Create drop.py
Browse files
drop.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# Custom DROP dataset that, unlike HF, keeps all question-answer pairs
|
16 |
+
# even if there are multiple types of answers for the same question.
|
17 |
+
"""DROP dataset."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@misc{dua2019drop,
|
28 |
+
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
|
29 |
+
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
|
30 |
+
year={2019},
|
31 |
+
eprint={1903.00161},
|
32 |
+
archivePrefix={arXiv},
|
33 |
+
primaryClass={cs.CL}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
DROP is a QA dataset which tests comprehensive understanding of paragraphs. In
|
39 |
+
this crowdsourced, adversarially-created, 96k question-answering benchmark, a
|
40 |
+
system must resolve multiple references in a question, map them onto a paragraph,
|
41 |
+
and perform discrete operations over them (such as addition, counting, or sorting).
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://allenai.org/data/drop"
|
45 |
+
|
46 |
+
# TODO: Add the licence for the dataset here if you can find it
|
47 |
+
_LICENSE = ""
|
48 |
+
|
49 |
+
_URLS = {
|
50 |
+
"drop": "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip",
|
51 |
+
}
|
52 |
+
|
53 |
+
_EMPTY_VALIDATED_ANSWER = [
|
54 |
+
{
|
55 |
+
"number": "",
|
56 |
+
"date": {
|
57 |
+
"day": "",
|
58 |
+
"month": "",
|
59 |
+
"year": "",
|
60 |
+
},
|
61 |
+
"spans": [],
|
62 |
+
"worker_id": "",
|
63 |
+
"hit_id": "",
|
64 |
+
}
|
65 |
+
]
|
66 |
+
|
67 |
+
|
68 |
+
class Drop(datasets.GeneratorBasedBuilder):
|
69 |
+
"""DROP is a QA dataset which tests comprehensive understanding of paragraphs."""
|
70 |
+
|
71 |
+
VERSION = datasets.Version("0.0.1")
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
datasets.BuilderConfig(
|
75 |
+
name="drop", version=VERSION, description="The DROP dataset."
|
76 |
+
),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _info(self):
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"section_id": datasets.Value("string"),
|
83 |
+
"passage": datasets.Value("string"),
|
84 |
+
"question": datasets.Value("string"),
|
85 |
+
"query_id": datasets.Value("string"),
|
86 |
+
"answer": {
|
87 |
+
"number": datasets.Value("string"),
|
88 |
+
"date": {
|
89 |
+
"day": datasets.Value("string"),
|
90 |
+
"month": datasets.Value("string"),
|
91 |
+
"year": datasets.Value("string"),
|
92 |
+
},
|
93 |
+
"spans": datasets.features.Sequence(datasets.Value("string")),
|
94 |
+
"worker_id": datasets.Value("string"),
|
95 |
+
"hit_id": datasets.Value("string"),
|
96 |
+
},
|
97 |
+
"validated_answers": datasets.features.Sequence(
|
98 |
+
{
|
99 |
+
"number": datasets.Value("string"),
|
100 |
+
"date": {
|
101 |
+
"day": datasets.Value("string"),
|
102 |
+
"month": datasets.Value("string"),
|
103 |
+
"year": datasets.Value("string"),
|
104 |
+
},
|
105 |
+
"spans": datasets.features.Sequence(datasets.Value("string")),
|
106 |
+
"worker_id": datasets.Value("string"),
|
107 |
+
"hit_id": datasets.Value("string"),
|
108 |
+
}
|
109 |
+
),
|
110 |
+
}
|
111 |
+
)
|
112 |
+
return datasets.DatasetInfo(
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
features=features,
|
115 |
+
homepage=_HOMEPAGE,
|
116 |
+
license=_LICENSE,
|
117 |
+
citation=_CITATION,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager):
|
121 |
+
urls = _URLS[self.config.name]
|
122 |
+
data_dir = dl_manager.download_and_extract(urls)
|
123 |
+
return [
|
124 |
+
datasets.SplitGenerator(
|
125 |
+
name=datasets.Split.TRAIN,
|
126 |
+
# These kwargs will be passed to _generate_examples
|
127 |
+
gen_kwargs={
|
128 |
+
"filepath": os.path.join(
|
129 |
+
data_dir, "drop_dataset", "drop_dataset_train.json"
|
130 |
+
),
|
131 |
+
"split": "train",
|
132 |
+
},
|
133 |
+
),
|
134 |
+
datasets.SplitGenerator(
|
135 |
+
name=datasets.Split.VALIDATION,
|
136 |
+
# These kwargs will be passed to _generate_examples
|
137 |
+
gen_kwargs={
|
138 |
+
"filepath": os.path.join(
|
139 |
+
data_dir, "drop_dataset", "drop_dataset_dev.json"
|
140 |
+
),
|
141 |
+
"split": "validation",
|
142 |
+
},
|
143 |
+
),
|
144 |
+
]
|
145 |
+
|
146 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
147 |
+
def _generate_examples(self, filepath, split):
|
148 |
+
with open(filepath, encoding="utf-8") as f:
|
149 |
+
data = json.load(f)
|
150 |
+
key = 0
|
151 |
+
for section_id, example in data.items():
|
152 |
+
# Each example (passage) has multiple sub-question-answer pairs.
|
153 |
+
for qa in example["qa_pairs"]:
|
154 |
+
# Build answer.
|
155 |
+
answer = qa["answer"]
|
156 |
+
answer = {
|
157 |
+
"number": answer["number"],
|
158 |
+
"date": {
|
159 |
+
"day": answer["date"].get("day", ""),
|
160 |
+
"month": answer["date"].get("month", ""),
|
161 |
+
"year": answer["date"].get("year", ""),
|
162 |
+
},
|
163 |
+
"spans": answer["spans"],
|
164 |
+
"worker_id": answer.get("worker_id", ""),
|
165 |
+
"hit_id": answer.get("hit_id", ""),
|
166 |
+
}
|
167 |
+
validated_answers = []
|
168 |
+
if "validated_answers" in qa:
|
169 |
+
for validated_answer in qa["validated_answers"]:
|
170 |
+
va = {
|
171 |
+
"number": validated_answer.get("number", ""),
|
172 |
+
"date": {
|
173 |
+
"day": validated_answer["date"].get("day", ""),
|
174 |
+
"month": validated_answer["date"].get("month", ""),
|
175 |
+
"year": validated_answer["date"].get("year", ""),
|
176 |
+
},
|
177 |
+
"spans": validated_answer.get("spans", ""),
|
178 |
+
"worker_id": validated_answer.get("worker_id", ""),
|
179 |
+
"hit_id": validated_answer.get("hit_id", ""),
|
180 |
+
}
|
181 |
+
validated_answers.append(va)
|
182 |
+
else:
|
183 |
+
validated_answers = _EMPTY_VALIDATED_ANSWER
|
184 |
+
yield key, {
|
185 |
+
"section_id": section_id,
|
186 |
+
"passage": example["passage"],
|
187 |
+
"question": qa["question"],
|
188 |
+
"query_id": qa["query_id"],
|
189 |
+
"answer": answer,
|
190 |
+
"validated_answers": validated_answers,
|
191 |
+
}
|
192 |
+
key += 1
|