import wandb import numpy as np import torch, torchvision import torch.nn.functional as F from PIL import Image from tqdm.auto import tqdm from fastcore.script import call_parse from torchvision import transforms from diffusers import DDPMPipeline from diffusers import DDIMScheduler from datasets import load_dataset from matplotlib import pyplot as plt @call_parse def train( image_size = 256, batch_size = 16, grad_accumulation_steps = 2, num_epochs = 1, start_model = "google/ddpm-bedroom-256", dataset_name = "huggan/wikiart", device='cuda', model_save_name='wikiart_1e', wandb_project='dm_finetune', log_samples_every = 250, save_model_every = 2500, ): # Initialize wandb for logging wandb.init(project=wandb_project, config=locals()) # Prepare pretrained model image_pipe = DDPMPipeline.from_pretrained(start_model); image_pipe.to(device) # Get a scheduler for sampling sampling_scheduler = DDIMScheduler.from_config(start_model) sampling_scheduler.set_timesteps(num_inference_steps=50) # Prepare dataset dataset = load_dataset(dataset_name, split="train") preprocess = transforms.Compose( [ transforms.Resize((image_size, image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def transform(examples): images = [preprocess(image.convert("RGB")) for image in examples["image"]] return {"images": images} dataset.set_transform(transform) train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) # Optimizer & lr scheduler optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-5) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) for epoch in range(num_epochs): for step, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader)): # Get the clean images clean_images = batch['images'].to(device) # Sample noise to add to the images noise = torch.randn(clean_images.shape).to(clean_images.device) bs = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps) # Get the model prediction for the noise noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0] # Compare the prediction with the actual noise: loss = F.mse_loss(noise_pred, noise) # Log the loss wandb.log({'loss':loss.item()}) # Calculate the gradients loss.backward() # Gradient Acccumulation: Only update every grad_accumulation_steps if (step+1)%grad_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # Occasionally log samples if (step+1)%log_samples_every == 0: x = torch.randn(8, 3, 256, 256).to(device) # Batch of 8 for i, t in tqdm(enumerate(sampling_scheduler.timesteps)): model_input = sampling_scheduler.scale_model_input(x, t) with torch.no_grad(): noise_pred = image_pipe.unet(model_input, t)["sample"] x = sampling_scheduler.step(noise_pred, t, x).prev_sample grid = torchvision.utils.make_grid(x, nrow=4) im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5 im = Image.fromarray(np.array(im*255).astype(np.uint8)) wandb.log({'Sample generations': wandb.Image(im)}) # Occasionally save model if (step+1)%save_model_every == 0: image_pipe.save_pretrained(model_save_name+f'step_{step+1}') # Update the learning rate for the next epoch scheduler.step() # Save the pipeline one last time image_pipe.save_pretrained(model_save_name) # Wrap up the run wandb.finish()