from torch.utils.data import DataLoader from torchvision import transforms from load_dataset import load_dataset_pytorch if __name__ == '__main__': transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()]) dataset = load_dataset_pytorch("LIVE", dataset_root="data", download=True, transform=transform) dataloader = DataLoader(dataset, batch_size=10, shuffle=False) for i, sample in enumerate(dataloader): print(f"(batch {i+1}/{len(dataloader)}), shape(dis img)={sample['dis_img'].shape}")