# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Hotel Reviews in Arabic language""" import os import datasets _DESCRIPTION = """\ This dataset contains 93700 hotel reviews in Arabic language.\ The hotel reviews were collected from Booking.com website during June/July 2016.\ The reviews are expressed in Modern Standard Arabic as well as dialectal Arabic.\ The following table summarize some tatistics on the HARD Dataset. """ _CITATION = """\ @incollection{elnagar2018hotel, title={Hotel Arabic-reviews dataset construction for sentiment analysis applications}, author={Elnagar, Ashraf and Khalifa, Yasmin S and Einea, Anas}, booktitle={Intelligent Natural Language Processing: Trends and Applications}, pages={35--52}, year={2018}, publisher={Springer} } """ _DOWNLOAD_URL = "https://raw.githubusercontent.com/elnagara/HARD-Arabic-Dataset/master/data/balanced-reviews.zip" class HardConfig(datasets.BuilderConfig): """BuilderConfig for Hard.""" def __init__(self, **kwargs): """BuilderConfig for Hard. Args: **kwargs: keyword arguments forwarded to super. """ super(HardConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class Hard(datasets.GeneratorBasedBuilder): """Hard dataset.""" BUILDER_CONFIGS = [ HardConfig( name="plain_text", description="Plain text", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel( names=[ "1", "2", "3", "4", "5", ] ), } ), supervised_keys=None, homepage="https://github.com/elnagara/HARD-Arabic-Dataset", citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "balanced-reviews.txt")} ), ] def _generate_examples(self, directory): """Generate examples.""" with open(directory, mode="r", encoding="utf-16") as file: for id_, line in enumerate(file.read().splitlines()[1:]): _, _, rating, _, _, _, review_text = line.split("\t") yield str(id_), {"text": review_text, "label": rating}