File size: 9,202 Bytes
122eb34
0d94041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fdd71
0d94041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fdd71
0d94041
 
 
57fdd71
0d94041
 
 
122eb34
0d94041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fdd71
0d94041
 
 
 
 
 
 
57fdd71
0d94041
57fdd71
 
0d94041
 
57fdd71
0d94041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122eb34
57fdd71
 
b0118b9
 
122eb34
b0118b9
57fdd71
0d94041
122eb34
 
 
 
57fdd71
122eb34
 
 
57fdd71
b0118b9
57fdd71
0d94041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122eb34
57fdd71
0d94041
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
```python
import krakenex
import pandas as pd
from datetime import datetime
import time
import os
from typing import Dict, List, Optional
import logging
from huggingface_hub import HfApi

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(f'kraken_collection_{datetime.now().strftime("%Y%m%d")}.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class KrakenHuggingFaceCollector:
    def __init__(self, kraken_key_path: str, repo_id: str):
        self.kraken_api = krakenex.API()
        try:
            self.kraken_api.load_key(kraken_key_path)
            logger.info("Successfully loaded Kraken API key")
        except Exception as e:
            logger.error(f"Failed to load Kraken API key: {e}")
            raise

        try:
            self.hf_api = HfApi()
            self.repo_id = repo_id
            logger.info("Successfully connected to Hugging Face")
        except Exception as e:
            logger.error(f"Failed to initialize Hugging Face API: {e}")
            raise
        
        self.pairs = [
            "XXBTZUSD",   # Bitcoin/USD
            "XETHZUSD",   # Ethereum/USD
            "XXRPZUSD",   # Ripple/USD
            "ADAUSD",     # Cardano/USD
            "XDGUSD",     # Dogecoin/USD
            "SOLUSD",     # Solana/USD
            "DOTUSD",     # Polkadot/USD
            "MATICUSD",   # Polygon/USD
            "LTCUSD"      # Litecoin/USD
        ]
        
        self.running = True
        self.data_points_collected = 0
        self.collection_start_time = None
        self.api_calls = 0
        self.last_api_reset = datetime.now()

    def check_api_rate(self) -> bool:
        """Monitor API call rate"""
        current_time = datetime.now()
        if (current_time - self.last_api_reset).total_seconds() >= 30:
            self.api_calls = 0
            self.last_api_reset = current_time
        return self.api_calls < 15

    def fetch_ticker_data(self, pair: str) -> Optional[Dict]:
        """Fetch ticker data with rate limiting"""
        if not self.check_api_rate():
            logger.warning("API rate limit approaching, waiting...")
            time.sleep(2)
            
        try:
            self.api_calls += 1
            response = self.kraken_api.query_public('Ticker', {'pair': pair})
            
            if 'error' in response and response['error']:
                logger.error(f"Kraken API error for {pair}: {response['error']}")
                return None
                
            data = response['result']
            pair_data = list(data.values())[0]
            
            return {
                'timestamp': datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f'),
                'pair': pair,
                'price': float(pair_data['c'][0]),
                'volume': float(pair_data['v'][0]),
                'bid': float(pair_data['b'][0]),
                'ask': float(pair_data['a'][0]),
                'low': float(pair_data['l'][0]),
                'high': float(pair_data['h'][0]),
                'vwap': float(pair_data['p'][0]),
                'trades': int(pair_data['t'][0])
            }
            
        except Exception as e:
            logger.error(f"Error fetching data for {pair}: {e}")
            return None

    def upload_to_huggingface(self, df: pd.DataFrame, timestamp: str) -> None:
        """Upload DataFrame to Hugging Face as CSV"""
        try:
            # Create local directories
            os.makedirs('data/continuous', exist_ok=True)
            
            # Save locally first
            local_path = f'data/continuous/kraken_trades_{timestamp}.csv'
            df.to_csv(local_path, index=False)
            
            # Upload to Hugging Face
            self.hf_api.upload_file(
                path_or_fileobj=local_path,
                path_in_repo=f"data/continuous/kraken_trades_{timestamp}.csv",
                repo_id=self.repo_id,
                repo_type="dataset"
            )
            
            logger.info(f"Successfully uploaded batch to Hugging Face")
            
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face: {e}")
            logger.info(f"Data saved locally at: {local_path}")

    def collect_continuous(self, interval_minutes: int = 3, batch_size: int = 30):
        """
        Enhanced continuous data collection
        
        Args:
            interval_minutes: Minutes between each collection (default: 3)
            batch_size: Number of snapshots per batch (default: 30)
        """
        self.collection_start_time = datetime.now()
        logger.info(f"Starting enhanced continuous collection at {self.collection_start_time}")
        logger.info(f"Collecting {batch_size} snapshots every {interval_minutes} minutes")
        logger.info(f"Total API calls per batch: ~{batch_size * len(self.pairs)}")
        logger.info(f"Estimated daily data points: {(24 * 60 // interval_minutes) * batch_size * len(self.pairs)}")
        logger.info("Press CTRL+C to stop collection")
        
        while self.running:
            try:
                batch_start_time = datetime.now()
                records = []
                
                for i in range(batch_size):
                    if not self.running:
                        break
                    
                    snapshot_start = datetime.now()
                    logger.info(f"Collecting snapshot {i+1}/{batch_size}")
                    
                    for pair in self.pairs:
                        if self.check_api_rate():
                            record = self.fetch_ticker_data(pair)
                            if record:
                                records.append(record)
                        else:
                            time.sleep(1)
                    
                    # Dynamic sleep calculation
                    elapsed = (datetime.now() - snapshot_start).total_seconds()
                    sleep_time = max(0.5, 1.5 - elapsed)
                    
                    if i < batch_size - 1 and self.running:
                        time.sleep(sleep_time)
                
                if records:
                    df = pd.DataFrame(records)
                    current_timestamp = datetime.now().strftime('%Y%m%d_%H%M')
                    self.upload_to_huggingface(df, current_timestamp)
                    
                    self.data_points_collected += len(records)
                    collection_duration = (datetime.now() - self.collection_start_time)
                    
                    logger.info("\nBatch Summary:")
                    logger.info(f"Records in batch: {len(records)}")
                    logger.info(f"Pairs collected: {len(df['pair'].unique())}")
                    logger.info(f"Total data points: {self.data_points_collected}")
                    logger.info(f"Collection duration: {collection_duration}")
                    logger.info(f"Data points per hour: {self.data_points_collected / collection_duration.total_seconds() * 3600:.2f}")
                
                # Adaptive interval timing
                batch_duration = (datetime.now() - batch_start_time).total_seconds()
                sleep_time = max(0, interval_minutes * 60 - batch_duration)
                
                if self.running and sleep_time > 0:
                    logger.info(f"Waiting {sleep_time:.2f} seconds until next batch...")
                    time.sleep(sleep_time)
                
            except Exception as e:
                logger.error(f"Error in continuous collection: {e}")
                logger.info("Waiting 30 seconds before retry...")
                time.sleep(30)
                
        logger.info("Data collection stopped")
        logger.info(f"Total data points collected: {self.data_points_collected}")
        logger.info(f"Total collection time: {datetime.now() - self.collection_start_time}")

def main():
    try:
        collector = KrakenHuggingFaceCollector(
            kraken_key_path="kraken.key",
            repo_id="GotThatData/kraken-trading-data"
        )
        
        # Start collection with enhanced parameters
        collector.collect_continuous(
            interval_minutes=3,  # Collect every 3 minutes
            batch_size=30       # 30 snapshots per batch
        )
        
    except KeyboardInterrupt:
        logger.info("Stopping collection (CTRL+C pressed)")
        collector.running = False
    except Exception as e:
        logger.error(f"Fatal error: {e}")
        raise

if __name__ == "__main__":
    main()
```

To use this script:

1. Save it as `kraken_data_collector.py`

2. Make sure you have your `kraken.key` file with your API credentials

3. Install required packages if you haven't:
```bash
pip install krakenex pandas huggingface_hub
```

4. Run the script:
```bash
python kraken_data_collector.py
```

This will:
- Collect 30 snapshots every 3 minutes
- Save data locally and to Hugging Face
- Provide detailed logging
- Handle errors gracefully
- Respect API rate limits