Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
lintang commited on
Commit
2a2e17d
·
1 Parent(s): 1fa7f02

Create drop.py

Browse files
Files changed (1) hide show
  1. drop.py +192 -0
drop.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ #
15
+ # Custom DROP dataset that, unlike HF, keeps all question-answer pairs
16
+ # even if there are multiple types of answers for the same question.
17
+ """DROP dataset."""
18
+
19
+
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @misc{dua2019drop,
28
+ title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
29
+ author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
30
+ year={2019},
31
+ eprint={1903.00161},
32
+ archivePrefix={arXiv},
33
+ primaryClass={cs.CL}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ DROP is a QA dataset which tests comprehensive understanding of paragraphs. In
39
+ this crowdsourced, adversarially-created, 96k question-answering benchmark, a
40
+ system must resolve multiple references in a question, map them onto a paragraph,
41
+ and perform discrete operations over them (such as addition, counting, or sorting).
42
+ """
43
+
44
+ _HOMEPAGE = "https://allenai.org/data/drop"
45
+
46
+ # TODO: Add the licence for the dataset here if you can find it
47
+ _LICENSE = ""
48
+
49
+ _URLS = {
50
+ "drop": "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip",
51
+ }
52
+
53
+ _EMPTY_VALIDATED_ANSWER = [
54
+ {
55
+ "number": "",
56
+ "date": {
57
+ "day": "",
58
+ "month": "",
59
+ "year": "",
60
+ },
61
+ "spans": [],
62
+ "worker_id": "",
63
+ "hit_id": "",
64
+ }
65
+ ]
66
+
67
+
68
+ class Drop(datasets.GeneratorBasedBuilder):
69
+ """DROP is a QA dataset which tests comprehensive understanding of paragraphs."""
70
+
71
+ VERSION = datasets.Version("0.0.1")
72
+
73
+ BUILDER_CONFIGS = [
74
+ datasets.BuilderConfig(
75
+ name="drop", version=VERSION, description="The DROP dataset."
76
+ ),
77
+ ]
78
+
79
+ def _info(self):
80
+ features = datasets.Features(
81
+ {
82
+ "section_id": datasets.Value("string"),
83
+ "passage": datasets.Value("string"),
84
+ "question": datasets.Value("string"),
85
+ "query_id": datasets.Value("string"),
86
+ "answer": {
87
+ "number": datasets.Value("string"),
88
+ "date": {
89
+ "day": datasets.Value("string"),
90
+ "month": datasets.Value("string"),
91
+ "year": datasets.Value("string"),
92
+ },
93
+ "spans": datasets.features.Sequence(datasets.Value("string")),
94
+ "worker_id": datasets.Value("string"),
95
+ "hit_id": datasets.Value("string"),
96
+ },
97
+ "validated_answers": datasets.features.Sequence(
98
+ {
99
+ "number": datasets.Value("string"),
100
+ "date": {
101
+ "day": datasets.Value("string"),
102
+ "month": datasets.Value("string"),
103
+ "year": datasets.Value("string"),
104
+ },
105
+ "spans": datasets.features.Sequence(datasets.Value("string")),
106
+ "worker_id": datasets.Value("string"),
107
+ "hit_id": datasets.Value("string"),
108
+ }
109
+ ),
110
+ }
111
+ )
112
+ return datasets.DatasetInfo(
113
+ description=_DESCRIPTION,
114
+ features=features,
115
+ homepage=_HOMEPAGE,
116
+ license=_LICENSE,
117
+ citation=_CITATION,
118
+ )
119
+
120
+ def _split_generators(self, dl_manager):
121
+ urls = _URLS[self.config.name]
122
+ data_dir = dl_manager.download_and_extract(urls)
123
+ return [
124
+ datasets.SplitGenerator(
125
+ name=datasets.Split.TRAIN,
126
+ # These kwargs will be passed to _generate_examples
127
+ gen_kwargs={
128
+ "filepath": os.path.join(
129
+ data_dir, "drop_dataset", "drop_dataset_train.json"
130
+ ),
131
+ "split": "train",
132
+ },
133
+ ),
134
+ datasets.SplitGenerator(
135
+ name=datasets.Split.VALIDATION,
136
+ # These kwargs will be passed to _generate_examples
137
+ gen_kwargs={
138
+ "filepath": os.path.join(
139
+ data_dir, "drop_dataset", "drop_dataset_dev.json"
140
+ ),
141
+ "split": "validation",
142
+ },
143
+ ),
144
+ ]
145
+
146
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
147
+ def _generate_examples(self, filepath, split):
148
+ with open(filepath, encoding="utf-8") as f:
149
+ data = json.load(f)
150
+ key = 0
151
+ for section_id, example in data.items():
152
+ # Each example (passage) has multiple sub-question-answer pairs.
153
+ for qa in example["qa_pairs"]:
154
+ # Build answer.
155
+ answer = qa["answer"]
156
+ answer = {
157
+ "number": answer["number"],
158
+ "date": {
159
+ "day": answer["date"].get("day", ""),
160
+ "month": answer["date"].get("month", ""),
161
+ "year": answer["date"].get("year", ""),
162
+ },
163
+ "spans": answer["spans"],
164
+ "worker_id": answer.get("worker_id", ""),
165
+ "hit_id": answer.get("hit_id", ""),
166
+ }
167
+ validated_answers = []
168
+ if "validated_answers" in qa:
169
+ for validated_answer in qa["validated_answers"]:
170
+ va = {
171
+ "number": validated_answer.get("number", ""),
172
+ "date": {
173
+ "day": validated_answer["date"].get("day", ""),
174
+ "month": validated_answer["date"].get("month", ""),
175
+ "year": validated_answer["date"].get("year", ""),
176
+ },
177
+ "spans": validated_answer.get("spans", ""),
178
+ "worker_id": validated_answer.get("worker_id", ""),
179
+ "hit_id": validated_answer.get("hit_id", ""),
180
+ }
181
+ validated_answers.append(va)
182
+ else:
183
+ validated_answers = _EMPTY_VALIDATED_ANSWER
184
+ yield key, {
185
+ "section_id": section_id,
186
+ "passage": example["passage"],
187
+ "question": qa["question"],
188
+ "query_id": qa["query_id"],
189
+ "answer": answer,
190
+ "validated_answers": validated_answers,
191
+ }
192
+ key += 1