategy", "id": "main", "arxiv_id": "2407.05008", "GitHub": [ "https://github.com/df-boy/t-corresnet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2239 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A high-quality robust diffusion framework for corrupted dataset", "id": "main", "arxiv_id": "2311.17101", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17101", "n_linked_authors": 1, "upvotes": 2, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2240 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Efficient 3D-Aware Facial Image Editing via Attribute-Specific Prompt Learning", "id": "main", "arxiv_id": "2406.04413", "GitHub": [ "https://github.com/virobo-15/efficient-3d-aware-facial-image-editing" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2241 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distilling Knowledge from Large-Scale Image Models for Object Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2242 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection", "id": "main", "arxiv_id": "2407.12582", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2243 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TimeLens-XL: Real-time Event-based Video Frame Interpolation with Large Motion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2244 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection", "id": "main", "arxiv_id": "2403.14270", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2245 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Self-Supervised Underwater Caustics Removal and Descattering via Deep Monocular SLAM", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2246 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enriching Information and Preserving Semantic Congruence in Expanding Curvilinear Object Segmentation Datasets", "id": "main", "arxiv_id": "2407.08209", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2247 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Retrieval Robust to Object Motion Blur", "id": "main", "arxiv_id": "2404.18025", "GitHub": [ "https://github.com/rong-zou/retrieval-robust-to-object-motion-blur" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2248 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Unsupervised Representation Learning by Balanced Self Attention Matching", "id": "main", "arxiv_id": "2408.02014", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2249 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DualBEV: Unifying Dual View Transformation with Probabilistic Correspondences", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2250 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Identity-Consistent Diffusion Network for Grading Knee Osteoarthritis Progression in Radiographic Imaging", "id": "main", "arxiv_id": "2407.21381", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2251 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learned Neural Physics Simulation for Articulated 3D Human Pose Reconstruction", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2252 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Source-Free Domain Adaptive Object Detection with Low-confidence Pseudo Label Distillation", "id": "main", "arxiv_id": "2407.13524", "GitHub": [ "https://github.com/junia3/lpld" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2253 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Training of Diffusion Transformer with Extreme Masking for 3D Point Clouds Generation", "id": "main", "arxiv_id": "2312.07231", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.07231", "n_linked_authors": 3, "upvotes": 6, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2254 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Make a Strong Teacher with Label Assistance: A Novel Knowledge Distillation Approach for Semantic Segmentation", "id": "main", "arxiv_id": "2407.13254", "GitHub": [ "https://github.com/skyshoumeng/Label_Assisted_Distillation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2255 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Make-Your-3D: Fast and Consistent Subject-Driven 3D Content Generation", "id": "main", "arxiv_id": "2403.09625", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.09625", "n_linked_authors": 2, "upvotes": 1, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2256 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Segment, Lift and Fit: Automatic 3D Shape Labeling from 2D Prompts", "id": "main", "arxiv_id": "2407.11382", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2257 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SCOD: From Heuristics to Theory", "id": "main", "arxiv_id": "2403.16916", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2258 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Preventing Catastrophic Forgetting through Memory Networks in Continuous Detection", "id": "main", "arxiv_id": "2403.14797", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2259 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Zero-shot Generalization of Learned Prompts via Unsupervised Knowledge Distillation", "id": "main", "arxiv_id": "2407.03056", "GitHub": [ "https://github.com/miccunifi/kdpl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2260 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Teach CLIP to Develop a Number Sense for Ordinal Regression", "id": "main", "arxiv_id": "2408.03574", "GitHub": [ "https://github.com/xmed-lab/numclip" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2261 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Compact 3D Scene Representation via Self-Organizing Gaussian Grids", "id": "main", "arxiv_id": "2312.13299", "GitHub": [ "https://github.com/fraunhoferhhi/Self-Organizing-Gaussians" ], "paper_page": "https://huggingface.co/papers/2312.13299", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2262 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Pix2Gif: Motion-Guided Diffusion for GIF Generation", "id": "main", "arxiv_id": "2403.04634", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.04634", "n_linked_authors": 3, "upvotes": 14, "num_comments": 1, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2263 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VETRA: A Dataset for Vehicle Tracking in Aerial Imagery - New Challenges for Multi-Object Tracking", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2264 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SelfGeo: Self-supervised and Geodesic-consistent Estimation of Keypoints on Deformable Shapes", "id": "main", "arxiv_id": "2408.02291", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2265 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning", "id": "main", "arxiv_id": "2407.10281", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2266 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models", "id": "main", "arxiv_id": "2407.04215", "GitHub": [ "https://github.com/robin-wzq/t2ishield" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2267 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ExMatch: Self-guided Exploitation for Semi-Supervised Learning with Scarce Labeled Samples", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2268 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Certifiably Robust Face Recognition", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2269 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Linking in Style: Understanding learned features in deep learning models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2270 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Stable Video Portraits", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2271 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2272 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CliffPhys: Camera-based Respiratory Measurement using Clifford Neural Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2273 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learned Rate Control for Frame-Level Adaptive Neural Video Compression via Dynamic Neural Network", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2274 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers", "id": "main", "arxiv_id": "2407.04538", "GitHub": [ "https://github.com/ananthu-aniraj/pdiscoformer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2275 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Vision-Language Dual-Pattern Matching for Out-of-Distribution Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2276 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Synthesizing Environment-Specific People in Photographs", "id": "main", "arxiv_id": "2312.14579", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2277 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Weight Conditioning for Smooth Optimization of Neural Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2278 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Energy-Clibrated VAE with Test Time Free Lunch", "id": "main", "arxiv_id": "2311.04071", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2279 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MoEAD: A Parameter-efficient Model for Multi-class Anomaly Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2280 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SceneTeller: Language-to-3D Scene Generation", "id": "main", "arxiv_id": "2407.20727", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.20727", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2281 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "MagMax: Leveraging Model Merging for Seamless Continual Learning", "id": "main", "arxiv_id": "2407.06322", "GitHub": [ "https://github.com/danielm1405/magmax" ], "paper_page": "https://huggingface.co/papers/2407.06322", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2282 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InternVideo2: Scaling Foundation Models for Multimodal Video Understanding", "id": "main", "arxiv_id": "2403.15377", "GitHub": [ "https://github.com/opengvlab/internvideo2" ], "paper_page": "https://huggingface.co/papers/2403.15377", "n_linked_authors": 11, "upvotes": 20, "num_comments": 1, "n_authors": 18, "Models": [ "OpenGVLab/InternVideo2-Stage2_1B-224p-f4", "OpenGVLab/InternVideo2-Chat-8B", "OpenGVLab/InternVideo2_chat_8B_HD", "OpenGVLab/InternVideo2-Stage1-1B-224p-f8", "OpenGVLab/InternVideo2-Stage1-1B-224p-K400", "OpenGVLab/InternVideo2-Stage1-1B-224p-f8-k710", "OpenGVLab/InternVideo2-Stage1-1B-224p-K600", "OpenGVLab/InternVideo2_Chat_8B_InternLM2_5", "OpenGVLab/InternVideo2-Stage1-1B-224p-K700", "OpenGVLab/InternVideo2-Stage1-1B-224p-f8-SthSth", "OpenGVLab/InternVideo2-Stage1-1B-224p-f8-MiT", "OpenGVLab/InternVideo2-CLIP-1B-224p-f8" ], "Datasets": [ "OpenGVLab/InternVideo2_Vid_Text" ], "Spaces": [ "TIGER-Lab/T2V-Turbo", "mazpie/genrl", "OpenGVLab/InternVideo2-Chat-8B-HD" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2283 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffusionPen: Towards Controlling the Style of Handwritten Text Generation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2284 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Debiasing surgeon: fantastic weights and how to find them", "id": "main", "arxiv_id": "2403.14200", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2285 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Denoising Vision Transformers", "id": "main", "arxiv_id": "2401.02957", "GitHub": [ "https://github.com/Jiawei-Yang/Denoising-ViT" ], "paper_page": "https://huggingface.co/papers/2401.02957", "n_linked_authors": 4, "upvotes": 27, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2286 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Differentiable Product Quantization for Memory Efficient Camera Relocalization", "id": "main", "arxiv_id": "2407.15540", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2287 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Spline-based Transformers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2288 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Pseudo 3D Guidance for View-consistent Texturing with 2D Diffusion", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2289 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "TreeSBA: Tree-Transformer for Self-Supervised Sequential Brick Assembly", "id": "main", "arxiv_id": "2407.15648", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2290 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data", "id": "main", "arxiv_id": "2406.10600", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2291 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Enhancing Semantic Fidelity in Text-to-Image Synthesis: Attention Regulation in Diffusion Models", "id": "main", "arxiv_id": "2403.06381", "GitHub": [ "https://github.com/yangzhang-v5/attention_regulation" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2292 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adversarial Diffusion Distillation", "id": "main", "arxiv_id": "2311.17042", "GitHub": [ "https://github.com/stability-ai/generative-models" ], "paper_page": "https://huggingface.co/papers/2311.17042", "n_linked_authors": 0, "upvotes": 2, "num_comments": 0, "n_authors": 4, "Models": [ "ai-forever/Kandinsky3.1" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2293 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fake It till You Make It: Curricular Dynamic Forgery Augmentations towards General Deepfake Detection", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2294 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts", "id": "main", "arxiv_id": "2408.02265", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2295 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation", "id": "main", "arxiv_id": "2407.08268", "GitHub": [ "https://github.com/leaves162/cliptrase" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2296 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2297 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models", "id": "main", "arxiv_id": "2407.12616", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2298 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information", "id": "main", "arxiv_id": "2407.15593", "GitHub": [ "https://github.com/rvp-group/learning-where-to-look" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2299 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Diffusion Models for Authentic Virtual Try-on in the Wild", "id": "main", "arxiv_id": "2403.05139", "GitHub": [ "https://github.com/yisol/IDM-VTON" ], "paper_page": "https://huggingface.co/papers/2403.05139", "n_linked_authors": 2, "upvotes": 4, "num_comments": 2, "n_authors": 5, "Models": [ "yisol/IDM-VTON", "yisol/IDM-VTON-DC", "imaginairy/idm-vton-safetensors", "Roopansh/Ailusion-VTON-DEMO-v1.1", "Vijish/VTON", "jordandavis/IDM-VTON" ], "Datasets": [], "Spaces": [ "yisol/IDM-VTON", "Nymbo/Virtual-Try-On", "kadirnar/IDM-VTON", "dryade36513/ClothStudio", "jallenjia/Change-Clothes-AI", "alf0nso/IDM-VTON-demo2", "pngwn/IDM-VTON", "LPDoctor/IDM-VTON-demo", "Loomisgitarrist/TryOnLG", "ChrisJohnson111/test4", "Roopansh/Ailusion-VTON-DEMO-v1", "Balaji23/Meta-Tryon", "Ridasaba/yisol-IDM-VTON", "skivap/IDM-VTON", "Bhushan26/wearon", "mrfreak72/Dressify.Tech", "EternalVision/Virtual_Try_On_API", "patrickligardes/Dressfit", "Varun-119/yisol-IDM-VTON", "heliumstores/lifelikeshoots", "deathmorty/yisol", "Minggo620/mcloth", "roshanbiswa/IDM-VTON", "Cr0c/IDM-VTON", "flink-town/IDM-VTON-demo", "ibolade/yisol-IDM-VTON", "zainy562/yisol-IDM-VTON", "darkroyale/yisol-IDM-VTON", "mubashirmehmood/yisol-IDM-VTON", "EazzyIt/yisol-IDM-VTON", "Hansika/yisol-IDM-VTON", "huggingparv/yisol-IDM-VTON", "ginipick/fashion", "AryanChandwani/demo2", "pe11/yisol-IDM-VTON", "greynutella/yisol-IDM-VTON", "ChrisJohnson111/test12", "ginipick/fashionfit", "praneeth-palepu/yisol-IDM-VTON", "flink-town/IDM-VTON", "Kenix/yisol-IDM-VTON", "tolgacesur/yisol-IDM-VTON-demo", "Zooyi/yisol-IDM-VTON", "tolgacesur/yisol-IDM-VTON-2", "Kushagra-777/yisol-IDM-VTON", "bobgus/Roopansh-Ailusion-VTON-DEMO-v1.1", "AryanChandwani/yisol-IDM-VTON", "zyflzxy/IDM-VTONS", "guowl0918/yisol-IDM-VTON", "Bhushan26/Wearon-VTON", "aaditshukla98710/yisol-IDM-VTON", "awais009/Viton-Idm", "Pyszczysko/yisol-IDM-VTON", "Mogly/yisol-IDM-VTON", "y02DSS/yisol-IDM-VTON", "icinestesia/yisol-IDM-VTON", "patrickligardes/virtualfit", "zhuhuihuihui/yisol-IDM-VTON", "ake178178/IDM-VTON-dedao-demo01", "supermario2/yisol-IDM-VTON", "tsi-org/IDM-VTON", "shravanbachu/yisol-IDM-VTON", "onrdmr/IDM-VTON", "Leamome/yisol-IDM-VTON", "elevow/IDM-VTON", "cocktailpeanut/IDM-VTON", "exPygmalion/yisol-IDM-VTON", "Fakhriddin/yisol-IDM-VTON", "deathmorty/yisol-IDM-VTON", "gokulp06/yisol-IDM-VTON", "wytwyt02/yisol-IDM-VTON", "cyberjam/yisol-IDM-VTON", "Eswar252001/yisol-IDM-VTON", "TAneKAnz/Virtual-Try-On", "ginipick/fit-back", "vladjiss/idmtest", "00jdk/IDM-VTON", "rickc737/yisol-IDM-VTON", "alexff91/VTON", "Kodidala/Virtual_Try_On", "guowl0918/IDM-VTON", "AlexLee01/yisol-IDM-VTON", "chronoz99/yisol-IDM-VTON", "panney/IDM-VTON", "Kodidala/VTON", "tolgacesur/yisol-IDM-VTON", "amirhos72/yisol-IDM-VTON", "mnej01/IDM-VTON", "eldykvlk/AI-Pakaian", "TheDabHouse/yisol-IDM-VTON", "sayudh/yisol-IDM-VTON", "akashraj120/yisol-IDM-VTON", "y02DSS/1yisol-IDM-VTON", "Satyajithchary/yisol-IDM-VTON", "Sonui/yisol-IDM-VTON", "dancingninjaaa/yisol-IDM-VTON", "Justyn97/Ailusion-VTON-DEMO-v1", "CrazyVenky/outfit-trail", "allAI-tools/IDM-VTON", "JiangFrank/yisol-IDM-VTON" ], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2300 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploiting Semantic Reconstruction to Mitigate Hallucinations in Vision-Language Models", "id": "main", "arxiv_id": "2403.16167", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2301 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LISO: Lidar-only Self-Supervised 3D Object Detection", "id": "main", "arxiv_id": "2403.07071", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2302 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Text-Conditioned Resampler For Long Form Video Understanding", "id": "main", "arxiv_id": "2312.11897", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2312.11897", "n_linked_authors": 2, "upvotes": 5, "num_comments": 1, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2303 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Implicit Steganography Beyond the Constraints of Modality", "id": "main", "arxiv_id": "2312.05496", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2304 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Using My Artistic Style? You Must Obtain My Authorization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2305 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LookupViT: Compressing visual information to a limited number of tokens", "id": "main", "arxiv_id": "2407.12753", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.12753", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2306 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Diffusion-Based Counterfactuals for Shortcut Removal and Generation", "id": "main", "arxiv_id": "2312.14223", "GitHub": [ "https://github.com/nina-weng/fastdime_med" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2307 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UMERegRobust \u2013 Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration", "id": "main", "arxiv_id": "2408.12380", "GitHub": [ "https://github.com/yuvalh9/umeregrobust" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2308 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Non-transferable Pruning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2309 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Compact Dynamic 3D Gaussian Representation for Real-Time Dynamic View Synthesis", "id": "main", "arxiv_id": "2311.12897", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.12897", "n_linked_authors": 0, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2310 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations", "id": "main", "arxiv_id": "2407.12511", "GitHub": [ "https://github.com/ctom2/colie" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2311 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Toward Open Vocabulary Aerial Object Detection with CLIP-Activated Student-Teacher Learning", "id": "main", "arxiv_id": "2311.11646", "GitHub": [ "https://github.com/lizzy8587/castdet" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2312 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Affine steerers for structured keypoint description", "id": "main", "arxiv_id": "2408.14186", "GitHub": [ "https://github.com/georg-bn/affine-steerers" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2313 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Score Distillation Sampling with Learned Manifold Corrective", "id": "main", "arxiv_id": "2401.05293", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.05293", "n_linked_authors": 2, "upvotes": 7, "num_comments": 1, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2314 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FipTR: A Simple yet Effective Transformer Framework for Future Instance Prediction in Autonomous Driving", "id": "main", "arxiv_id": "2404.12867", "GitHub": [ "https://github.com/tabguigui/fiptr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2315 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Benchmarking the Robustness of Cross-view Geo-localization Models", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2316 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GroCo: Ground Constraint for Metric Self-Supervised Monocular Depth", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2317 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SUMix: Mixup with Semantic and Uncertain Information", "id": "main", "arxiv_id": "2407.07805", "GitHub": [ "https://github.com/jinxins/sumix" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2318 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Flatness-aware Sequential Learning Generates Resilient Backdoors", "id": "main", "arxiv_id": "2407.14738", "GitHub": [ "https://github.com/mail-research/sbl-resilient-backdoors" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2319 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models", "id": "main", "arxiv_id": "2407.15328", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2320 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "IFTR: An Instance-Level Fusion Transformer for Visual Collaborative Perception", "id": "main", "arxiv_id": "2407.09857", "GitHub": [ "https://github.com/wangsh0111/iftr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2321 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DiffClass: Diffusion-Based Class Incremental Learning", "id": "main", "arxiv_id": "2403.05016", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2322 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Convex Relaxations for Manifold-Valued Markov Random Fields with Approximation Guarantees", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2323 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Instant 3D Human Avatar Generation using Image Diffusion Models", "id": "main", "arxiv_id": "2406.07516", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2406.07516", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2324 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "PromptFusion: Decoupling Stability and Plasticity for Continual Learning", "id": "main", "arxiv_id": "2303.07223", "GitHub": [ "https://github.com/haoranchen/promptfusion" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2325 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Improving Geo-diversity of Generated Images with Contextualized Vendi Score Guidance", "id": "main", "arxiv_id": "2406.04551", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2326 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adapting to Shifting Correlations with Unlabeled Data Calibration", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2327 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity", "id": "main", "arxiv_id": "2407.10387", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2407.10387", "n_linked_authors": 1, "upvotes": 6, "num_comments": 2, "n_authors": 4, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2328 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Information Bottleneck Based Data Correction in Continual Learning", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2329 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On Spectral Properties of Gradient-based Explanation Methods", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2330 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Contextual Correspondence Matters: Bidirectional Graph Matching for Video Summarization", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2331 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "O2V-Mapping: Online Open-Vocabulary Mapping with Neural Implicit Representation", "id": "main", "arxiv_id": "2404.06836", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2332 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Dataset Distillation by Automatic Training Trajectories", "id": "main", "arxiv_id": "2407.14245", "GitHub": [ "https://github.com/NiaLiu/ATT" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2333 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2334 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "EMIE-MAP: Large-Scale Road Surface Reconstruction Based on Explicit Mesh and Implicit Encoding", "id": "main", "arxiv_id": "2403.11789", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2335 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "UniIR: Training and Benchmarking Universal Multimodal Information Retrievers", "id": "main", "arxiv_id": "2311.17136", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2311.17136", "n_linked_authors": 4, "upvotes": 7, "num_comments": 0, "n_authors": 8, "Models": [ "TIGER-Lab/UniIR" ], "Datasets": [ "TIGER-Lab/M-BEIR" ], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2336 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "SSL-Cleanse: Trojan Detection and Mitigation in Self-Supervised Learning", "id": "main", "arxiv_id": "2303.09079", "GitHub": [ "https://github.com/ucf-ml-research/ssl-cleanse" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2337 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Skews in the Phenomenon Space Hinder Generalization in Text-to-Image Generation", "id": "main", "arxiv_id": "2403.16394", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2338 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Bones Can't Be Triangles: Accurate and Efficient Vertebrae Keypoint Estimation through Collaborative Error Revision", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2339 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction", "id": "main", "arxiv_id": "2403.16292", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2340 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HyperSpaceX: Radial and Angular Exploration of HyperSpherical Dimensions", "id": "main", "arxiv_id": "2408.02494", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2341 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "InstructGIE: Towards Generalizable Image Editing", "id": "main", "arxiv_id": "2403.05018", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2403.05018", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2342 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "HandDAGT: A Denoising Adaptive Graph Transformer for 3D Hand Pose Estimation", "id": "main", "arxiv_id": "2407.20542", "GitHub": [ "https://github.com/cwc1260/handdagt" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2343 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Navigating Text-to-Image Generative Bias across Indic Languages", "id": "main", "arxiv_id": "2408.00283", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2344 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Correspondence-Free SE(3) Point Cloud Registration in RKHS via Unsupervised Equivariant Learning", "id": "main", "arxiv_id": "2407.20223", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2345 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CTRLorALTer: Conditional LoRAdapter for Efficient 0-Shot Control & Altering of T2I Models", "id": "main", "arxiv_id": "2405.07913", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2405.07913", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 5, "Models": [ "kliyer/LoRAdapter" ], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2346 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Nickel and Diming Your GAN: A Dual-Method Approach to Enhancing GAN Efficiency via Knowledge Distillation", "id": "main", "arxiv_id": "2405.11614", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2347 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "VividDreamer: Invariant Score Distillation for Hyper-Realistic Text-to-3D Generation", "id": "main", "arxiv_id": "2407.09822", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2348 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation", "id": "main", "arxiv_id": "2406.07320", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2349 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Towards Scene Graph Anticipation", "id": "main", "arxiv_id": "2403.04899", "GitHub": [ "https://github.com/rohithpeddi/scenesayer" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2350 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Non-Line-of-Sight Estimation of Fast Human Motion with Slow Scanning Imagers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2351 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Distributed Semantic Segmentation with Efficient Joint Source and Task Decoding", "id": "main", "arxiv_id": "2407.11224", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2352 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NePhi: Neural Deformation Fields for Approximately Diffeomorphic Medical Image Registration", "id": "main", "arxiv_id": "2309.07322", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2353 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Aligning Neuronal Coding of Dynamic Visual Scenes with Foundation Vision Models", "id": "main", "arxiv_id": "2407.10737", "GitHub": [ "https://github.com/wurining/Vi-ST" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2354 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Image Manipulation Detection With Implicit Neural Representation and Limited Supervision", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2355 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Scalar Function Topology Divergence: Comparing Topology of 3D Objects", "id": "main", "arxiv_id": "2407.08364", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2356 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Introducing Routing Functions to Vision-Language Parameter-Efficient Fine-Tuning with Low-Rank Bottlenecks", "id": "main", "arxiv_id": "2403.09377", "GitHub": [ "https://github.com/tingyu215/routing_vlpeft" ], "paper_page": "https://huggingface.co/papers/2403.09377", "n_linked_authors": 1, "upvotes": 1, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2357 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models", "id": "main", "arxiv_id": "2404.13706", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2358 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "DeTra: A Unified Model for Object Detection and Trajectory Forecasting", "id": "main", "arxiv_id": "2406.04426", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2359 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "ControlNet-XS: Rethinking the Control of Text-to-Image Diffusion Models as Feedback-Control Systems", "id": "main", "arxiv_id": "2312.06573", "GitHub": [ "https://github.com/vislearn/ControlNet-XS" ], "paper_page": "https://huggingface.co/papers/2312.06573", "n_linked_authors": 0, "upvotes": 0, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Oral", "unique_id": 2360 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Adaptive Bounding Box Uncertainties via Two-Step Conformal Prediction", "id": "main", "arxiv_id": "2403.07263", "GitHub": [ "https://github.com/alextimans/conformal-od" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2361 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Common Sense Reasoning for Deep Fake Detection", "id": "main", "arxiv_id": "2402.00126", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2362 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Let the Avatar Talk using Texts without Paired Training Data", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2363 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields", "id": "main", "arxiv_id": "2404.01300", "GitHub": [ "https://github.com/zubair-irshad/NeRF-MAE" ], "paper_page": "https://huggingface.co/papers/2404.01300", "n_linked_authors": 5, "upvotes": 3, "num_comments": 2, "n_authors": 6, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2364 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GOEmbed: Gradient Origin Embeddings for Representation Agnostic 3D Feature Learning", "id": "main", "arxiv_id": "2312.08744", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2365 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Causal Subgraphs and Information Bottlenecks: Redefining OOD Robustness in Graph Neural Networks", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2366 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "AddBiomechanics Dataset: Capturing the Physics of Human Motion at Scale", "id": "main", "arxiv_id": "2406.18537", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2367 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "How to Train the Teacher Model for Effective Knowledge Distillation", "id": "main", "arxiv_id": "2407.18041", "GitHub": [ "https://github.com/eccv2024mse/eccv_mse_teacher" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2368 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Tight and Efficient Upper Bound on Spectral Norm of Convolutional Layers", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2369 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Deciphering the Role of Representation Disentanglement: Investigating Compositional Generalization in CLIP Models", "id": "main", "arxiv_id": "2407.05897", "GitHub": [ "https://github.com/abbasiReza/CLIP-COoD" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2370 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Modality Translation for Object Detection Adaptation without forgetting prior knowledge", "id": "main", "arxiv_id": "2404.01492", "GitHub": [ "https://github.com/heitorrapela/modtr" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2371 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "FroSSL: Frobenius Norm Minimization for Efficient Multiview Self-Supervised Learning", "id": "main", "arxiv_id": "2310.02903", "GitHub": [ "https://github.com/ofskean/frossl" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2372 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning Multimodal Latent Generative Models with Energy-Based Prior", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Oral", "unique_id": 2373 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition", "id": "main", "arxiv_id": "2407.14676", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2374 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "LaWa: Using Latent Space for In-Generation Image Watermarking", "id": "main", "arxiv_id": "2408.05868", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2375 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution", "id": "main", "arxiv_id": "2408.00160", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2376 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Markov Knowledge Distillation: Make Nasty Teachers trained by Self-undermining Knowledge Distillation Fully Distillable", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2377 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Co-speech Gesture Video Generation with 3D Human Meshes", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2378 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "When and How do negative prompts take effect?", "id": "main", "arxiv_id": "2406.02965", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2379 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views", "id": "main", "arxiv_id": "2404.01810", "GitHub": [ "https://github.com/yanivw12/gs2mesh" ], "paper_page": "https://huggingface.co/papers/2404.01810", "n_linked_authors": 1, "upvotes": 3, "num_comments": 0, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2380 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "CARFF: Conditional Auto-encoded Radiance Field for 3D Scene Forecasting", "id": "main", "arxiv_id": "2401.18075", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2401.18075", "n_linked_authors": 2, "upvotes": 8, "num_comments": 1, "n_authors": 7, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2381 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Snuffy: Efficient Whole Slide Image Classifier", "id": "main", "arxiv_id": "2408.08258", "GitHub": [ "https://github.com/jafarinia/snuffy" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2382 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Learning to Build by Building Your Own Instructions", "id": "main", "arxiv_id": "", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2383 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling", "id": "main", "arxiv_id": "2311.02879", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2384 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "BlenderAlchemy: Editing 3D Graphics with Vision-Language Models", "id": "main", "arxiv_id": "2404.17672", "GitHub": [ "" ], "paper_page": "https://huggingface.co/papers/2404.17672", "n_linked_authors": 2, "upvotes": 18, "num_comments": 2, "n_authors": 3, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 1, "type": "Poster", "unique_id": 2385 }, { "bibtex_url": "", "proceedings": "", "bibtext": "", "abstract": "", "authors": "", "title": "D\u03b5pS: Delayed \u03b5-Shrinking for Faster Once-For-All Training", "id": "main", "arxiv_id": "2407.06167", "GitHub": [ "" ], "paper_page": "", "n_linked_authors": -1, "upvotes": -1, "num_comments": -1, "n_authors": -1, "Models": [], "Datasets": [], "Spaces": [], "paper_page_exists_pre_conf": 0, "type": "Poster", "unique_id": 2386 } ]