add metadata
Browse files- Multidialog.py +242 -0
- metadata/test_freq_metadata_0000.jsonl +0 -0
- metadata/test_rare_metadata_0000.jsonl +0 -0
- metadata/train_metadata_0000.jsonl +0 -0
- metadata/train_metadata_0001.jsonl +0 -0
- metadata/train_metadata_0002.jsonl +0 -0
- metadata/train_metadata_0003.jsonl +0 -0
- metadata/valid_freq_metadata_0000.jsonl +0 -0
- metadata/valid_rare_metadata_0000.jsonl +0 -0
Multidialog.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import csv
|
16 |
+
import os
|
17 |
+
import json
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
_CITATION = """\
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners.
|
25 |
+
|
26 |
+
It contina
|
27 |
+
"""
|
28 |
+
|
29 |
+
_HOMEPAGE = "https://multidialog.github.io/"
|
30 |
+
|
31 |
+
_LICENSE = "Apache License 2.0"
|
32 |
+
|
33 |
+
_BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/"
|
34 |
+
|
35 |
+
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "{subset}/{subset}_chunks_{archive_id:04}.tar.gz"
|
36 |
+
|
37 |
+
_META_URL = _BASE_DATA_URL + "metadata/{subset}_metadata_{archive_id:04}.jsonl"
|
38 |
+
|
39 |
+
|
40 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
class MultidialogConfig(datasets.BuilderConfig):
|
44 |
+
"""BuilderConfig for Multidialog."""
|
45 |
+
|
46 |
+
def __init__(self, name, *args, **kwargs):
|
47 |
+
"""BuilderConfig for Multidialog
|
48 |
+
"""
|
49 |
+
super().__init__(name=name, *args, **kwargs)
|
50 |
+
self.subsets_to_download = (name,)
|
51 |
+
|
52 |
+
|
53 |
+
class Multidialog(datasets.GeneratorBasedBuilder):
|
54 |
+
"""
|
55 |
+
"""
|
56 |
+
|
57 |
+
VERSION = datasets.Version("1.0.0")
|
58 |
+
|
59 |
+
BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in ["train", "test_freq", "test_rare", "valid_freq", "valid_rare"]]
|
60 |
+
|
61 |
+
DEFAULT_WRITER_BATCH_SIZE = 128
|
62 |
+
|
63 |
+
def _info(self):
|
64 |
+
features = datasets.Features(
|
65 |
+
{
|
66 |
+
"file_name": datasets.Value("string"),
|
67 |
+
"conv_id": datasets.Value("string"),
|
68 |
+
"utterance_id": datasets.Value("float32"),
|
69 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
70 |
+
"from": datasets.Value("string"),
|
71 |
+
"value": datasets.Value("string"),
|
72 |
+
"emotion": datasets.Value("string"),
|
73 |
+
"original_full_path": datasets.Value("string"), # relative path to full audio in original data dirs
|
74 |
+
}
|
75 |
+
)
|
76 |
+
return datasets.DatasetInfo(
|
77 |
+
description=_DESCRIPTION,
|
78 |
+
features=features,
|
79 |
+
homepage=_HOMEPAGE,
|
80 |
+
license=_LICENSE,
|
81 |
+
citation=_CITATION,
|
82 |
+
)
|
83 |
+
|
84 |
+
def _read_n_archives(self, n_archives_path):
|
85 |
+
with open(n_archives_path, encoding="utf-8") as f:
|
86 |
+
return int(f.read().strip())
|
87 |
+
|
88 |
+
def _split_generators(self, dl_manager):
|
89 |
+
splits = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare")
|
90 |
+
|
91 |
+
n_archives = {
|
92 |
+
"train" : [15, 4],
|
93 |
+
"test_freq": [1, 1],
|
94 |
+
"test_rare": [1, 1],
|
95 |
+
"valid_freq": [1, 1],
|
96 |
+
"valid_rare": [1, 1],
|
97 |
+
}
|
98 |
+
|
99 |
+
# 2. prepare sharded archives with audio files
|
100 |
+
audio_archives_urls = {
|
101 |
+
split: [
|
102 |
+
_AUDIO_ARCHIVE_URL.format(subset=split, archive_id=i)
|
103 |
+
for i in range(n_archives[split][0])
|
104 |
+
]
|
105 |
+
for split in splits
|
106 |
+
}
|
107 |
+
audio_archives_paths = dl_manager.download(audio_archives_urls)
|
108 |
+
# flatten archives paths from
|
109 |
+
# {"train": {"xs": [path1, path2,], "s": [path3], "m": [path5, path5]}, "dev": {"dev": [path6,...]}, "test": {"test": [...]}}
|
110 |
+
# to {"train": [path1, path2, path3, path4, path5], "dev": [path6, ...], "test": [...]}
|
111 |
+
audio_archives_paths = _flatten_nested_dict(audio_archives_paths)
|
112 |
+
local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \
|
113 |
+
else None
|
114 |
+
|
115 |
+
# 3. prepare sharded metadata csv files
|
116 |
+
meta_urls = {
|
117 |
+
split: [
|
118 |
+
_META_URL.format(subset=split, archiv_id=i)
|
119 |
+
for i in range(n_archives[split][1])
|
120 |
+
]
|
121 |
+
for split in splits
|
122 |
+
}
|
123 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
124 |
+
meta_paths = _flatten_nested_dict(meta_paths)
|
125 |
+
|
126 |
+
if self.config.name == "test_freq":
|
127 |
+
return [
|
128 |
+
datasets.SplitGenerator(
|
129 |
+
name=datasets.Split.TEST,
|
130 |
+
gen_kwargs={
|
131 |
+
"audio_archives_iterators": [
|
132 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_freq"]
|
133 |
+
],
|
134 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
135 |
+
"test_freq"] if local_audio_archives_paths else None,
|
136 |
+
"meta_paths": meta_paths["test_freq"]
|
137 |
+
},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
if self.config.name == "test_rare":
|
142 |
+
return [
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.TEST,
|
145 |
+
gen_kwargs={
|
146 |
+
"audio_archives_iterators": [
|
147 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_rare"]
|
148 |
+
],
|
149 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
150 |
+
"test_rare"] if local_audio_archives_paths else None,
|
151 |
+
"meta_paths": meta_paths["test_rare"]
|
152 |
+
},
|
153 |
+
),
|
154 |
+
]
|
155 |
+
|
156 |
+
if self.config.name == "valid_freq":
|
157 |
+
return [
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.VALIDATION,
|
160 |
+
gen_kwargs={
|
161 |
+
"audio_archives_iterators": [
|
162 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_freq"]
|
163 |
+
],
|
164 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
165 |
+
"valid_freq"] if local_audio_archives_paths else None,
|
166 |
+
"meta_paths": meta_paths["valid_freq"]
|
167 |
+
},
|
168 |
+
),
|
169 |
+
]
|
170 |
+
|
171 |
+
if self.config.name == "valid_rare":
|
172 |
+
return [
|
173 |
+
datasets.SplitGenerator(
|
174 |
+
name=datasets.Split.VALIDATION,
|
175 |
+
gen_kwargs={
|
176 |
+
"audio_archives_iterators": [
|
177 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_rare"]
|
178 |
+
],
|
179 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
180 |
+
"valid_rare"] if local_audio_archives_paths else None,
|
181 |
+
"meta_paths": meta_paths["valid_rare"]
|
182 |
+
},
|
183 |
+
),
|
184 |
+
]
|
185 |
+
|
186 |
+
if self.config.name == "train":
|
187 |
+
return [
|
188 |
+
datasets.SplitGenerator(
|
189 |
+
name=datasets.Split.TRAIN,
|
190 |
+
gen_kwargs={
|
191 |
+
"audio_archives_iterators": [
|
192 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["train"]
|
193 |
+
],
|
194 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
195 |
+
"train"] if local_audio_archives_paths else None,
|
196 |
+
"meta_paths": meta_paths["train"]
|
197 |
+
},
|
198 |
+
),
|
199 |
+
]
|
200 |
+
|
201 |
+
def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths):
|
202 |
+
assert len(audio_archives_iterators) == len(meta_paths)
|
203 |
+
if local_audio_archives_paths:
|
204 |
+
assert len(audio_archives_iterators) == len(local_audio_archives_paths)
|
205 |
+
|
206 |
+
for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)):
|
207 |
+
meta_dict = dict()
|
208 |
+
with open(meta_path) as jsonl_file:
|
209 |
+
for line in jsonl_file:
|
210 |
+
meta_dict[os.path.filename(line["audpath"])[:-4]] = line
|
211 |
+
# data = json.loads(line.strip())
|
212 |
+
# meta_csv = csv.DictReader(csvfile)
|
213 |
+
# for line in meta_csv:
|
214 |
+
|
215 |
+
|
216 |
+
for audio_path_in_archive, audio_file in audio_archive_iterator:
|
217 |
+
# `audio_path_in_archive` is like "dev_chunks_0000/YOU1000000029_S0000095.wav"
|
218 |
+
audio_filename = os.path.split(audio_path_in_archive)[1]
|
219 |
+
audio_id = audio_filename.split(".wav")[0]
|
220 |
+
audio_meta = meta_dict[audio_id]
|
221 |
+
audio_meta["conv_id"] = audio_meta.pop("conv_id")
|
222 |
+
audio_meta["utterance_id"] = audio_meta.pop("utterance_id")
|
223 |
+
audio_meta["from"] = audio_meta.pop("from")
|
224 |
+
audio_meta["value"] = audio_meta.pop("value")
|
225 |
+
audio_meta["emotion"] = audio_meta.pop("emotion")
|
226 |
+
audio_meta["original_full_path"] = audio_meta.pop("audpath")
|
227 |
+
audio_meta["audio_id"] = audio_id
|
228 |
+
|
229 |
+
path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \
|
230 |
+
else audio_path_in_archive
|
231 |
+
|
232 |
+
yield audio_id, {
|
233 |
+
"audio": {"path": path , "bytes": audio_file.read()},
|
234 |
+
**{feature: value for feature, value in audio_meta.items() if feature in self.info.features}
|
235 |
+
}
|
236 |
+
|
237 |
+
|
238 |
+
def _flatten_nested_dict(nested_dict):
|
239 |
+
return {
|
240 |
+
key: [inner_list_element for inner_list in value_to_lists.values() for inner_list_element in inner_list]
|
241 |
+
for key, value_to_lists in nested_dict.items()
|
242 |
+
}
|
metadata/test_freq_metadata_0000.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/test_rare_metadata_0000.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/train_metadata_0000.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/train_metadata_0001.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/train_metadata_0002.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/train_metadata_0003.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/valid_freq_metadata_0000.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
metadata/valid_rare_metadata_0000.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|