Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
100K - 1M
Tags:
quality-estimation
License:
Update ik-nlp-22_transqe.py
Browse files- ik-nlp-22_transqe.py +22 -22
ik-nlp-22_transqe.py
CHANGED
@@ -114,25 +114,25 @@ class IkNlp22ExpNLIConfig(datasets.GeneratorBasedBuilder):
|
|
114 |
for i, row in enumerate(reader):
|
115 |
print(row)
|
116 |
yield i, {
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
114 |
for i, row in enumerate(reader):
|
115 |
print(row)
|
116 |
yield i, {
|
117 |
+
"premise_en": row["premise_en"],
|
118 |
+
"premise_nl": row["premise_nl"],
|
119 |
+
"hypothesis_en": row["hypothesis_en"],
|
120 |
+
"hypothesis_nl": row["hypothesis_nl"],
|
121 |
+
"label": row["label"],
|
122 |
+
"explanation_1_en": row["explanation_1_en"],
|
123 |
+
"explanation_1_nl": row["explanation_1_nl"],
|
124 |
+
"explanation_2_en": row.get("explanation_2_en", ""),
|
125 |
+
"explanation_2_nl": row.get("explanation_2_nl", ""),
|
126 |
+
"explanation_3_en": row.get("explanation_3_en", ""),
|
127 |
+
"explanation_3_nl": row.get("explanation_3_nl", ""),
|
128 |
+
"da_premise": row["da_premise"],
|
129 |
+
"mqm_premise": row["mqm_premise"],
|
130 |
+
"da_hypothesis": row["da_hypothesis"],
|
131 |
+
"mqm_hypothesis": row["mqm_hypothesis"],
|
132 |
+
"da_explanation_1": row["da_explanation_1"],
|
133 |
+
"mqm_explanation_1": row["mqm_explanation_1"],
|
134 |
+
"da_explanation_2": row.get("da_explanation_2", ""),
|
135 |
+
"mqm_explanation_2": row.get("mqm_explanation_2", ""),
|
136 |
+
"da_explanation_3": row.get("da_explanation_3", ""),
|
137 |
+
"mqm_explanation_3": row.get("mqm_explanation_3", ""),
|
138 |
+
}
|