"""Chess studies and annotated games from the top lichess studies and from https://www.angelfire.com/games3/smartbridge/""" import os import pandas as pd import datasets _CITATION = """TO COME.""" _DESCRIPTION = """\ Chess studies and annotated games from the top lichess studies and from https://www.angelfire.com/games3/smartbridge/ This dataset consists of annotated chess games from several sources and aggregated into a single dataset. It is intended to train language models to generate chess games and studies. """ _HOMEPAGE = "" _LICENSE = "CC0" _URLS = { "lichess": "lichess_studies.csv", "others": "others.csv", } class ChessStudies(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="lichess", version=VERSION, description="Top studies scrapped from the lichess website"), datasets.BuilderConfig(name="others", version=VERSION, description="Studies aggregated from other sources"), ] DEFAULT_CONFIG_NAME = "lichess" def _info(self): features = datasets.Features( { "text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] data_dir = dl_manager.download(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir), "split": "train", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): df = pd.read_csv(filepath) for i, row in df.iterrows(): yield i, { "text": row['text'], }