|
import os |
|
|
|
from dataset import IQADataset |
|
|
|
|
|
def download_dataset(remote_tar_file, dataset_root): |
|
import tarfile |
|
|
|
import wget |
|
|
|
def bar_custom(current, total, width=80): |
|
output = f"[*] Downloading: {current / total * 100:.1f}% [{current / 10**6:.0f} MB / {total / 10**6:.0f} MB]" |
|
return output |
|
|
|
local_tar_file = os.path.join(dataset_root, os.path.basename(remote_tar_file)) |
|
wget.download(remote_tar_file, out=local_tar_file, bar=bar_custom) |
|
with tarfile.open(local_tar_file) as z: |
|
z.extractall(dataset_root) |
|
print(f"\n[*] Downloading finished, deleting the .tar file.") |
|
os.remove(local_tar_file) |
|
|
|
|
|
def prepare_dataset(name, dataset_root, attributes, download): |
|
|
|
score_synthesis_datasets = ["A57", "CIDIQ_MOS100", "CIDIQ_MOS50", "CSIQ", "LIVE", "LIVE_MD", "MDID2013", "MDID2016", "SDIVL", "MDIVL", "TID2008", "TID2013", "VCLFER", "KADID-10k", "Toyama", "PDAP-HDDS"] |
|
score_authentic_datasets = ["LIVE_Challenge", "CID2013", "KonIQ-10k", "SPAQ"] |
|
nonscore_synthesis_datasets = ["Waterloo_Exploration"] |
|
nonscore_authentic_datasets = [] |
|
|
|
available_datasets = score_synthesis_datasets + score_authentic_datasets + nonscore_synthesis_datasets + nonscore_authentic_datasets |
|
|
|
if name in score_synthesis_datasets: |
|
avail_attributes = ["dis_img_path", "dis_type", "ref_img_path", "score"] |
|
elif name in score_authentic_datasets: |
|
avail_attributes = ["dis_img_path", "dis_type", "score"] |
|
elif name in nonscore_synthesis_datasets: |
|
avail_attributes = ["dis_img_path", "dis_type", "ref_img_path"] |
|
elif name in nonscore_authentic_datasets: |
|
avail_attributes = ["dis_img_path", "dis_type"] |
|
else: |
|
raise NotImplementedError(f"Dataset '{name}' is not supported. Currently supported datasets are: {available_datasets}.") |
|
|
|
if attributes is not None: |
|
assert type(attributes) == list |
|
for attr in attributes: |
|
if attr not in avail_attributes: |
|
raise KeyError(f"[!] Attribute: {attr} is not available in {name}.") |
|
else: |
|
attributes = avail_attributes |
|
|
|
if not os.path.exists(dataset_root): |
|
os.makedirs(dataset_root) |
|
|
|
dataset_dir = os.path.join(dataset_root, name) |
|
if not os.path.exists(dataset_dir): |
|
if download is True: |
|
remote_tar_file = f"http://ivc.uwaterloo.ca/database/IQADataset/{name}.tar" |
|
print(f"[*] Cannnot find dataset '{name}'' in '{dataset_dir}', downloading it from '{remote_tar_file}'") |
|
download_dataset(remote_tar_file, dataset_root) |
|
else: |
|
raise FileNotFoundError(f"[!] Cannnot find dataset '{name}' in '{dataset_dir}', try setting 'download=True' or download it manually.") |
|
|
|
return attributes |
|
|
|
|
|
def load_dataset(name, dataset_root="data", attributes=None, download=True): |
|
csv_file = os.path.join("csv", name) + ".txt" |
|
attributes = prepare_dataset(name, dataset_root, attributes, download) |
|
|
|
return IQADataset(csv_file, name, dataset_root, attributes) |
|
|
|
|
|
def load_dataset_pytorch(name, dataset_root="data", attributes=None, download=True, transform=None): |
|
from torchvision import transforms |
|
|
|
from dataset_pytorch import IQADatasetPyTorch |
|
|
|
if transform is None: |
|
transform = transforms.ToTensor() |
|
csv_file = os.path.join("csv", name) + ".txt" |
|
attributes = prepare_dataset(name, dataset_root, attributes, download) |
|
|
|
return IQADatasetPyTorch(csv_file, name, dataset_root, attributes, transform) |
|
|