File size: 4,502 Bytes
73d814d 21e5006 73d814d 21e5006 91dbc17 9b6e81e 91dbc17 21e5006 2bcbb79 c9e05a0 21e5006 66057a4 91dbc17 66057a4 a173129 21e5006 a173129 21e5006 edb3abf 21c1e00 edb3abf 2bcbb79 21c1e00 b3d8ec4 21c1e00 2bcbb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
annotations_creators:
- no-annotation
language:
- en
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
- feature-extraction
- other
pretty_name: UEFAEuro2020Dataset
tags:
- football
- soccer
- Euro 2020 tournament
- sports analytics
- sports
dataset_info:
features:
- name: HomeTeamName
dtype: string
- name: AwayTeamName
sequence: string
- name: DateandTimeCET
dtype: string
- name: MatchID
dtype: int64
- name: RoundName
dtype: string
- name: Stage
dtype: string
- name: MatchDay
dtype: int64
- name: Session
dtype: int64
- name: MatchMinute
dtype: int64
- name: InjuryTime
dtype: int64
- name: NumberOfPhases
dtype: int64
- name: Phase
dtype: int64
- name: ScoreHome
dtype: int64
- name: ScoreAway
dtype: int64
- name: MatchStatus
dtype: string
- name: StadiumID
dtype: int64
- name: RefereeWebName
dtype: string
- name: NumberofMatchesRefereedPostMatch
dtype: int64
- name: TotalNumberofMatchesRefereed
dtype: int64
- name: NumberofMatchesRefereedinGroupStage
dtype: int64
- name: NumberofMatchesRefereedinKnockoutStage
dtype: int64
- name: AssistantRefereeWebName
dtype: string
- name: Humidity
dtype: int64
- name: Temperature
dtype: int64
- name: WindSpeed
dtype: int64
- name: MatchEvent
dtype: dict
- name: TeamLineUps
dtype: dict
- name: TeamStats
dtype: dict
- name: PlayerStats
dtype: dict
- name: PlayerPreMatchInfo
dtype: dict
splits:
- name: train
num_bytes: 1048576
num_examples: 51
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Euro 2020 Dataset Card
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Data Processing](#data-processing)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instance](#data-instance)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Limitations](#limitations)
- [Citation](#citation)
## Dataset Description
### Dataset Summary
This dataset contains highly detailed information on each of the 51 matches in the UEFA Euro 2020 tournament composed and aggregated from 6 original csv files. Each row represents the information for each match and the columns constitute a wide range of variables on basic match information, referee information and statistics, match events in different phases of a match, team line-up and squad information, team statistics and player statistics on different areas of the game, and player-based pre-match information.
### Data Processing
Please see the 'uefa_euro2020_processing.py' file for detailed processing code and procedures.
### Supported Tasks
The dataset preserves most of the supported tasks of the original source data. The new structure of the data also enables performing other tasks especially in terms of investigating the relationships between different level (individual player, team, match, match event, etc.) by composing and aggregating the original data. Some examples include:
- Extract and visualize key statistics for players, teams, referees, and other participants within and across matches.
- Investigate how key team statistics, such as shots on target and total distance covered, associate with the outcome of the match through EDA, regression analysis, feature importance analysis, or other methods.
- Explore the potential associations between certain player statistics and relevant team statistics.
- Analyze the change of tactics by a team over the tournament through its line up information and its team statistics.
- Investigate how pre-match tallies, such as goal streak, clean sheet streak, whether the player is benched in the previous match, and whether the player will be suspended if booked, affect a players' performance in the next match.
- Other data story-telling tasks about events during a match and across the tournament.
- Decompose the nested variables or the broader data structure for user-specific purposes.
### Languages
- English
## Citation
Mikhail Zhilkin @cervus (2021). "UEFA Euro 2020." Hosted by [data.world]. Available at: “https://data.world/cervus/uefa-euro-2020". |