Datasets:
File size: 2,154 Bytes
fe38569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
"""Chess studies and annotated games from the top lichess studies and from https://www.angelfire.com/games3/smartbridge/"""
import os
import pandas as pd
import datasets
_CITATION = """TO COME."""
_DESCRIPTION = """\
Chess studies and annotated games from the top lichess studies and from https://www.angelfire.com/games3/smartbridge/
This dataset consists of annotated chess games from several sources and aggregated into a single dataset. It is intended
to train language models to generate chess games and studies.
"""
_HOMEPAGE = ""
_LICENSE = "CC0"
_URLS = {
"lichess": "lichess_studies.csv",
"others": "others.csv",
}
class ChessStudies(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="lichess", version=VERSION, description="Top studies scrapped from the lichess website"),
datasets.BuilderConfig(name="others", version=VERSION, description="Studies aggregated from other sources"),
]
DEFAULT_CONFIG_NAME = "lichess"
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
data_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir),
"split": "train",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
df = pd.read_csv(filepath)
for i, row in df.iterrows():
yield i, {
"text": row['text'],
} |