Datasets:
File size: 6,468 Bytes
5311e3b 68a50f2 5311e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
name: SnomedCT's Subsumption Hierarchy (TBox)
description: >
This dataset is a collection of Multi-hop Inference and Mixed-hop Prediction
datasets created from SnomedCT's subsumption hierarchy (TBox) for training and evaluating hierarchy embedding models.
license: apache-2.0
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: SnomedCT
tags:
- hierarchy-transformers
- sentence-transformers
configs:
- config_name: MultiHop-RandomNegatives-Triplets
description: >
A dataset for Multi-hop Inference with random negatives; samples formatted
as triplets.
data_files:
- split: train
path: MultiHop-RandomNegatives-Triplets/train*
- split: val
path: MultiHop-RandomNegatives-Triplets/val*
- split: test
path: MultiHop-RandomNegatives-Triplets/test*
- config_name: MultiHop-HardNegatives-Triplets
description: >
A dataset for Multi-hop Inference with hard negatives; samples formatted as
triplets.
data_files:
- split: train
path: MultiHop-HardNegatives-Triplets/train*
- split: val
path: MultiHop-HardNegatives-Triplets/val*
- split: test
path: MultiHop-HardNegatives-Triplets/test*
- config_name: MixedHop-RandomNegatives-Triplets
description: >
A dataset for Mixed-hop Prediction with random negatives; samples formatted
as triplets.
data_files:
- split: train
path: MixedHop-RandomNegatives-Triplets/train*
- split: val
path: MixedHop-RandomNegatives-Triplets/val*
- split: test
path: MixedHop-RandomNegatives-Triplets/test*
- config_name: MixedHop-HardNegatives-Triplets
description: >
A dataset for Mixed-hop Prediction with hard negatives; samples formatted as
triplets.
data_files:
- split: train
path: MixedHop-HardNegatives-Triplets/train*
- split: val
path: MixedHop-HardNegatives-Triplets/val*
- split: test
path: MixedHop-HardNegatives-Triplets/test*
- config_name: MultiHop-RandomNegatives-Pairs
description: >
A dataset for Multi-hop Inference with random negatives; samples formatted
as pairs.
data_files:
- split: train
path: MultiHop-RandomNegatives-Pairs/train*
- split: val
path: MultiHop-RandomNegatives-Pairs/val*
- split: test
path: MultiHop-RandomNegatives-Pairs/test*
- config_name: MultiHop-HardNegatives-Pairs
description: >
A dataset for Multi-hop Inference with hard negatives; samples formatted as
pairs.
data_files:
- split: train
path: MultiHop-HardNegatives-Pairs/train*
- split: val
path: MultiHop-HardNegatives-Pairs/val*
- split: test
path: MultiHop-HardNegatives-Pairs/test*
- config_name: MixedHop-RandomNegatives-Pairs
description: >
A dataset for Mixed-hop Prediction with random negatives; samples formatted
as pairs.
data_files:
- split: train
path: MixedHop-RandomNegatives-Pairs/train*
- split: val
path: MixedHop-RandomNegatives-Pairs/val*
- split: test
path: MixedHop-RandomNegatives-Pairs/test*
- config_name: MixedHop-HardNegatives-Pairs
description: >
A dataset for Mixed-hop Prediction with hard negatives; samples formatted as
pairs.
data_files:
- split: train
path: MixedHop-HardNegatives-Pairs/train*
- split: val
path: MixedHop-HardNegatives-Pairs/val*
- split: test
path: MixedHop-HardNegatives-Pairs/test*
---
# Dataset Card for SnomedCT
This dataset is a collection of **Multi-hop Inference** and **Mixed-hop Prediction** datasets created from SnomedCT's subsumption hierarchy (TBox) for training and evaluating hierarchy embedding models.
- **Multi-hop Inference**: This task aims to evaluate the model’s ability in deducing indirect, multi-hop subsumptions from direct, one-hop subsumptions, so as to simulate transitive inference.
- **Mixed-hop Prediction**: This task aims to evaluate the model’s capability in determining the existence of subsumption relationships between arbitrary entity pairs, where the entities are not necessarily seen during training. The transfer setting of this task involves training models on asserted training edges of one hierarchy testing on arbitrary entity pairs of another.
See our published [paper](https://arxiv.org/abs/2401.11374) for more detail.
## Links
- **GitHub Repository:** https://github.com/KRR-Oxford/HierarchyTransformers
- **Huggingface Page**: https://huggingface.co/Hierarchy-Transformers
- **Zenodo Release**: https://doi.org/10.5281/zenodo.10511042
- **Paper:** [Language Models as Hierarchy Encoders](https://arxiv.org/abs/2401.11374) (NeurIPS 2024).
The information of original entity IDs is not available in the Huggingface release; To map entities back to their original hierarchies, refer to this [Zenodo release](https://doi.org/10.5281/zenodo.10511042).
## Dataset Structure
Each subset in this dataset follows the naming convention `TaskType-NegativeType-SampleStructure`:
- `TaskType`: Either `MultiHop` or `MixedHop`, indicating the type of hierarchy evaluation task.
- `NegativeType`: Either `RandomNegatives` or `HardNegatives`, specifying the strategy used for negative sampling.
- `SampleStructure`: Either `Triplets` or `Pairs`, indicating the format of the samples.
- In `Triplets`, each sample is structured as `(child, parent, negative)`.
- In `Pairs`, each sample is a labelled pair `(child, parent, label)`, where `label=1` denotes a positive subsumption and `label=0` denotes a negative subsumption.
For example, to load a subset for the **Mixed-hop Prediction** task with **random negatives** and samples presented as **triplets**, we can use the following command:
```python
from datasets import load_dataset
dataset = load_dataset("Hierarchy-Transformers/SnomedCT", "MixedHop-RandomNegatives-Triplets")
```
## Dataset Usage
- For **evaluation**, the `Pairs` sample structure should be adopted, as it allows for the computation of Precision, Recall, and F1 scores.
- For **training**, the choice between `Pairs`, `Triplets`, or more complex sample structures depends on the model's design and specific requirements.
## Citation
The relevant paper has been accepted at NeurIPS 2024 (to appear).
```
@article{he2024language,
title={Language models as hierarchy encoders},
author={He, Yuan and Yuan, Zhangdie and Chen, Jiaoyan and Horrocks, Ian},
journal={arXiv preprint arXiv:2401.11374},
year={2024}
}
```
## Contact
Yuan He (`yuan.he(at)cs.ox.ac.uk`) |