File size: 6,468 Bytes
5311e3b
68a50f2
5311e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
name: SnomedCT's Subsumption Hierarchy (TBox)
description: >
  This dataset is a collection of Multi-hop Inference and Mixed-hop Prediction
  datasets created from SnomedCT's subsumption hierarchy (TBox) for training and evaluating hierarchy embedding models.
license: apache-2.0
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: SnomedCT
tags:
- hierarchy-transformers
- sentence-transformers
configs:
- config_name: MultiHop-RandomNegatives-Triplets
  description: >
    A dataset for Multi-hop Inference with random negatives; samples formatted
    as triplets.
  data_files:
  - split: train
    path: MultiHop-RandomNegatives-Triplets/train*
  - split: val
    path: MultiHop-RandomNegatives-Triplets/val*
  - split: test
    path: MultiHop-RandomNegatives-Triplets/test*
- config_name: MultiHop-HardNegatives-Triplets
  description: >
    A dataset for Multi-hop Inference with hard negatives; samples formatted as
    triplets.
  data_files:
  - split: train
    path: MultiHop-HardNegatives-Triplets/train*
  - split: val
    path: MultiHop-HardNegatives-Triplets/val*
  - split: test
    path: MultiHop-HardNegatives-Triplets/test*
- config_name: MixedHop-RandomNegatives-Triplets
  description: >
    A dataset for Mixed-hop Prediction with random negatives; samples formatted
    as triplets.
  data_files:
  - split: train
    path: MixedHop-RandomNegatives-Triplets/train*
  - split: val
    path: MixedHop-RandomNegatives-Triplets/val*
  - split: test
    path: MixedHop-RandomNegatives-Triplets/test*
- config_name: MixedHop-HardNegatives-Triplets
  description: >
    A dataset for Mixed-hop Prediction with hard negatives; samples formatted as
    triplets.
  data_files:
  - split: train
    path: MixedHop-HardNegatives-Triplets/train*
  - split: val
    path: MixedHop-HardNegatives-Triplets/val*
  - split: test
    path: MixedHop-HardNegatives-Triplets/test*
- config_name: MultiHop-RandomNegatives-Pairs
  description: >
    A dataset for Multi-hop Inference with random negatives; samples formatted
    as pairs.
  data_files:
  - split: train
    path: MultiHop-RandomNegatives-Pairs/train*
  - split: val
    path: MultiHop-RandomNegatives-Pairs/val*
  - split: test
    path: MultiHop-RandomNegatives-Pairs/test*
- config_name: MultiHop-HardNegatives-Pairs
  description: >
    A dataset for Multi-hop Inference with hard negatives; samples formatted as
    pairs.
  data_files:
  - split: train
    path: MultiHop-HardNegatives-Pairs/train*
  - split: val
    path: MultiHop-HardNegatives-Pairs/val*
  - split: test
    path: MultiHop-HardNegatives-Pairs/test*
- config_name: MixedHop-RandomNegatives-Pairs
  description: >
    A dataset for Mixed-hop Prediction with random negatives; samples formatted
    as pairs.
  data_files:
  - split: train
    path: MixedHop-RandomNegatives-Pairs/train*
  - split: val
    path: MixedHop-RandomNegatives-Pairs/val*
  - split: test
    path: MixedHop-RandomNegatives-Pairs/test*
- config_name: MixedHop-HardNegatives-Pairs
  description: >
    A dataset for Mixed-hop Prediction with hard negatives; samples formatted as
    pairs.
  data_files:
  - split: train
    path: MixedHop-HardNegatives-Pairs/train*
  - split: val
    path: MixedHop-HardNegatives-Pairs/val*
  - split: test
    path: MixedHop-HardNegatives-Pairs/test*
---

# Dataset Card for SnomedCT

This dataset is a collection of **Multi-hop Inference** and **Mixed-hop Prediction** datasets created from SnomedCT's subsumption hierarchy (TBox) for training and evaluating hierarchy embedding models.

- **Multi-hop Inference**: This task aims to evaluate the model’s ability in deducing indirect, multi-hop subsumptions from direct, one-hop subsumptions, so as to simulate transitive inference.
- **Mixed-hop Prediction**: This task aims to evaluate the model’s capability in determining the existence of subsumption relationships between arbitrary entity pairs, where the entities are not necessarily seen during training. The transfer setting of this task involves training models on asserted training edges of one hierarchy testing on arbitrary entity pairs of another.

See our published [paper](https://arxiv.org/abs/2401.11374) for more detail.


## Links

- **GitHub Repository:** https://github.com/KRR-Oxford/HierarchyTransformers
- **Huggingface Page**: https://huggingface.co/Hierarchy-Transformers
- **Zenodo Release**: https://doi.org/10.5281/zenodo.10511042 
- **Paper:** [Language Models as Hierarchy Encoders](https://arxiv.org/abs/2401.11374) (NeurIPS 2024).

The information of original entity IDs is not available in the Huggingface release; To map entities back to their original hierarchies, refer to this [Zenodo release](https://doi.org/10.5281/zenodo.10511042).


## Dataset Structure

Each subset in this dataset follows the naming convention `TaskType-NegativeType-SampleStructure`:

- `TaskType`: Either `MultiHop` or `MixedHop`, indicating the type of hierarchy evaluation task.

- `NegativeType`: Either `RandomNegatives` or `HardNegatives`, specifying the strategy used for negative sampling.

- `SampleStructure`: Either `Triplets` or `Pairs`, indicating the format of the samples.
  - In `Triplets`, each sample is structured as `(child, parent, negative)`. 
  - In `Pairs`, each sample is a labelled pair `(child, parent, label)`, where `label=1` denotes a positive subsumption and `label=0` denotes a negative subsumption.

For example, to load a subset for the **Mixed-hop Prediction** task with **random negatives** and samples presented as **triplets**, we can use the following command:

```python
from datasets import load_dataset
dataset = load_dataset("Hierarchy-Transformers/SnomedCT", "MixedHop-RandomNegatives-Triplets")
```

## Dataset Usage

- For **evaluation**, the `Pairs` sample structure should be adopted, as it allows for the computation of Precision, Recall, and F1 scores.

- For **training**, the choice between `Pairs`, `Triplets`, or more complex sample structures depends on the model's design and specific requirements.

## Citation

The relevant paper has been accepted at NeurIPS 2024 (to appear).

```
@article{he2024language,
  title={Language models as hierarchy encoders},
  author={He, Yuan and Yuan, Zhangdie and Chen, Jiaoyan and Horrocks, Ian},
  journal={arXiv preprint arXiv:2401.11374},
  year={2024}
}
```

## Contact

Yuan He (`yuan.he(at)cs.ox.ac.uk`)