khagn commited on
Commit
f32b608
1 Parent(s): 52bcb9e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -3
README.md CHANGED
@@ -22,6 +22,7 @@ size_categories:
22
  - 1K<n<10K
23
  ---
24
  # VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
 
25
 
26
  ## Dataset Description
27
 
@@ -30,9 +31,27 @@ size_categories:
30
 
31
  ### Dataset Summary
32
 
33
- The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
34
 
35
- ### Supported Tasks and Leaderboards
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  - pedestrian detection
38
  - 2d object-detection
@@ -84,7 +103,7 @@ Train/Validation/Test splits are provided
84
 
85
  ### Licensing Information
86
 
87
- Creative Commons Zero v1.0 Universal
88
 
89
  ### Citation Information
90
  Relevant publications:
 
22
  - 1K<n<10K
23
  ---
24
  # VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
25
+ <img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/teaser_c.png">
26
 
27
  ## Dataset Description
28
 
 
31
 
32
  ### Dataset Summary
33
 
34
+ The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline (see image below) providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
35
 
36
+ <img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/VALERIE_overview1.png">
37
+
38
+ Each sequence of the dataset contains for each scene two rendered images. One is rendered with the default Blender tonemapping (/png) whereas the second is renderd with our photorealistic sensor simulation (see hagn2022optimized). The image below shows the difference of the two methods.
39
+
40
+ <img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/SensorSimulation.png">
41
+
42
+ Following are some example images showing the unique characteristics of the different sequences.
43
+
44
+ |Sequence0052|Sequence0054|Sequence0057|Sequence0058|
45
+ |:---:|:---:|:---:|:---:|
46
+ |<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq52_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq54_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq57_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq58_1.png" width="500">|
47
+
48
+ |Sequence0059|Sequence0060|Sequence0062|
49
+ |:---:|:---:|:---:|
50
+ |<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq59_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq60_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq62_1.jpg" width="500">|
51
+
52
+
53
+
54
+ ### Supported Tasks
55
 
56
  - pedestrian detection
57
  - 2d object-detection
 
103
 
104
  ### Licensing Information
105
 
106
+ CC BY 4.0
107
 
108
  ### Citation Information
109
  Relevant publications: