''' Copyright 2024-2025 Infosys Ltd. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import pickle import torch import os import time import logging from flask import Flask, render_template, request, jsonify from flask import g from datetime import datetime import json from transformers import AutoModelForSequenceClassification, AutoTokenizer from sentence_transformers import SentenceTransformer,util from detoxify import Detoxify from presidio_analyzer import AnalyzerEngine, RecognizerRegistry from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline from dao.AdminDb import Results from werkzeug.exceptions import HTTPException,BadRequest,UnprocessableEntity,InternalServerError from tqdm.auto import tqdm from fastapi.encoders import jsonable_encoder import numpy as np import traceback import uuid from waitress import serve from mapper.mapper import * import contextvars app = Flask(__name__) print("before loading model") request_id_var = contextvars.ContextVar("request_id_var") #pipe = StableDiffusionPipeline.from_pretrained('/model/stablediffusion/fp32/model') device = "cuda" registry = RecognizerRegistry() registry.load_predefined_recognizers() analyzer_engine = AnalyzerEngine(registry=registry) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") gpu=0 if torch.cuda.is_available() else -1 check_point = 'toxic_debiased-c7548aa0.ckpt' toxicityModel = Detoxify(checkpoint='../models/detoxify/'+ check_point, device=device, huggingface_config_path='../models/detoxify') PromptModel_dberta = AutoModelForSequenceClassification.from_pretrained("../models/dbertaInjection").to(device) Prompttokens_dberta = AutoTokenizer.from_pretrained("../models/dbertaInjection") topictokenizer_Facebook = AutoTokenizer.from_pretrained("../models/facebook") topicmodel_Facebook = AutoModelForSequenceClassification.from_pretrained("../models/facebook").to(device) topictokenizer_dberta = AutoTokenizer.from_pretrained("../models/restricted-dberta-large-zeroshot") topicmodel_dberta = AutoModelForSequenceClassification.from_pretrained("../models/restricted-dberta-large-zeroshot").to(device) # classifier = pipeline("zero-shot-classification",model="../models/facebook",device=device) # classifier2 = pipeline("zero-shot-classification",model="../models/restricted-dberta-large-zeroshot",device=device) encoder = SentenceTransformer("../models/multi-qa-mpnet-base-dot-v1").to(device) jailbreakModel = encoder similarity_model =encoder request_id_var.set("Startup") log_dict={} print("model loaded") @app.errorhandler(HTTPException) def handle_exception(e): """Return JSON instead of HTML for HTTP errors.""" # start with the correct headers and status code from the error response = e.get_response() # replace the body with JSON response.data = json.dumps({ "code": e.code, "details": e.description, }) response.content_type = "application/json" return response @app.errorhandler(UnprocessableEntity) def validation_error_handler(exc): """Return JSON instead of HTML for HTTP errors.""" # start with the correct headers and status code from the error response = exc.get_response() print(response) # replace the body with JSON exc_code_desc=exc.description.split("-") exc_code=int(exc_code_desc[0]) exc_desc=exc_code_desc[1] response.data = json.dumps({ "code": exc_code, "details": exc_desc, }) response.content_type = "application/json" return response @app.errorhandler(InternalServerError) def validation_error_handler(exc): """Return JSON instead of HTML for HTTP errors.""" # start with the correct headers and status code from the error response = exc.get_response() print(response) # replace the body with JSON response.data = json.dumps({ "code": 500, "details": "Some Error Occurred ,Please try Later", }) response.content_type = "application/json" return response @app.route("/rai/v2test/raimoderationmodels/detoxifymodel",methods=[ 'POST']) def toxic_model(): st=time.time() try: id=uuid.uuid4().hex payload=request.get_json() request_id_var.set(id) logging.info("before invoking toxic_model service ") log_dict[request_id_var.get()]=[] if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0): raise UnprocessableEntity("1021-Input Text should not be empty ") response = toxicity_check(payload,id) logging.info("after invoking toxic_model service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) logging.info("exit toxic_model routing method") logging.info(f"Time taken by toxicity {time.time()-st}") return jsonable_encoder(response) except UnprocessableEntity as cie: logging.error(cie.__dict__) logging.info("exit toxic_model routing method") raise UnprocessableEntity(**cie.__dict__) except Exception as cie: logging.error(cie.__dict__) logging.info("exit toxic_model routing method") raise HTTPException() @app.route("/rai/v2test/raimoderationmodels/privacy",methods=[ 'POST']) def pii_check(): st=time.time() logging.info("Entered pii_check routing method") try: id=uuid.uuid4().hex payload=request.get_json() request_id_var.set(id) logging.info("before invoking create usecase service ") log_dict[request_id_var.get()]=[] if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0) or payload['entitiesselected'] is None or (payload['entitiesselected'] is not None and len(payload['entitiesselected'])==0): raise UnprocessableEntity("1021-invalid input!") response = privacy(id,payload['text'],payload['entitiesselected']) logging.info("after invoking create usecase service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) # logging.debug("response : " + str(response)) logging.info("exit pii_check routing method") logging.info(f"Time taken by privacy {time.time()-st}") return jsonable_encoder(response) except Exception as cie: logging.error(cie.__dict__) logging.info("exit pii_check routing method") raise HTTPException() @app.route("/rai/v2test/raimoderationmodels/promptinjectionmodel",methods=[ 'POST']) def prompt_model(): st=time.time() logging.info("Entered prompt_model routing method") try: id=uuid.uuid4().hex payload=request.get_json() request_id_var.set(id) logging.info("before invoking prompt_model service") log_dict[request_id_var.get()]=[] if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0): raise UnprocessableEntity("1021-Input Text should not be empty ") response = promptInjection_check(payload['text'],id) logging.info("after invoking prompt_model service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) # logging.debug("response : " + str(response)) logging.info("exit prompt_model routing method") logging.info(f"Time taken by promptinjection {time.time()-st}") return jsonable_encoder(response) except Exception as cie: logging.error(cie.__dict__) logging.info("exit prompt_model routing method") raise HTTPException() @app.route("/rai/v2test/raimoderationmodels/restrictedtopicmodel",methods=[ 'POST']) def restrictedTopic_model(): st=time.time() logging.info("Entered restrictedTopic_model routing method") try: id=uuid.uuid4().hex payload=request.get_json() request_id_var.set(id) logging.info("before invoking restrictedTopic_model service ") log_dict[request_id_var.get()]=[] label_cond = payload['labels'] is None or (payload['labels'] is not None and len(payload['labels'])==0) model_cond=False # print("--") if("model" in payload): model_cond = payload['model'] is None or (payload['model'] is not None and len(payload['model'])==0) # print("==") if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0) or label_cond or model_cond: raise UnprocessableEntity("1021-invalid input ") response = restricttopic_check(payload,id) logging.info("after invoking restrictedTopic_model service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) # logging.debug("response : " + str(response)) logging.info("exit restrictedTopic_model routing method") logging.info(f"Time taken by RestrictedTopic{time.time()-st}") # print(type(response)) # print(type(jsonable_encoder(response))) return jsonable_encoder(response) except Exception as cie: logging.error(cie.__dict__) logging.info("exit restrictedTopic_model routing method") raise HTTPException() @app.route("/rai/v2test/raimoderationmodels/multi_q_net_embedding",methods=[ 'POST']) def embedding_model(): st=time.time() logging.info("Entered embedding_model routing method") try: id=uuid.uuid4().hex payload=request.get_json() request_id_var.set(id) logging.info("before invoking embedding_model service ") log_dict[request_id_var.get()]=[] if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0): raise UnprocessableEntity("1021-Input Text should not be empty ") response = multi_q_net_embedding(id,payload['text']) logging.info("after invoking embedding_model service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) # logging.debug("response : " + str(response)) logging.info("exit embedding_model routing method") logging.info(f"Time taken by Jailbreak {time.time()-st}") return jsonable_encoder(response) except Exception as cie: logging.error(cie.__dict__) logging.info("exit embedding_model routing method") raise HTTPException() @app.route("/rai/v2test/raimoderationmodels/multi-qa-mpnet-model_similarity",methods=[ 'POST']) def similarity_model(): st=time.time() logging.info("Entered similarity_model routing method") try: id=uuid.uuid4().hex request_id_var.set(id) logging.info("before invoking similarity_model service ") payload=request.get_json() log_dict[request_id_var.get()]=[] text1_cond = payload['text1'] is None or (payload['text1'] is not None and len(payload['text1'])==0) text2_cond = payload['text2'] is None or (payload['text2'] is not None and len(payload['text2'])==0) emb1_cond = payload['emb1'] is None or (payload['emb1'] is not None and len(payload['emb1'])==0) emb2_cond = payload['emb2'] is None or (payload['emb2'] is not None and len(payload['emb2'])==0) if text1_cond or text2_cond or emb1_cond or emb2_cond: raise UnprocessableEntity("1021-Input Text should not be empty ") response = multi_q_net_similarity(id,payload['text1'],payload['text2'],payload['emb1'],payload['emb2']) logging.info("after invoking similarity_model service ") er=log_dict[request_id_var.get()] logobj = {"_id":id,"error":er} if len(er)!=0: Results.createlog(logobj) del log_dict[id] logging.debug("response : " + str(response)) # logging.debug("response : " + str(response)) logging.info("exit similarity_model routing method") logging.info(f"Time taken by similary{time.time()-st}") return jsonable_encoder(response) except Exception as cie: logging.error(cie.__dict__) logging.info("exit similarity_model routing method") raise HTTPException() def privacy(id,text,PIIenities_selected=None): try: analyzer_results = analyzer_engine.analyze(text=text, language="en",entities=PIIenities_selected) entityList= [] anyz_res = jsonable_encoder(analyzer_results) for i in anyz_res: entityList.append(i['entity_type']) return anyz_res,jsonable_encoder(entityList) except Exception as e: logging.error("Error occured in privacy") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at privacy call"}) raise InternalServerError() def multi_q_net_similarity(id,text1=None,text2=None,emb1=None,emb2=None): try: if text1: with torch.no_grad(): emb1 = jailbreakModel.encode(text1, convert_to_tensor=True,device=device) if text2: with torch.no_grad(): emb2 = jailbreakModel.encode(text2, convert_to_tensor=True,device=device) emb = util.pytorch_cos_sim(emb1, emb2).to("cpu").numpy().tolist() del emb1 del emb2 #torch.cuda.empty_cache() return emb except Exception as e: logging.error("Error occured in multi_q_net_similarity") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at multi_q_net_similarity call"}) raise InternalServerError() def multi_q_net_embedding(id,lst): try: res = [] for text in lst: with torch.no_grad(): text_embedding = jailbreakModel.encode(text, convert_to_tensor=True,device=device) res.append(text_embedding.to("cpu").numpy().tolist()) del text_embedding #torch.cuda.empty_cache() return res # return text_embedding.numpy().tolist() except Exception as e: logging.error("Error occured in multi_q_net text embedding") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at multi_q_net text embedding call"}) raise InternalServerError() def restricttopic_check(payload,id): try: # topicmodel = topicmodel_Facebook # topictokenizer = topictokenizer_Facebook # nlp = pipeline('zero-shot-classification', model=classifier, tokenizer=topictokenizer) text=payload['text'] labels=payload['labels'] model =payload['model'] if hasattr(payload, 'model') else "facebook" if model==None: model="dberta" if model=="facebook": # nlp = classifier nlp = pipeline('zero-shot-classification', model=topicmodel_Facebook, tokenizer=topictokenizer_Facebook, device=gpu) elif model=="dberta": # nlp = classifier2 nlp = pipeline('zero-shot-classification', model=topicmodel_dberta, tokenizer=topictokenizer_dberta,device=gpu) with torch.no_grad(): output=nlp(text, labels,multi_label=True) for i in range(len(output["scores"])): output["scores"][i] = round(output["scores"][i],4) del nlp #torch.cuda.empty_cache() return output except Exception as e: logging.error("Error occured in restricttopic_check") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at restricttopic_check call"}) raise InternalServerError() def toxicity_check(payload,id) : try: text = payload['text'] with torch.no_grad(): output = toxicityModel.predict(text) List_profanity_score = [] obj_profanityScore_toxic = profanityScore(metricName='toxicity', metricScore=output['toxicity']) obj_profanityScore_severe_toxic = profanityScore(metricName='severe_toxicity', metricScore=output['severe_toxicity']) obj_profanityScore_obscene = profanityScore(metricName='obscene', metricScore=output['obscene']) obj_profanityScore_threat = profanityScore(metricName='threat', metricScore=output['threat']) obj_profanityScore_insult = profanityScore(metricName='insult', metricScore=output['insult']) obj_profanityScore_identity_attack = profanityScore(metricName='identity_attack', metricScore=output['identity_attack']) obj_profanityScore_sexual_explicit = profanityScore(metricName='sexual_explicit', metricScore=output['sexual_explicit']) List_profanity_score.append(obj_profanityScore_toxic) List_profanity_score.append(obj_profanityScore_severe_toxic) List_profanity_score.append(obj_profanityScore_obscene) List_profanity_score.append(obj_profanityScore_threat) List_profanity_score.append(obj_profanityScore_insult) List_profanity_score.append(obj_profanityScore_identity_attack) List_profanity_score.append(obj_profanityScore_sexual_explicit) objProfanityAnalyzeResponse = {} objProfanityAnalyzeResponse['toxicScore'] = List_profanity_score #torch.cuda.empty_cache() return objProfanityAnalyzeResponse except Exception as e: logging.error("Error occured in toxicity_check") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at toxicity_check call"}) raise InternalServerError() def promptInjection_check(text,id): try: Prompttokens = Prompttokens_dberta PromptModel = PromptModel_dberta tokens = Prompttokens.encode_plus(text, truncation=True, padding=True, return_tensors="pt").to(device) with torch.no_grad(): outputs = PromptModel(**tokens) predicted_label = outputs.logits.argmax().item() label_names = PromptModel.config.id2label predicted_label_name = label_names[predicted_label] predicted_probabilities = outputs.logits.softmax(dim=1)[0, predicted_label].item() del tokens #torch.cuda.empty_cache() # #torch.cuda.empty_cache() return predicted_label_name,predicted_probabilities except Exception as e: logging.error("Error occured in promptInjection_check") logging.error(f"Exception: {e}") log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e), "Error Module":"Failed at promptInjection_check call"}) raise InternalServerError() @app.route("/") def hello_world(): return "

Hello, world!

" if __name__ == "__main__": serve(app, host='0.0.0.0', port=8000, threads=int(os.getenv('THREADS',1)),connection_limit=int(os.getenv('CONNECTION_LIMIT',500)), channel_timeout=int(os.getenv('CHANNEL_TIMEOUT',120))) #app.run()