Datasets:
File size: 14,045 Bytes
8506346 dd56032 f1f9a6e dd56032 8506346 f1ccb3e 77d7efe 7fff6b3 463b70a 4ed67dc 463b70a 4ed67dc 463b70a 4ed67dc 31393b6 4ed67dc 31393b6 4ed67dc a225fd2 4ed67dc a225fd2 4ed67dc 23db975 4ed67dc 23db975 4ed67dc 247947e 4ed67dc 247947e 4ed67dc b8263c2 4ed67dc b8263c2 4ed67dc abd640f 4ed67dc abd640f 4ed67dc 67b758a 4ed67dc 67b758a 4ed67dc 2cf40f2 4ed67dc 2cf40f2 4ed67dc 1aec51b 4ed67dc 1aec51b 4ed67dc 3c8b148 4ed67dc 3c8b148 4ed67dc 6547fa3 4ed67dc 6547fa3 4ed67dc 75ae381 4ed67dc 75ae381 4ed67dc 6b45314 4ed67dc 6b45314 4ed67dc 3a68754 4ed67dc 3a68754 4ed67dc 018e84d 4ed67dc 018e84d 4ed67dc 29518ae 4ed67dc 29518ae 4ed67dc 2be0244 4ed67dc 2be0244 4ed67dc 8376db5 4ed67dc 8376db5 4ed67dc 9ffa0d8 4ed67dc 9ffa0d8 4ed67dc 1c93867 4ed67dc 1c93867 463b70a 31393b6 a225fd2 23db975 247947e b8263c2 abd640f 67b758a 2cf40f2 1aec51b 3c8b148 6547fa3 75ae381 6b45314 3a68754 018e84d 29518ae 2be0244 8376db5 9ffa0d8 1c93867 8506346 7fff6b3 8506346 77d7efe 8506346 77d7efe 8506346 ab21ec6 8506346 3107b02 8506346 3107b02 8506346 7fff6b3 8506346 7fff6b3 8506346 7fff6b3 8506346 7fff6b3 8506346 3107b02 8506346 3107b02 8506346 3107b02 8506346 3107b02 8506346 ab21ec6 3107b02 ab21ec6 4ed67dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
- de
- en
- es
- fr
- ru
- zh
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- translation
task_ids: []
paperswithcode_id: multiun
pretty_name: MultiUN (Multilingual Corpus from United Nation Documents)
config_names:
- ar-de
- ar-en
- ar-es
- ar-fr
- ar-ru
- ar-zh
- de-en
- de-es
- de-fr
- de-ru
- de-zh
- en-es
- en-fr
- en-ru
- en-zh
- es-fr
- es-ru
- es-zh
- fr-ru
- fr-zh
- ru-zh
dataset_info:
- config_name: ar-de
features:
- name: translation
dtype:
translation:
languages:
- ar
- de
splits:
- name: train
num_bytes: 94466261
num_examples: 165090
download_size: 41124373
dataset_size: 94466261
- config_name: ar-en
features:
- name: translation
dtype:
translation:
languages:
- ar
- en
splits:
- name: train
num_bytes: 4189844561
num_examples: 9759125
download_size: 1926776740
dataset_size: 4189844561
- config_name: ar-es
features:
- name: translation
dtype:
translation:
languages:
- ar
- es
splits:
- name: train
num_bytes: 4509667188
num_examples: 10119379
download_size: 2069474168
dataset_size: 4509667188
- config_name: ar-fr
features:
- name: translation
dtype:
translation:
languages:
- ar
- fr
splits:
- name: train
num_bytes: 4516842065
num_examples: 9929567
download_size: 2083442998
dataset_size: 4516842065
- config_name: ar-ru
features:
- name: translation
dtype:
translation:
languages:
- ar
- ru
splits:
- name: train
num_bytes: 5932858699
num_examples: 10206243
download_size: 2544128334
dataset_size: 5932858699
- config_name: ar-zh
features:
- name: translation
dtype:
translation:
languages:
- ar
- zh
splits:
- name: train
num_bytes: 3781650541
num_examples: 9832293
download_size: 1829880809
dataset_size: 3781650541
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 76684413
num_examples: 162981
download_size: 35105094
dataset_size: 76684413
- config_name: de-es
features:
- name: translation
dtype:
translation:
languages:
- de
- es
splits:
- name: train
num_bytes: 80936517
num_examples: 162078
download_size: 37042740
dataset_size: 80936517
- config_name: de-fr
features:
- name: translation
dtype:
translation:
languages:
- de
- fr
splits:
- name: train
num_bytes: 81888299
num_examples: 164025
download_size: 37827000
dataset_size: 81888299
- config_name: de-ru
features:
- name: translation
dtype:
translation:
languages:
- de
- ru
splits:
- name: train
num_bytes: 111517798
num_examples: 164792
download_size: 46723695
dataset_size: 111517798
- config_name: de-zh
features:
- name: translation
dtype:
translation:
languages:
- de
- zh
splits:
- name: train
num_bytes: 70534674
num_examples: 176933
download_size: 34964647
dataset_size: 70534674
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 4128132575
num_examples: 11350967
download_size: 2030826335
dataset_size: 4128132575
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 4678044616
num_examples: 13172019
download_size: 2312275443
dataset_size: 4678044616
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 5632653511
num_examples: 11654416
download_size: 2523567444
dataset_size: 5632653511
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 2960368390
num_examples: 9564315
download_size: 1557547095
dataset_size: 2960368390
- config_name: es-fr
features:
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 4454703338
num_examples: 11441889
download_size: 2187539838
dataset_size: 4454703338
- config_name: es-ru
features:
- name: translation
dtype:
translation:
languages:
- es
- ru
splits:
- name: train
num_bytes: 5442647242
num_examples: 10605056
download_size: 2432480744
dataset_size: 5442647242
- config_name: es-zh
features:
- name: translation
dtype:
translation:
languages:
- es
- zh
splits:
- name: train
num_bytes: 3223863318
num_examples: 9847770
download_size: 1676774308
dataset_size: 3223863318
- config_name: fr-ru
features:
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 5979869673
num_examples: 11761738
download_size: 2690520032
dataset_size: 5979869673
- config_name: fr-zh
features:
- name: translation
dtype:
translation:
languages:
- fr
- zh
splits:
- name: train
num_bytes: 3241090573
num_examples: 9690914
download_size: 1693120344
dataset_size: 3241090573
- config_name: ru-zh
features:
- name: translation
dtype:
translation:
languages:
- ru
- zh
splits:
- name: train
num_bytes: 4233867889
num_examples: 9557007
download_size: 1984600328
dataset_size: 4233867889
configs:
- config_name: ar-de
data_files:
- split: train
path: ar-de/train-*
- config_name: ar-en
data_files:
- split: train
path: ar-en/train-*
- config_name: ar-es
data_files:
- split: train
path: ar-es/train-*
- config_name: ar-fr
data_files:
- split: train
path: ar-fr/train-*
- config_name: ar-ru
data_files:
- split: train
path: ar-ru/train-*
- config_name: ar-zh
data_files:
- split: train
path: ar-zh/train-*
- config_name: de-en
data_files:
- split: train
path: de-en/train-*
- config_name: de-es
data_files:
- split: train
path: de-es/train-*
- config_name: de-fr
data_files:
- split: train
path: de-fr/train-*
- config_name: de-ru
data_files:
- split: train
path: de-ru/train-*
- config_name: de-zh
data_files:
- split: train
path: de-zh/train-*
- config_name: en-es
data_files:
- split: train
path: en-es/train-*
- config_name: en-fr
data_files:
- split: train
path: en-fr/train-*
- config_name: en-ru
data_files:
- split: train
path: en-ru/train-*
- config_name: en-zh
data_files:
- split: train
path: en-zh/train-*
- config_name: es-fr
data_files:
- split: train
path: es-fr/train-*
- config_name: es-ru
data_files:
- split: train
path: es-ru/train-*
- config_name: es-zh
data_files:
- split: train
path: es-zh/train-*
- config_name: fr-ru
data_files:
- split: train
path: fr-ru/train-*
- config_name: fr-zh
data_files:
- split: train
path: fr-zh/train-*
- config_name: ru-zh
data_files:
- split: train
path: ru-zh/train-*
---
# Dataset Card for OPUS MultiUN
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://aclanthology.org/L10-1473/
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Summary
The MultiUN parallel corpus is extracted from the United Nations Website , and then cleaned and converted to XML at Language Technology Lab in DFKI GmbH (LT-DFKI), Germany. The documents were published by UN from 2000 to 2009.
This is a collection of translated documents from the United Nations originally compiled by Andreas Eisele and Yu Chen (see http://www.euromatrixplus.net/multi-un/).
This corpus is available in all 6 official languages of the UN consisting of around 300 million words per language
### Supported Tasks and Leaderboards
The underlying task is machine translation.
### Languages
Parallel texts are present in all six official languages: Arabic (`ar`), Chinese (`zh`), English (`en`), French (`fr`),
Russian (`ru`) and Spanish (`es`), with a small part of the documents available also in German (`de`).
## Dataset Structure
### Data Instances
```
{
"translation": {
"ar": "قرار اتخذته الجمعية العامة",
"de": "Resolution der Generalversammlung"
}
}
```
### Data Fields
- `translation` (`dict`): Parallel sentences for the pair of languages.
### Data Splits
The dataset contains a single "train" split for each language pair.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Original MultiUN source data: http://www.euromatrixplus.net/multi-unp
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
If you use this corpus in your work, please cite the paper:
```
@inproceedings{eisele-chen-2010-multiun,
title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
author = "Eisele, Andreas and
Chen, Yu",
booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
month = may,
year = "2010",
address = "Valletta, Malta",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
}
```
If you use any part of the corpus (hosted in OPUS) in your own work, please cite the following article:
```
@inproceedings{tiedemann-2012-parallel,
title = "Parallel Data, Tools and Interfaces in {OPUS}",
author = {Tiedemann, J{\"o}rg},
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Do{\u{g}}an, Mehmet U{\u{g}}ur and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)",
month = may,
year = "2012",
address = "Istanbul, Turkey",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf",
pages = "2214--2218",
abstract = "This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project.",
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |