File size: 7,566 Bytes
224c22a 8d442c9 224c22a 88cc683 34b8a49 295981a 58baadb 147c9ae 628ec3e b88fe96 31d420d 5287046 105e3b3 953d782 51cc427 c40b0bf 47b885e 17f3896 d76b98b a2fdb0a bcb9b2d 1d83b4a 705b647 15b06fc bcb3865 b5a9b89 557759c f3aee5f 576310f 5ab23a2 d9bd5ff 10e3200 ce2301e 28603f7 98890c2 f02dcfc 72009d6 6500152 24f50ee 1712296 4c5346b b408c07 3a51e3c a4ac732 1dee37c a897ec8 f26a539 f0b73eb b257e99 69126da 54779d3 8d442c9 41bf2f4 8d442c9 224c22a 8d442c9 224c22a 8d442c9 224c22a 54779d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
dataset_info:
features:
- name: archived
dtype: string
- name: author
dtype: string
- name: author_fullname
dtype: string
- name: body
dtype: string
- name: comment_type
dtype: string
- name: controversiality
dtype: string
- name: created_utc
dtype: string
- name: edited
dtype: string
- name: gilded
dtype: string
- name: id
dtype: string
- name: link_id
dtype: string
- name: locked
dtype: string
- name: name
dtype: string
- name: parent_id
dtype: string
- name: permalink
dtype: string
- name: retrieved_on
dtype: string
- name: score
dtype: string
- name: subreddit_id
dtype: string
- name: subreddit_name_prefixed
dtype: string
- name: subreddit_type
dtype: string
- name: total_awards_received
dtype: string
splits:
- name: programming
num_bytes: 3466623746
num_examples: 7503347
- name: tifu
num_bytes: 4761338653
num_examples: 12738669
- name: explainlikeimfive
num_bytes: 8451732573
num_examples: 16392814
- name: WritingPrompts
num_bytes: 4651591771
num_examples: 4436210
- name: changemyview
num_bytes: 8603031915
num_examples: 11600073
- name: LifeProTips
num_bytes: 5272994396
num_examples: 12829459
- name: todayilearned
num_bytes: 22655655241
num_examples: 60199778
- name: science
num_bytes: 7069809765
num_examples: 18112884
- name: askscience
num_bytes: 3144754665
num_examples: 6286702
- name: ifyoulikeblank
num_bytes: 547200329
num_examples: 1332211
- name: Foodforthought
num_bytes: 308377128
num_examples: 567900
- name: IWantToLearn
num_bytes: 408331672
num_examples: 745543
- name: bestof
num_bytes: 2003718831
num_examples: 4347522
- name: IAmA
num_bytes: 9380094090
num_examples: 25778822
- name: socialskills
num_bytes: 1000014402
num_examples: 1842733
- name: relationship_advice
num_bytes: 22298879735
num_examples: 38937398
- name: philosophy
num_bytes: 1494947876
num_examples: 2391695
- name: YouShouldKnow
num_bytes: 1165617658
num_examples: 2639265
- name: history
num_bytes: 1457852402
num_examples: 2962043
- name: books
num_bytes: 4562689426
num_examples: 10187495
- name: Showerthoughts
num_bytes: 13259109532
num_examples: 34123213
- name: personalfinance
num_bytes: 9484869588
num_examples: 18361314
- name: buildapc
num_bytes: 9801044390
num_examples: 21761801
- name: EatCheapAndHealthy
num_bytes: 853462012
num_examples: 1821897
- name: boardgames
num_bytes: 3131627378
num_examples: 6328926
- name: malefashionadvice
num_bytes: 2928017882
num_examples: 7712258
- name: femalefashionadvice
num_bytes: 1619784736
num_examples: 3262969
- name: scifi
num_bytes: 888152056
num_examples: 2193741
- name: Fantasy
num_bytes: 2285934538
num_examples: 4566639
- name: Games
num_bytes: 10396813188
num_examples: 23373965
- name: bodyweightfitness
num_bytes: 794549854
num_examples: 1613634
- name: SkincareAddiction
num_bytes: 3421122597
num_examples: 5660550
- name: podcasts
num_bytes: 464773126
num_examples: 943266
- name: suggestmeabook
num_bytes: 1842944304
num_examples: 3492937
- name: AskHistorians
num_bytes: 2244587909
num_examples: 2714353
- name: gaming
num_bytes: 28374513722
num_examples: 85729253
- name: DIY
num_bytes: 2113533684
num_examples: 4489265
- name: sports
num_bytes: 2230129132
num_examples: 6470079
- name: space
num_bytes: 3081499208
num_examples: 7896182
- name: gadgets
num_bytes: 1683252868
num_examples: 4104833
- name: Documentaries
num_bytes: 1852644771
num_examples: 4051474
- name: GetMotivated
num_bytes: 1211761267
num_examples: 3221980
- name: UpliftingNews
num_bytes: 2003149025
num_examples: 4741948
- name: technology
num_bytes: 10826871436
num_examples: 25404699
- name: Fitness
num_bytes: 6191132755
num_examples: 14319856
- name: travel
num_bytes: 1740556350
num_examples: 3806755
- name: lifehacks
num_bytes: 626791812
num_examples: 1799437
- name: Damnthatsinteresting
num_bytes: 6376694618
num_examples: 15643554
- name: gardening
num_bytes: 1825313940
num_examples: 4568468
- name: mildlyinteresting
num_bytes: 9079894206
num_examples: 26436769
download_size: 109177016105
dataset_size: 255339788158
annotations_creators:
- no-annotation
language:
- en
language_creators:
- found
license: []
multilinguality:
- monolingual
pretty_name: Reddit comments
size_categories:
- 10B<n<100B
source_datasets: []
tags:
- reddit
- social-media
task_categories:
- text-generation
task_ids:
- dialogue-modeling
- language-modeling
---
# Dataset Card for "REDDIT_comments"
## Dataset Description
- **Homepage:**
- **Paper: https://arxiv.org/abs/2001.08435**
### Dataset Summary
Comments of 50 high-quality subreddits, extracted from the REDDIT PushShift data dumps (from 2006 to Jan 2023).
### Supported Tasks
These comments can be used for text generation and language modeling, as well as dialogue modeling.
## Dataset Structure
### Data Splits
Each split corresponds to a specific subreddit in the following list: "tifu", "explainlikeimfive", "WritingPrompts", "changemyview", "LifeProTips", "todayilearned", "science", "askscience", "ifyoulikeblank", "Foodforthought", "IWantToLearn", "bestof", "IAmA", "socialskills", "relationship_advice", "philosophy", "YouShouldKnow", "history", "books", "Showerthoughts", "personalfinance", "buildapc", "EatCheapAndHealthy", "boardgames", "malefashionadvice", "femalefashionadvice", "scifi", "Fantasy", "Games", "bodyweightfitness", "SkincareAddiction", "podcasts", "suggestmeabook", "AskHistorians", "gaming", "DIY", "mildlyinteresting", "sports", "space", "gadgets", "Documentaries", "GetMotivated", "UpliftingNews", "technology", "Fitness", "travel", "lifehacks", "Damnthatsinteresting", "gardening", "programming"
## Dataset Creation
### Curation Rationale
All the information fields have been cast to string, as their format change through time from one dump to the following. A reduced number of keys have been kept: "archived", "author", "author_fullname", "body", "comment_type", "controversiality", "created_utc", "edited", "gilded", "id", "link_id", "locked", "name", "parent_id", "permalink", "retrieved_on", "score", "subreddit", "subreddit_id", "subreddit_name_prefixed", "subreddit_type", "total_awards_received".
### Source Data
The [Reddit PushShift data dumps](https://files.pushshift.io/reddit/) are part of a data collection effort which crawls Reddit at regular intervals, to extract and keep all its data.
#### Initial Data Collection and Normalization
See the paper.
#### Who are the source language producers?
Redditors are mostly young (65% below 30), male (70%), and American (50% of the site).
### Personal and Sensitive Information
The data contains Redditor's usernames associated to their content.
## Considerations for Using the Data
This dataset should be anonymized before any processing.
Though the subreddits selected are considered as being of higher quality, they can still reflect what you can find on the internet in terms of expressions of biases and toxicity.
### Contributions
Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset. |