File size: 4,502 Bytes
73d814d
21e5006
 
73d814d
 
21e5006
 
 
 
 
 
 
91dbc17
9b6e81e
91dbc17
21e5006
 
 
 
 
 
2bcbb79
c9e05a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e5006
 
66057a4
91dbc17
66057a4
 
 
 
 
a173129
21e5006
a173129
21e5006
edb3abf
 
 
21c1e00
edb3abf
 
 
 
 
 
 
 
 
 
 
2bcbb79
 
 
 
 
 
21c1e00
 
 
 
 
b3d8ec4
 
 
 
 
 
 
 
 
 
21c1e00
2bcbb79
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
annotations_creators:
- no-annotation
language:
- en
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
- feature-extraction
- other
pretty_name: UEFAEuro2020Dataset
tags: 
- football
- soccer
- Euro 2020 tournament
- sports analytics
- sports
dataset_info:
  features:
  - name: HomeTeamName
    dtype: string
  - name: AwayTeamName
    sequence: string
  - name: DateandTimeCET
    dtype: string
  - name: MatchID
    dtype: int64
  - name: RoundName
    dtype: string
  - name: Stage
    dtype: string
  - name: MatchDay
    dtype: int64
  - name: Session
    dtype: int64
  - name: MatchMinute
    dtype: int64
  - name: InjuryTime
    dtype: int64
  - name: NumberOfPhases
    dtype: int64
  - name: Phase
    dtype: int64
  - name: ScoreHome
    dtype: int64
  - name: ScoreAway
    dtype: int64
  - name: MatchStatus
    dtype: string
  - name: StadiumID
    dtype: int64
  - name: RefereeWebName
    dtype: string
  - name: NumberofMatchesRefereedPostMatch
    dtype: int64
  - name: TotalNumberofMatchesRefereed
    dtype: int64
  - name: NumberofMatchesRefereedinGroupStage
    dtype: int64
  - name: NumberofMatchesRefereedinKnockoutStage
    dtype: int64
  - name: AssistantRefereeWebName
    dtype: string
  - name: Humidity
    dtype: int64
  - name: Temperature
    dtype: int64
  - name: WindSpeed
    dtype: int64
  - name: MatchEvent
    dtype: dict
  - name: TeamLineUps
    dtype: dict
  - name: TeamStats
    dtype: dict
  - name: PlayerStats
    dtype: dict
  - name: PlayerPreMatchInfo
    dtype: dict
splits:
- name: train
  num_bytes: 1048576
  num_examples: 51
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
---

# Euro 2020 Dataset Card

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Data Processing](#data-processing)
  - [Supported Tasks](#supported-tasks)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instance](#data-instance)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
- [Limitations](#limitations)
- [Citation](#citation)

## Dataset Description

### Dataset Summary
This dataset contains highly detailed information on each of the 51 matches in the UEFA Euro 2020 tournament composed and aggregated from 6 original csv files. Each row represents the information for each match and the columns constitute a wide range of variables on basic match information, referee information and statistics, match events in different phases of a match, team line-up and squad information, team statistics and player statistics on different areas of the game, and player-based pre-match information. 

### Data Processing
Please see the 'uefa_euro2020_processing.py' file for detailed processing code and procedures.

### Supported Tasks
The dataset preserves most of the supported tasks of the original source data. The new structure of the data also enables performing other tasks especially in terms of investigating the relationships between different level (individual player, team, match, match event, etc.) by composing and aggregating the original data. Some examples include:
- Extract and visualize key statistics for players, teams, referees, and other participants within and across matches.
- Investigate how key team statistics, such as shots on target and total distance covered, associate with the outcome of the match through EDA, regression analysis, feature importance analysis, or other methods.
- Explore the potential associations between certain player statistics and relevant team statistics.
- Analyze the change of tactics by a team over the tournament through its line up information and its team statistics.
- Investigate how pre-match tallies, such as goal streak, clean sheet streak, whether the player is benched in the previous match, and whether the player will be suspended if booked, affect a players' performance in the next match.
- Other data story-telling tasks about events during a match and across the tournament.
- Decompose the nested variables or the broader data structure for user-specific purposes.

### Languages
- English

## Citation
Mikhail Zhilkin @cervus (2021). "UEFA Euro 2020." Hosted by [data.world]. Available at: “https://data.world/cervus/uefa-euro-2020".