|
""" |
|
The Harvard USPTO Patent Dataset (HUPD) is a large-scale, well-structured, and multi-purpose corpus |
|
of English-language patent applications filed to the United States Patent and Trademark Office (USPTO) |
|
between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger |
|
than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions |
|
of patent applications, not the final versions of granted patents, allowing us to study patentability at |
|
the time of filing using NLP methods for the first time. |
|
""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
import datetime |
|
import pandas as pd |
|
import numpy as np |
|
from pathlib import Path |
|
try: |
|
import ujson as json |
|
except: |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{suzgun2021:hupd, |
|
title = {The Harvard USPTO Patent Dataset}, |
|
authors={Mirac Suzgun and Suproteem Sarkar and Luke Melas-Kyriazi and Scott Kominers and Stuart Shieber}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The Harvard USPTO Patent Dataset (HUPD) is a large-scale, well-structured, and multi-purpose corpus |
|
of English-language patent applications filed to the United States Patent and Trademark Office (USPTO) |
|
between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger |
|
than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions |
|
of patent applications, not the final versions of granted patents, allowing us to study patentability at |
|
the time of filing using NLP methods for the first time. |
|
""" |
|
|
|
RANDOM_STATE = 1729 |
|
|
|
_FEATURES = [ |
|
"patent_number", |
|
"decision", |
|
"title", |
|
"abstract", |
|
"claims", |
|
"background", |
|
"summary", |
|
"description", |
|
"cpc_label", |
|
"ipc_label", |
|
"filing_date", |
|
"patent_issue_date", |
|
"date_published", |
|
"examiner_id" |
|
] |
|
|
|
|
|
def str_to_date(s): |
|
"""A helper function to convert strings to dates""" |
|
return datetime.datetime.strptime(s, '%Y-%m-%d') |
|
|
|
|
|
class PatentsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Patents""" |
|
|
|
def __init__( |
|
self, |
|
metadata_url: str, |
|
data_url: str, |
|
data_dir: str, |
|
ipcr_label: str = None, |
|
cpc_label: str = None, |
|
train_filing_start_date: str = None, |
|
train_filing_end_date: str = None, |
|
val_filing_start_date: str = None, |
|
val_filing_end_date: str = None, |
|
query_string: str = None, |
|
val_set_balancer=False, |
|
uniform_split=False, |
|
force_extract=False, |
|
**kwargs |
|
): |
|
""" |
|
If train_filing_end_date is None, then a random train-val split will be used. If it is |
|
specified, then the specified date range will be used for the split. If train_filing_end_date |
|
if specified and val_filing_start_date is not specifed, then val_filing_start_date defaults to |
|
train_filing_end_date. |
|
|
|
Args: |
|
metadata_url: `string`, url from which to download the metadata file |
|
data_url: `string`, url from which to download the json files |
|
data_dir: `string`, folder (in cache) in which downloaded json files are stored |
|
ipcr_label: International Patent Classification code |
|
cpc_label: Cooperative Patent Classification code |
|
train_filing_start_date: Start date for patents in train set (and val set if random split is used) |
|
train_filing_end_date: End date for patents in train set |
|
val_filing_start_date: Start date for patents in val set |
|
val_filing_end_date: End date for patents in val set (and train set if random split is used) |
|
force_extract: Extract only the relevant years if this parameter is used. |
|
**kwargs: keyword arguments forwarded to super |
|
""" |
|
super().__init__(**kwargs) |
|
self.metadata_url = metadata_url |
|
self.data_url = data_url |
|
self.data_dir = data_dir |
|
self.ipcr_label = ipcr_label |
|
self.cpc_label = cpc_label |
|
self.train_filing_start_date = train_filing_start_date |
|
self.train_filing_end_date = train_filing_end_date |
|
self.val_filing_start_date = val_filing_start_date |
|
self.val_filing_end_date = val_filing_end_date |
|
self.query_string = query_string |
|
self.val_set_balancer = val_set_balancer |
|
self.uniform_split = uniform_split |
|
self.force_extract = force_extract |
|
|
|
|
|
class Patents(datasets.GeneratorBasedBuilder): |
|
_DESCRIPTION |
|
|
|
VERSION = datasets.Version("1.0.2") |
|
|
|
|
|
|
|
|
|
BUILDER_CONFIG_CLASS = PatentsConfig |
|
BUILDER_CONFIGS = [ |
|
PatentsConfig( |
|
name="sample", |
|
description="Patent data from January 2016, for debugging", |
|
metadata_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_jan16_2022-02-22.feather", |
|
data_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/data/sample-jan-2016.tar.gz", |
|
data_dir="sample", |
|
), |
|
PatentsConfig( |
|
name="all", |
|
description="Patent data from all years (2004-2018)", |
|
metadata_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_2022-02-22.feather", |
|
data_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/data/all-years.tar", |
|
data_dir="data", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{k: datasets.Value("string") for k in _FEATURES} |
|
), |
|
|
|
|
|
|
|
supervised_keys=("claims", "decision"), |
|
homepage="https://github.com/suzgunmirac/hupd", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
print(f'Loading dataset with config: {self.config}') |
|
|
|
|
|
|
|
metadata_url = self.config.metadata_url |
|
metadata_file = dl_manager.download_and_extract(self.config.metadata_url) |
|
print(f'Using metadata file: {metadata_file}') |
|
|
|
|
|
|
|
|
|
download_dir = dl_manager.download_and_extract(self.config.data_url) |
|
json_dir = os.path.join(download_dir, self.config.data_dir) |
|
|
|
|
|
print(f'Reading metadata file: {metadata_file}') |
|
if metadata_url.endswith('.feather'): |
|
df = pd.read_feather(metadata_file) |
|
elif metadata_url.endswith('.csv'): |
|
df = pd.read_csv(metadata_file) |
|
elif metadata_url.endswith('.tsv'): |
|
df = pd.read_csv(metadata_file, delimiter='\t') |
|
elif metadata_url.endswith('.pickle'): |
|
df = pd.read_pickle(metadata_file) |
|
else: |
|
raise ValueError(f'Metadata file invalid: {metadata_url}') |
|
|
|
|
|
if self.config.ipcr_label: |
|
print(f'Filtering by IPCR label: {self.config.ipcr_label}') |
|
df = df[df['main_ipcr_label'].str.startswith(self.config.ipcr_label)] |
|
elif self.config.cpc_label: |
|
print(f'Filtering by CPC label: {self.config.cpc_label}') |
|
df = df[df['main_cpc_label'].str.startswith(self.config.cpc_label)] |
|
|
|
|
|
if self.config.query_string: |
|
df = df.query(self.config.query_string) |
|
|
|
if self.config.force_extract: |
|
if self.config.name == 'all': |
|
if self.config.train_filing_start_date and self.config.val_filing_end_date: |
|
if self.config.train_filing_end_date and self.config.val_filing_start_date: |
|
training_year_range = set(range(int(self.config.train_filing_start_date[:4]), int(self.config.train_filing_end_date[:4]) + 1)) |
|
validation_year_range = set(range(int(self.config.val_filing_start_date[:4]), int(self.config.val_filing_end_date[:4]) + 1)) |
|
full_year_range = training_year_range.union(validation_year_range) |
|
else: |
|
full_year_range = set(range(int(self.config.train_filing_start_date[:4]), int(self.config.val_filing_end_date[:4]) + 1)) |
|
else: |
|
full_year_range = set(range(2004, 2019)) |
|
|
|
|
|
import tarfile |
|
for year in full_year_range: |
|
tar_file_path = f'{json_dir}/{year}.tar.gz' |
|
print(f'Extracting {tar_file_path}') |
|
|
|
tar_file = tarfile.open(tar_file_path) |
|
|
|
tar_file.extractall(f'{json_dir}') |
|
tar_file.close() |
|
|
|
|
|
if self.config.uniform_split: |
|
|
|
|
|
if self.config.train_filing_start_date: |
|
df = df[df['filing_date'] >= self.config.train_filing_start_date] |
|
if self.config.val_filing_end_date: |
|
df = df[df['filing_date'] <= self.config.val_filing_end_date] |
|
df = df.sample(frac=1.0, random_state=RANDOM_STATE) |
|
num_train_samples = int(len(df) * 0.85) |
|
train_df = df.iloc[0:num_train_samples] |
|
val_df = df.iloc[num_train_samples:-1] |
|
|
|
else: |
|
|
|
|
|
if not (self.config.train_filing_start_date and self.config.train_filing_end_date and |
|
self.config.val_filing_start_date and self.config.train_filing_end_date): |
|
raise ValueError("Please either use uniform_split or specify your exact \ |
|
training and validation split dates.") |
|
|
|
|
|
print(f'Filtering train dataset by filing start date: {self.config.train_filing_start_date}') |
|
print(f'Filtering train dataset by filing end date: {self.config.train_filing_end_date}') |
|
print(f'Filtering val dataset by filing start date: {self.config.val_filing_start_date}') |
|
print(f'Filtering val dataset by filing end date: {self.config.val_filing_end_date}') |
|
train_df = df[ |
|
(df['filing_date'] >= self.config.train_filing_start_date) & |
|
(df['filing_date'] < self.config.train_filing_end_date) |
|
] |
|
val_df = df[ |
|
(df['filing_date'] >= self.config.val_filing_start_date) & |
|
(df['filing_date'] < self.config.val_filing_end_date) |
|
] |
|
|
|
|
|
if self.config.val_set_balancer: |
|
rejected_df = val_df[val_df.status == 'REJECTED'] |
|
num_rejected = len(rejected_df) |
|
accepted_df = val_df[val_df.status == 'ACCEPTED'] |
|
num_accepted = len(accepted_df) |
|
if num_rejected < num_accepted: |
|
accepted_df = accepted_df.sample(frac=1.0, random_state=RANDOM_STATE) |
|
accepted_df = accepted_df[:num_rejected] |
|
else: |
|
rejected_df = rejected_df.sample(frac=1.0, random_state=RANDOM_STATE) |
|
rejected_df = rejected_df[:num_accepted] |
|
val_df = pd.concat([rejected_df, accepted_df]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs=dict( |
|
df=train_df, |
|
json_dir=json_dir, |
|
split='train', |
|
), |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs=dict( |
|
df=val_df, |
|
json_dir=json_dir, |
|
split='val', |
|
), |
|
), |
|
] |
|
|
|
def _generate_examples(self, df, json_dir, split): |
|
""" Yields examples by loading JSON files containing patent applications. """ |
|
|
|
|
|
for id_, x in enumerate(df.itertuples()): |
|
|
|
|
|
application_year = str(x.filing_date.year) |
|
application_number = x.application_number |
|
filepath = os.path.join(json_dir, application_year, application_number + '.json') |
|
try: |
|
with open(filepath, 'r') as f: |
|
patent = json.load(f) |
|
except Exception as e: |
|
print('------------') |
|
print(f'ERROR WITH {filepath}\n') |
|
print(repr(e)) |
|
print() |
|
yield id_, {k: "error" for k in _FEATURES} |
|
|
|
|
|
decision = x.decision |
|
yield id_, { |
|
"patent_number": application_number, |
|
"decision": patent["decision"], |
|
"title": patent["title"], |
|
"abstract": patent["abstract"], |
|
"claims": patent["claims"], |
|
"description": patent["full_description"], |
|
"background": patent["background"], |
|
"summary": patent["summary"], |
|
"cpc_label": patent["main_cpc_label"], |
|
'filing_date': patent['filing_date'], |
|
'patent_issue_date': patent['patent_issue_date'], |
|
'date_published': patent['date_published'], |
|
'examiner_id': patent['examiner_id'], |
|
"ipc_label": patent["main_ipcr_label"], |
|
} |
|
|