repo_name
stringlengths
7
90
path
stringlengths
4
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
762
838k
license
stringclasses
15 values
tridesclous/tridesclous
tridesclous/export.py
1
4852
import os from collections import OrderedDict import numpy as np import scipy.io try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class GenericSpikeExporter: def __call__(self,spikes, catalogue, seg_num, chan_grp, export_path, split_by_cluster=False, use_cell_label=True, #~ use_index=True, ): if not os.path.exists(export_path): os.makedirs(export_path) #~ print('export', spikes.size, seg_num, export_path) #~ print('split_by_cluster', split_by_cluster, 'use_cell_label', use_cell_label) clusters = catalogue['clusters'] spike_labels = spikes['cluster_label'] if use_cell_label: spike_labels = spikes['cluster_label'].copy() for l in clusters: mask = spike_labels==l['cluster_label'] spike_labels[mask] = l['cell_label'] spike_indexes = spikes['index'] out_data = OrderedDict() if split_by_cluster: if use_cell_label: possible_labels = np.unique(clusters['cell_label']) label_name = 'cell' else: possible_labels = clusters['cluster_label'] label_name = 'cluster' for k in possible_labels: keep = k == spike_labels out_data[label_name + '#'+ str(k)] = (spike_indexes[keep], spike_labels[keep]) else: out_data['cell#all'] = (spike_indexes, spike_labels) name = 'spikes - segNum {} - chanGrp {}'.format(seg_num, chan_grp) filename = os.path.join(export_path, name) self.write_out_data(out_data, filename) class CsvSpikeExporter(GenericSpikeExporter): ext = 'csv' def write_out_data(self, out_data, filename): for key, (spike_indexes, spike_labels) in out_data.items(): filename2 = filename +' - '+key+'.csv' self._write_one_file(filename2, spike_indexes, spike_labels) def _write_one_file(self, filename, labels, indexes): rows = [''] * len(labels) for i in range(len(labels)): rows[i]='{},{}\n'.format(labels[i], indexes[i]) with open(filename, 'w') as out: out.writelines(rows) export_csv = CsvSpikeExporter() class MatlabSpikeExporter(GenericSpikeExporter): ext = 'mat' def write_out_data(self, out_data, filename): mdict = {} for key, (spike_indexes, spike_labels) in out_data.items(): mdict['index_'+key] = spike_indexes mdict['label_'+key] =spike_labels scipy.io.savemat(filename+'.mat', mdict) export_matlab = MatlabSpikeExporter() class ExcelSpikeExporter(GenericSpikeExporter): ext = 'xslx' def write_out_data(self, out_data, filename): assert HAS_PANDAS writer = pd.ExcelWriter(filename+'.xlsx') for key, (spike_indexes, spike_labels) in out_data.items(): df = pd.DataFrame() df['index'] = spike_indexes df['label'] = spike_labels df.to_excel(writer, sheet_name=key, index=False) writer.save() export_excel = ExcelSpikeExporter() # list export_list = [export_csv, export_matlab, ] if HAS_PANDAS: export_list.append(export_excel) export_dict = {e.ext:e for e in export_list} def export_catalogue_spikes(cc, export_path=None, formats=None): """ This export spikes from catalogue. Usefull when when catalogue peak sampler mode is all. This avoid the peeler. """ dataio = cc.dataio chan_grp = cc.chan_grp sampler_mode = cc.info['peak_sampler']['mode'] if sampler_mode != 'all': print('You are trying to export peak from catalogue but peak_sampler mode is not "all"') if export_path is None: export_path = os.path.join(dataio.dirname, 'export_catalogue_chan_grp_{}'.format(chan_grp)) catalogue = {} catalogue['clusters'] = cc.clusters.copy() if formats is None: exporters = export_list elif isinstance(formats, str): assert formats in export_dict exporters = [ export_dict[formats] ] elif isinstance(format, list): exporters = [ export_dict[format] for format in formats] else: raise ValueError() for seg_num in range(dataio.nb_segment): in_segment = (cc.all_peaks['segment'] == seg_num) pos_label = (cc.all_peaks['cluster_label'] >= 0) spikes = cc.all_peaks[in_segment & pos_label] if spikes is None: continue args = (spikes, catalogue, seg_num, chan_grp, export_path,) kargs = dict(split_by_cluster=False, use_cell_label=False) for exporter in exporters: exporter(*args, **kargs)
mit
lefthandedroo/Cosmo-models
zprev versions/Models_py_backup/stats copy.py
1
12889
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 23 16:02:10 2018 @author: BallBlueMeercat """ import matplotlib.pyplot as plt from emcee import EnsembleSampler import numpy as np import time import os.path import datasim import tools import ln import plots def stats(test_params, data_dict, sigma, nsteps, save_path, firstderivs_key): """ Takes in: test_params = dictionary of parameters to be emcee fitted 'm':int/float = e_m(t)/ec(t0) at t=t0; 'gamma':int/float = interaction term; 'zeta':int/float = interaction term; 'alpha':int/float = SN peak mag correlation parameter; 'beta' :int/float = SN peak mag correlation parameter; data_dict = dictionary of parameters from data 'colour': numpy.ndarray = SN colour; 'x1': numpy.ndarray = SN stretch correction as; 'zpicks':list of redshifts sorted in accending order; 'mag':list of apparent magnitudes; sigma = standard deviation of error on the data; nsteps = int, steps to be taken by each emcee walker; save_path = string, directory for saving output; firstderivs_key = string, name of IVCDM model to use for model mag. Returns: """ # print('-stats has been called') zpicks = data_dict.get('zpicks',0) mag = data_dict.get('mag',0) if firstderivs_key == 'exotic': pass elif firstderivs_key == 'LCDM': test_params['gamma'] = 0 del test_params['gamma'] test_params['zeta'] = 0 del test_params['zeta'] else: test_params['zeta'] = 0 del test_params['zeta'] # emcee parameters: ndim = len(test_params) nwalkers = int(ndim * 2) # Initializing walkers. poslist = list(test_params.values()) pos = [] for i in poslist: pos.append(i) startpos = np.array(pos) pos = [startpos + 0.001*np.random.randn(ndim) for i in range(nwalkers)] # Are walkers starting outside of prior? i = 0 while i < nwalkers: theta = pos[i] lp = ln.lnprior(theta, firstderivs_key) if not np.isfinite(lp): print('~~~~~~~pos[%s] (outside of prior) = %s ~~~~~~~'%(i, theta)) i += 1 # Sampler setup. times0 = time.time() # starting sampler timer sampler = EnsembleSampler(nwalkers, ndim, ln.lnprob, args=(data_dict, sigma, firstderivs_key, ndim)) # Burnin. burnin = int(nsteps/4) # steps to discard print('_____ burnin start') timeb0 = time.time() # starting burnin timer pos, prob, state = sampler.run_mcmc(pos, burnin) timeb1=time.time() # stopping burnin timer print('_____ burnin end') sampler.reset() # Starting sampler after burnin. print('_____ sampler start') sampler.run_mcmc(pos, nsteps) print('_____ sampler end') times1=time.time() # stopping sampler timer # Walker steps. lnprob = sampler.flatlnprobability # Index of best parameters found by emcee. bi = np.argmax(sampler.flatlnprobability) # index with highest post prob trace = sampler.chain[:, burnin:, :].reshape(-1, ndim) # Extracting results: thetabest = np.zeros(ndim) parambest = {} true = [] propert = {} propert['trace'] = trace colours = ['coral', 'orchid', 'apple', 'orange', 'aquamarine', 'black'] def stat(i, sampler, string, test_params, propert): best_output = sampler.flatchain[bi,i] # Input m = e_m(z)/ec(z=0). param_true = test_params.get(string, 0) true.append(param_true) # Output m. output = sampler.flatchain[:,i] # Standard deviation and mean of the m distribution. propert[string+'_sd'] = np.std(output) propert[string+'_mean'] = np.mean(output) propert[string] = sampler.flatchain[bi,i] return best_output, output, param_true, propert for i in range(ndim): if i == 0: # mbest = sampler.flatchain[bi,i] # thetabest[i] = mbest # parambest['m'] = mbest # # Input m = e_m(z)/ec(z=0). # m_true = test_params.get('m', 0) # true.append(m_true) # # Output m. # m = sampler.flatchain[:,i] # # Standard deviation and mean of the m distribution. # m_sd = np.std(m) # m_mean = np.mean(m) # propert['m_sd'] = m_sd # propert['m_mean'] = m_mean # propert['m'] = mbest # plots.stat('coral', m, m_true, 'Matter', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'm', test_params, propert) plots.stat(colours[i], output, param_true, 'matter', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['m'] = best elif i == 1: # Mbest = sampler.flatchain[bi,i] # thetabest[i] = Mbest # parambest['M'] = Mbest # # Input M. # M_true = test_params.get('M',0) # true.append(M_true) # # Output alpha. # M = sampler.flatchain[:,i] # # Standard deviation and mean of the alpha distribution # M_sd = np.std(M) # M_mean = np.mean(M) # propert['M_sd'] = M_sd # propert['M_mean'] = M_mean # propert['M'] = Mbest # plots.stat('orchid', M, M_true, 'Mcorr', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'M', test_params, propert) plots.stat(colours[i], output, param_true, 'Mcorr', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['M'] = best elif i == 2: # alphabest = sampler.flatchain[bi,i] # thetabest[i] = alphabest # parambest['alpha'] = alphabest # # Input interaction term. # a_true = test_params.get('alpha',0) # true.append(a_true) # # Output gamma. # alpha = sampler.flatchain[:,i] # # Standard deviation and mean of the gamme distribution. # alpha_sd = np.std(alpha) # alpha_mean = np.mean(alpha) # propert['alpha_sd'] = alpha_sd # propert['alpha_mean'] = alpha_mean # propert['alpha'] = alphabest # plots.stat('apple', alpha, a_true, 'alpha', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'a', test_params, propert) plots.stat(colours[i], output, param_true, 'alpha', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['alpha'] = best elif i == 3: # betabest = sampler.flatchain[bi,i] # thetabest[i] = betabest # parambest['beta'] = betabest # # Input interaction term. # b_true = test_params.get('beta',0) # true.append(b_true) # # Output gamma. # beta = sampler.flatchain[:,i] # # Standard deviation and mean of the gamme distribution. # beta_sd = np.std(beta) # beta_mean = np.mean(beta) # propert['beta_sd'] = beta_sd # propert['beta_mean'] = beta_mean # propert['beta'] = betabest # plots.stat('orange', beta, b_true, 'beta', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'b', test_params, propert) plots.stat(colours[i], output, param_true, 'beta', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['beta'] = best elif i == 4: # gammabest = sampler.flatchain[bi,i] # thetabest[i] = gammabest # parambest['gamma'] = gammabest # # Input interaction term. # g_true = test_params.get('gamma',0) # true.append(g_true) # # Output gamma. # gamma = sampler.flatchain[:,i] # # Standard deviation and mean of the gamme distribution. # gamma_sd = np.std(gamma) # gamma_mean = np.mean(gamma) # propert['gamma_sd'] = gamma_sd # propert['gamma_mean'] = gamma_mean # propert['gamma'] = gammabest # plots.stat('aquamarine', gamma, g_true, 'Gamma', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'g', test_params, propert) plots.stat(colours[i], output, param_true, 'gamma', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['gamma'] = best elif i == 5: # zetabest = sampler.flatchain[bi,i] # thetabest[i] = zetabest # parambest['zeta'] = zetabest # # Input interaction term. # z_true = test_params.get('zeta',0) # true.append(z_true) # # Output zeta. # zeta = sampler.flatchain[:,i] # # Standard deviation and mean of the gamme distribution. # zeta_sd = np.std(zeta) # zeta_mean = np.mean(zeta) # propert['zeta_sd'] = zeta_sd # propert['zeta_mean'] = zeta_mean # propert['zeta'] = zetabest # plots.stat('black', zeta, z_true, 'Zeta', lnprob, zpicks, # mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) best, output, param_true, propert = stat(i, sampler, 'z', test_params, propert) plots.stat(colours[i], output, param_true, 'zeta', lnprob, zpicks, mag, sigma, nsteps, nwalkers, save_path, firstderivs_key) thetabest[i] = best parambest['zeta'] = best # Checking if best found parameters are within prior. lp = ln.lnprior(thetabest, firstderivs_key) if not np.isfinite(lp): print('') print('best emcee parameters outside of prior (magbest calculation)') print('') # Plot of data mag and redshifts, overlayed with # mag simulated using emcee best parameters and data redshifts. magbest = datasim.magn(parambest, data_dict, firstderivs_key) plt.figure() plt.title('model: '+firstderivs_key +'\n Evolution of magnitude with redshift \n nsteps: ' +str(nsteps)+', noise: '+str(sigma)+', npoints: '+str(len(zpicks))) data = plt.errorbar(zpicks, mag, yerr=sigma, fmt='.', alpha=0.3) best_fit = plt.scatter(zpicks, magbest, lw='1', c='xkcd:tomato') plt.ylabel('magnitude') plt.xlabel('z') plt.legend([data, best_fit], ['LCDM', firstderivs_key]) stamp = str(int(time.time())) filename = str(stamp)+'____magz__nsteps_'+str(nsteps)+'_nwalkers_' \ +str(nwalkers)+'_noise_'+str(sigma)+'_numpoints_'+str(len(zpicks))+'.png' filename = os.path.join(save_path, filename) plt.savefig(filename) plt.show(block=False) # Corner plot (walkers' walk + histogram). import corner # samples = sampler.chain[:, burnin:, :].reshape((-1, ndim)) samples = sampler.chain[:, :, :].reshape((-1, ndim)) corner.corner(samples, labels=["$m$", "$M$", "$alpha$", "$beta$", "$g$", "$z$"], truths=true) # Results getting printed: if bi == 0: print('@@@@@@@@@@@@@@@@@') print('best index =',str(bi)) print('@@@@@@@@@@@@@@@@@') print('best parameters =',str(parambest)) print('m.a.f.:', np.mean(sampler.acceptance_fraction)) print('nsteps:', str(nsteps)) print('sigma:', str(sigma)) print('npoints:', str(len(zpicks))) print('model:', firstderivs_key) tools.timer('burnin', timeb0, timeb1) tools.timer('sampler', times0, times1) return propert, sampler
mit
dungvtdev/upsbayescpm
bayespy/inference/vmp/nodes/CovarianceFunctions.py
5
28645
################################################################################ # Copyright (C) 2011-2012 Jaakko Luttinen # # This file is licensed under the MIT License. ################################################################################ import itertools import numpy as np #import scipy as sp import scipy.sparse as sp # prefer CSC format #import scipy.linalg.decomp_cholesky as decomp #import scipy.linalg as linalg #import scipy.special as special #import matplotlib.pyplot as plt #import time #import profile import scipy.spatial.distance as dist #import scikits.sparse.distance as spdist from . import node as ef from bayespy.utils import misc as utils # Covariance matrices can be either arrays or matrices so be careful # with products and powers! Use explicit multiply or dot instead of # *-operator. def gp_cov_se(D2, overwrite=False): if overwrite: K = D2 K *= -0.5 np.exp(K, out=K) else: K = np.exp(-0.5*D2) return K def gp_cov_pp2_new(r, d, derivative=False): # Dimension dependent parameter q = 2 j = np.floor(d/2) + q + 1 # Polynomial coefficients a2 = j**2 + 4*j + 3 a1 = 3*j + 6 a0 = 3 # Two parts of the covariance function k1 = (1-r) ** (j+2) k2 = (a2*r**2 + a1*r + 3) # TODO: Check that derivative is 0, 1 or 2! if derivative == 0: # Return covariance return k1 * k2 / 3 dk1 = - (j+2) * (1-r)**(j+1) dk2 = 2*a2*r + a1 if derivative == 1: # Return first derivative of the covariance return (k1 * dk2 + dk1 * k2) / 3 ddk1 = (j+2) * (j+1) * (1-r)**j ddk2 = 2*a2 if derivative == 2: # Return second derivative of the covariance return (ddk1*k2 + 2*dk1*dk2 + k1*ddk2) / 3 def gp_cov_pp2(r, d, gradient=False): # Dimension dependent parameter j = np.floor(d/2) + 2 + 1 # Polynomial coefficients a2 = j**2 + 4*j + 3 a1 = 3*j + 6 a0 = 3 # Two parts of the covariance function k1 = (1-r) ** (j+2) k2 = (a2*r**2 + a1*r + 3) # The covariance function k = k1 * k2 / 3 if gradient: # The gradient w.r.t. r dk = k * (j+2) / (r-1) + k1 * (2*a2*r + a1) / 3 return (k, dk) else: return k def gp_cov_delta(N): # TODO: Use sparse matrices here! if N > 0: #print('in gpcovdelta', N, sp.identity(N).shape) return sp.identity(N) else: # Sparse matrices do not allow zero-length dimensions return np.identity(N) #return np.identity(N) #return np.asmatrix(np.identity(N)) def squared_distance(x1, x2): ## # Reshape arrays to 2-D arrays ## sh1 = np.shape(x1)[:-1] ## sh2 = np.shape(x2)[:-1] ## d = np.shape(x1)[-1] ## x1 = np.reshape(x1, (-1,d)) ## x2 = np.reshape(x2, (-1,d)) (m1,n1) = x1.shape (m2,n2) = x2.shape if m1 == 0 or m2 == 0: D2 = np.empty((m1,m2)) else: # Compute squared Euclidean distance D2 = dist.cdist(x1, x2, metric='sqeuclidean') #D2 = np.asmatrix(D2) # Reshape the result #D2 = np.reshape(D2, sh1 + sh2) return D2 # General rule for the parameters for covariance functions: # # (value, [ [dvalue1, ...], [dvalue2, ...], [dvalue3, ...], ...]) # # For instance, # # k = covfunc_se((1.0, []), (15, [ [1,update_grad] ])) # K = k((x1, [ [dx1,update_grad] ]), (x2, [])) # # Plain values are converted as: # value -> (value, []) def gp_standardize_input(x): if np.size(x) == 0: x = np.reshape(x, (0,0)) elif np.ndim(x) == 0: x = np.reshape(x, (1,1)) elif np.ndim(x) == 1: x = np.reshape(x, (-1,1)) elif np.ndim(x) == 2: x = np.atleast_2d(x) else: raise Exception("Standard GP inputs must be 2-dimensional") return x def gp_preprocess_inputs(x1,x2=None): #args = list(args) #if len(args) < 1 or len(args) > 2: #raise Exception("Number of inputs must be one or two") if x2 is None: x1 = gp_standardize_input(x1) return x1 else: if x1 is x2: x1 = gp_standardize_input(x1) x2 = x1 else: x1 = gp_standardize_input(x1) x2 = gp_standardize_input(x2) return (x1, x2) #return args ## def gp_preprocess_inputs(x1,x2=None): ## #args = list(args) ## #if len(args) < 1 or len(args) > 2: ## #raise Exception("Number of inputs must be one or two") ## if x2 is not None: len(args) == 2: ## if args[0] is args[1]: ## args[0] = gp_standardize_input(args[0]) ## args[1] = args[0] ## else: ## args[1] = gp_standardize_input(args[1]) ## args[0] = gp_standardize_input(args[0]) ## else: ## args[0] = gp_standardize_input(args[0]) ## return args # TODO: # General syntax for these covariance functions: # covfunc(hyper1, # hyper2, # ... # hyperN, # x1, # x2=None, # gradient=list_of_booleans_for_each_hyperparameter) def covfunc_zeros(x1, x2=None, gradient=False): inputs = gp_preprocess_inputs(*inputs) # Compute distance and covariance matrix if x2 is None: x1 = gp_preprocess_inputs(x1) # Only variance vector asked N = np.shape(x1)[0] # TODO: Use sparse matrices! K = np.zeros(N) #K = np.asmatrix(np.zeros((N,1))) else: (x1,x2) = gp_preprocess_inputs(x1,x2) # Full covariance matrix asked #x1 = inputs[0] #x2 = inputs[1] # Number of inputs x1 N1 = np.shape(x1)[0] N2 = np.shape(x2)[0] # TODO: Use sparse matrices! K = np.zeros((N1,N2)) #K = np.asmatrix(np.zeros((N1,N2))) if gradient is not False: return (K, []) else: return K def covfunc_delta(amplitude, x1, x2=None, gradient=False): # Make sure that amplitude is a scalar, not an array object amplitude = utils.array_to_scalar(amplitude) ## if gradient: ## gradient_amplitude = gradient[0] ## else: ## gradient_amplitude = [] ## inputs = gp_preprocess_inputs(*inputs) # Compute distance and covariance matrix if x2 is None: x1 = gp_preprocess_inputs(x1) # Only variance vector asked #x = inputs[0] N = np.shape(x1)[0] K = np.ones(N) * amplitude**2 else: (x1,x2) = gp_preprocess_inputs(x1,x2) # Full covariance matrix asked #x1 = inputs[0] #x2 = inputs[1] # Number of inputs x1 N1 = np.shape(x1)[0] # x1 == x2? if x1 is x2: delta = True # Delta covariance # # FIXME: Broadcasting doesn't work with sparse matrices, # so must use scalar multiplication K = gp_cov_delta(N1) * amplitude**2 #K = gp_cov_delta(N1).multiply(amplitude**2) else: delta = False # Number of inputs x2 N2 = np.shape(x2)[0] # Zero covariance if N1 > 0 and N2 > 0: K = sp.csc_matrix((N1,N2)) else: K = np.zeros((N1,N2)) # Gradient w.r.t. amplitude if gradient: # FIXME: Broadcasting doesn't work with sparse matrices, # so must use scalar multiplication gradient_amplitude = K*(2/amplitude) print("noise grad", gradient_amplitude) return (K, (gradient_amplitude,)) else: return K def covfunc_pp2(amplitude, lengthscale, x1, x2, gradient=False): # Make sure that hyperparameters are scalars, not an array objects amplitude = utils.array_to_scalar(amplitude) lengthscale = utils.array_to_scalar(lengthscale) #amplitude = theta[0] #lengthscale = theta[1] ## if gradient: ## gradient_amplitude = gradient[0] ## gradient_lengthscale = gradient[1] ## else: ## gradient_amplitude = [] ## gradient_lengthscale = [] ## inputs = gp_preprocess_inputs(*inputs) # Compute covariance matrix if x2 is None: x1 = gp_preprocess_inputs(x1) # Compute variance vector K = np.ones(np.shape(x)[:-1]) K *= amplitude**2 # Compute gradient w.r.t. lengthscale if gradient: gradient_lengthscale = np.zeros(np.shape(x1)[:-1]) else: (x1,x2) = gp_preprocess_inputs(x1,x2) # Compute (sparse) distance matrix if x1 is x2: x1 = inputs[0] / (lengthscale) x2 = x1 D2 = spdist.pdist(x1, 1.0, form="full", format="csc") else: x1 = inputs[0] / (lengthscale) x2 = inputs[1] / (lengthscale) D2 = spdist.cdist(x1, x2, 1.0, format="csc") r = np.sqrt(D2.data) N1 = np.shape(x1)[0] N2 = np.shape(x2)[0] # Compute the covariances if gradient: (k, dk) = gp_cov_pp2(r, np.shape(x1)[-1], gradient=True) else: k = gp_cov_pp2(r, np.shape(x1)[-1]) k *= amplitude**2 # Compute gradient w.r.t. lengthscale if gradient: if N1 >= 1 and N2 >= 1: dk *= r * (-amplitude**2 / lengthscale) gradient_lengthscale = sp.csc_matrix((dk, D2.indices, D2.indptr), shape=(N1,N2)) else: gradient_lengthscale = np.empty((N1,N2)) # Form sparse covariance matrix if N1 >= 1 and N2 >= 1: ## K = sp.csc_matrix((k, ij), shape=(N1,N2)) K = sp.csc_matrix((k, D2.indices, D2.indptr), shape=(N1,N2)) else: K = np.empty((N1, N2)) #print(K.__class__) # Gradient w.r.t. amplitude if gradient: gradient_amplitude = K * (2 / amplitude) # Return values if gradient: print("pp2 grad", gradient_lengthscale) return (K, (gradient_amplitude, gradient_lengthscale)) else: return K def covfunc_se(amplitude, lengthscale, x1, x2=None, gradient=False): # Make sure that hyperparameters are scalars, not an array objects amplitude = utils.array_to_scalar(amplitude) lengthscale = utils.array_to_scalar(lengthscale) # Compute covariance matrix if x2 is None: x1 = gp_preprocess_inputs(x1) #x = inputs[0] # Compute variance vector N = np.shape(x1)[0] K = np.ones(N) np.multiply(K, amplitude**2, out=K) # Compute gradient w.r.t. lengthscale if gradient: # TODO: Use sparse matrices? gradient_lengthscale = np.zeros(N) else: (x1,x2) = gp_preprocess_inputs(x1,x2) x1 = x1 / (lengthscale) x2 = x2 / (lengthscale) # Compute distance matrix K = squared_distance(x1, x2) # Compute gradient partly if gradient: gradient_lengthscale = np.divide(K, lengthscale) # Compute covariance matrix gp_cov_se(K, overwrite=True) np.multiply(K, amplitude**2, out=K) # Compute gradient w.r.t. lengthscale if gradient: gradient_lengthscale *= K # Gradient w.r.t. amplitude if gradient: gradient_amplitude = K * (2 / amplitude) # Return values if gradient: print("se grad", gradient_amplitude, gradient_lengthscale) return (K, (gradient_amplitude, gradient_lengthscale)) else: return K class CovarianceFunctionWrapper(): def __init__(self, covfunc, *params): # Parse parameter values and their gradients to separate lists self.covfunc = covfunc self.params = list(params) self.gradient_params = list() ## print(params) for ind in range(len(params)): if isinstance(params[ind], tuple): # Parse the value and the list of gradients from the # form: # ([value, ...], [ [grad1, ...], [grad2, ...], ... ]) self.gradient_params.append(params[ind][1]) self.params[ind] = params[ind][0][0] else: # No gradients, parse from the form: # [value, ...] self.gradient_params.append([]) self.params[ind] = params[ind][0] def fixed_covariance_function(self, *inputs, gradient=False): # What if this is called several times?? if gradient: ## grads = [[grad[0] for grad in self.gradient_params[ind]] ## for ind in range(len(self.gradient_params))] ## (K, dK) = self.covfunc(self.params, ## *inputs, ## gradient=self.gradient_params) arguments = tuple(self.params) + tuple(inputs) (K, dK) = self.covfunc(*arguments, gradient=True) ## (K, dK) = self.covfunc(self.params, ## *inputs, ## gradient=grads) DK = [] for ind in range(len(dK)): # Gradient w.r.t. covariance function's ind-th # hyperparameter dk = dK[ind] # Chain rule: Multiply by the gradient of the # hyperparameter w.r.t. parent node and append the # list DK: # DK = [ (dx1_1, callback), ..., (dx1_n, callback) ] for grad in self.gradient_params[ind]: #print(grad[0]) #print(grad[1:]) #print(dk) if sp.issparse(dk): print(dk.shape) print(grad[0].shape) DK += [ [dk.multiply(grad[0])] + grad[1:] ] else: DK += [ [np.multiply(dk,grad[0])] + grad[1:] ] #DK += [ [np.multiply(grad[0], dk)] + grad[1:] ] ## DK += [ (np.multiply(grad, dk),) + grad[1:] ## for grad in self.gradient_params[ind] ] ## for grad in self.gradient_params[ind]: ## DK += ( (np.multiply(grad, dk),) + grad[1:] ) ## DK = [] ## for ind in range(len(dK)): ## for (grad, dk) in zip(self.gradient_params[ind], dK[ind]): ## DK += [ [dk] + grad[1:] ] K = [K] return (K, DK) else: arguments = tuple(self.params) + tuple(inputs) #print(arguments) K = self.covfunc(*arguments, gradient=False) return [K] class CovarianceFunction(ef.Node): def __init__(self, covfunc, *args, **kwargs): self.covfunc = covfunc params = list(args) for i in range(len(args)): # Check constant parameters if utils.is_numeric(args[i]): params[i] = ef.NodeConstant([np.asanyarray(args[i])], dims=[np.shape(args[i])]) # TODO: Parameters could be constant functions? :) ef.Node.__init__(self, *params, dims=[(np.inf, np.inf)], **kwargs) def __call__(self, x1, x2): """ Compute covariance matrix for inputs x1 and x2. """ covfunc = self.message_to_child() return covfunc(x1, x2)[0] def message_to_child(self, gradient=False): params = [parent.message_to_child(gradient=gradient) for parent in self.parents] covfunc = self.get_fixed_covariance_function(*params) return covfunc def get_fixed_covariance_function(self, *params): get_cov_func = CovarianceFunctionWrapper(self.covfunc, *params) return get_cov_func.fixed_covariance_function ## def covariance_function(self, *params): ## # Parse parameter values and their gradients to separate lists ## params = list(params) ## gradient_params = list() ## print(params) ## for ind in range(len(params)): ## if isinstance(params[ind], tuple): ## # Parse the value and the list of gradients from the ## # form: ## # ([value, ...], [ [grad1, ...], [grad2, ...], ... ]) ## gradient_params.append(params[ind][1]) ## params[ind] = params[ind][0][0] ## else: ## # No gradients, parse from the form: ## # [value, ...] ## gradient_params.append([]) ## params[ind] = params[ind][0] ## # This gradient_params changes mysteriously.. ## print('grad_params before') ## if isinstance(self, SquaredExponential): ## print(gradient_params) ## def cov(*inputs, gradient=False): ## if gradient: ## print('grad_params after') ## print(gradient_params) ## grads = [[grad[0] for grad in gradient_params[ind]] ## for ind in range(len(gradient_params))] ## print('CovarianceFunction.cov') ## #if isinstance(self, SquaredExponential): ## #print(self.__class__) ## #print(grads) ## (K, dK) = self.covfunc(params, ## *inputs, ## gradient=grads) ## for ind in range(len(dK)): ## for (grad, dk) in zip(gradient_params[ind], dK[ind]): ## grad[0] = dk ## K = [K] ## dK = [] ## for grad in gradient_params: ## dK += grad ## return (K, dK) ## else: ## K = self.covfunc(params, ## *inputs, ## gradient=False) ## return [K] ## return cov class Sum(CovarianceFunction): def __init__(self, *args, **kwargs): CovarianceFunction.__init__(self, None, *args, **kwargs) def get_fixed_covariance_function(self, *covfunc_parents): def covfunc(*inputs, gradient=False): K_sum = None if gradient: dK_sum = list() for k in covfunc_parents: if gradient: (K, dK) = k(*inputs, gradient=gradient) print("dK in sum", dK) dK_sum += dK #print("dK_sum in sum", dK_sum) else: K = k(*inputs, gradient=gradient) if K_sum is None: K_sum = K[0] else: try: K_sum += K[0] except: # You have to do this way, for instance, if # K_sum is sparse and K[0] is dense. K_sum = K_sum + K[0] if gradient: #print("dK_sum on: ", dK_sum) #print('covsum', dK_sum) return ([K_sum], dK_sum) else: return [K_sum] return covfunc class Delta(CovarianceFunction): def __init__(self, amplitude, **kwargs): CovarianceFunction.__init__(self, covfunc_delta, amplitude, **kwargs) class Zeros(CovarianceFunction): def __init__(self, **kwargs): CovarianceFunction.__init__(self, covfunc_zeros, **kwargs) class SquaredExponential(CovarianceFunction): def __init__(self, amplitude, lengthscale, **kwargs): CovarianceFunction.__init__(self, covfunc_se, amplitude, lengthscale, **kwargs) class PiecewisePolynomial2(CovarianceFunction): def __init__(self, amplitude, lengthscale, **kwargs): CovarianceFunction.__init__(self, covfunc_pp2, amplitude, lengthscale, **kwargs) # TODO: Rename to Blocks or Joint ? class Multiple(CovarianceFunction): def __init__(self, covfuncs, **kwargs): self.d = len(covfuncs) #self.sparse = sparse parents = [covfunc for row in covfuncs for covfunc in row] CovarianceFunction.__init__(self, None, *parents, **kwargs) def get_fixed_covariance_function(self, *covfuncs): def cov(*inputs, gradient=False): # Computes the covariance matrix from blocks which all # have their corresponding covariance functions if len(inputs) < 2: # For one input, return the variance vector instead of # the covariance matrix x1 = inputs[0] # Collect variance vectors from the covariance # functions corresponding to the diagonal blocks K = [covfuncs[i*self.d+i](x1[i], gradient=gradient)[0] for i in range(self.d)] # Form the variance vector from the collected vectors if gradient: raise Exception('Gradient not yet implemented.') else: ## print("in cov multiple") ## for (k,kf) in zip(K,covfuncs): ## print(np.shape(k), k.__class__, kf) #K = np.vstack(K) K = np.concatenate(K) else: x1 = inputs[0] x2 = inputs[1] # Collect the covariance matrix (and possibly # gradients) from each block. #print('cov mat collection begins') K = [[covfuncs[i*self.d+j](x1[i], x2[j], gradient=gradient) for j in range(self.d)] for i in range(self.d)] #print('cov mat collection ends') # Remove matrices that have zero length dimensions? if gradient: K = [[K[i][j] for j in range(self.d) if np.shape(K[i][j][0][0])[1] != 0] for i in range(self.d) if np.shape(K[i][0][0][0])[0] != 0] else: K = [[K[i][j] for j in range(self.d) if np.shape(K[i][j][0])[1] != 0] for i in range(self.d) if np.shape(K[i][0][0])[0] != 0] n_blocks = len(K) #print("nblocks", n_blocks) #print("K", K) # Check whether all blocks are sparse is_sparse = True for i in range(n_blocks): for j in range(n_blocks): if gradient: A = K[i][j][0][0] else: A = K[i][j][0] if not sp.issparse(A): is_sparse = False if gradient: ## Compute the covariance matrix and the gradients # Create block matrices of zeros. This helps in # computing the gradient. if is_sparse: # Empty sparse matrices. Some weird stuff here # because sparse matrices can't have zero # length dimensions. Z = [[sp.csc_matrix(np.shape(K[i][j][0][0])) for j in range(n_blocks)] for i in range(n_blocks)] else: # Empty dense matrices Z = [[np.zeros(np.shape(K[i][j][0][0])) for j in range(n_blocks)] for i in range(n_blocks)] ## for j in range(self.d)] ## for i in range(self.d)] # Compute gradients block by block dK = list() for i in range(n_blocks): for j in range(n_blocks): # Store the zero block z_old = Z[i][j] # Go through the gradients for the (i,j) # block for dk in K[i][j][1]: # Keep other blocks at zero and set # the gradient to (i,j) block. Form # the matrix from blocks if is_sparse: Z[i][j] = dk[0] dk[0] = sp.bmat(Z).tocsc() else: if sp.issparse(dk[0]): Z[i][j] = dk[0].toarray() else: Z[i][j] = dk[0] #print("Z on:", Z) dk[0] = np.asarray(np.bmat(Z)) # Append the computed gradient matrix # to the list of gradients dK.append(dk) # Restore the zero block Z[i][j] = z_old ## Compute the covariance matrix but not the ## gradients if is_sparse: # Form the full sparse covariance matrix from # blocks. Ignore blocks having a zero-length # axis because sparse matrices consider zero # length as an invalid shape (BUG IN SCIPY?). K = [[K[i][j][0][0] for j in range(n_blocks)] for i in range(n_blocks)] K = sp.bmat(K).tocsc() else: # Form the full dense covariance matrix from # blocks. Transform sparse blocks to dense # blocks. K = [[K[i][j][0][0] if not sp.issparse(K[i][j][0][0]) else K[i][j][0][0].toarray() for j in range(n_blocks)] for i in range(n_blocks)] K = np.asarray(np.bmat(K)) else: ## Compute the covariance matrix but not the ## gradients if is_sparse: # Form the full sparse covariance matrix from # blocks. Ignore blocks having a zero-length # axis because sparse matrices consider zero # length as an invalid shape (BUG IN SCIPY?). K = [[K[i][j][0] for j in range(n_blocks)] for i in range(n_blocks)] K = sp.bmat(K).tocsc() else: # Form the full dense covariance matrix from # blocks. Transform sparse blocks to dense # blocks. K = [[K[i][j][0] if not sp.issparse(K[i][j][0]) else K[i][j][0].toarray() for j in range(n_blocks)] for i in range(n_blocks)] K = np.asarray(np.bmat(K)) if gradient: return ([K], dK) else: return [K] return cov
mit
micahhausler/pandashells
pandashells/test/p_crypt_test.py
9
2552
#! /usr/bin/env python from mock import patch, MagicMock from unittest import TestCase from pandashells.bin.p_crypt import main class MainTests(TestCase): @patch( 'pandashells.bin.p_crypt.sys.argv', 'p.crypt -i my_in -o my_out'.split()) @patch('pandashells.bin.p_crypt.os.system') @patch('pandashells.bin.p_crypt.os.path.isfile') def test_proper_encrypt(self, isfile_mock, system_mock): isfile_mock.return_value = True main() system_mock.assert_called_with( 'cat my_in | openssl enc -aes-256-cbc -salt > my_out') @patch( 'pandashells.bin.p_crypt.sys.argv', 'p.crypt -i my_in -o my_out -v'.split()) @patch('pandashells.bin.p_crypt.sys.stdout') @patch('pandashells.bin.p_crypt.os.system') @patch('pandashells.bin.p_crypt.os.path.isfile') def test_proper_encrypt_verbose( self, isfile_mock, system_mock, stdout_mock): stdout_mock.write = MagicMock() isfile_mock.return_value = True main() system_mock.assert_called_with( 'cat my_in | openssl enc -aes-256-cbc -salt > my_out') self.assertTrue(stdout_mock.write.called) @patch( 'pandashells.bin.p_crypt.sys.argv', 'p.crypt -i my_in -o my_out --password xx'.split()) @patch('pandashells.bin.p_crypt.os.system') @patch('pandashells.bin.p_crypt.os.path.isfile') def test_proper_encypt_with_password(self, isfile_mock, system_mock): isfile_mock.return_value = True main() system_mock.assert_called_with( "cat my_in | openssl enc -aes-256-cbc -salt -k 'xx' > my_out") @patch( 'pandashells.bin.p_crypt.sys.argv', 'p.crypt -i my_in -o my_out --password xx'.split()) @patch('pandashells.bin.p_crypt.sys.stderr') @patch('pandashells.bin.p_crypt.os.system') @patch('pandashells.bin.p_crypt.os.path.isfile') def test_proper_encypt_no_input_file( self, isfile_mock, stderr_mock, system_mock): isfile_mock.return_value = False with self.assertRaises(SystemExit): main() @patch( 'pandashells.bin.p_crypt.sys.argv', 'p.crypt -i my_in -o my_out -d'.split()) @patch('pandashells.bin.p_crypt.os.system') @patch('pandashells.bin.p_crypt.os.path.isfile') def test_proper_decrypt(self, isfile_mock, system_mock): isfile_mock.return_value = True main() system_mock.assert_called_with( 'cat my_in | openssl enc -d -aes-256-cbc > my_out')
bsd-2-clause
robcarver17/pysystemtrade
sysquant/optimisation/full_handcrafting.py
1
47297
# This is the *full* handcrafting code # It can be used for long only # It is *not* the code actually used in pysystemtrade # It is completely self contained with no pysystemtrade imports # CAVEATS: # Uses weekly returns (resample needed first) # Doesn't deal with missing assets from copy import copy import numpy as np import pandas as pd import scipy.stats as stats from scipy.stats import norm import scipy.cluster.hierarchy as sch FLAG_BAD_RETURN = -9999999.9 from scipy.optimize import minimize from collections import namedtuple CALENDAR_DAYS_IN_YEAR = 365.25 WEEKS_IN_YEAR = CALENDAR_DAYS_IN_YEAR / 7.0 MAX_CLUSTER_SIZE = 3 # Do not change WARN_ON_SUBPORTFOLIO_SIZE = ( 0.2 # change if you like, sensible values are between 0 and 0.5 ) APPROX_MIN_WEIGHT_IN_CORR_WEIGHTS = 0.1 FUDGE_FACTOR_FOR_CORR_WEIGHT_UNCERTAINTY = 4.0 MAX_ROWS_FOR_CORR_ESTIMATION = 100 PSTEP_FOR_CORR_ESTIMATION = 0.25 # Convenience objects NO_SUB_PORTFOLIOS = object() NO_RISK_TARGET = object() NO_TOP_LEVEL_WEIGHTS = object() class diagobject(object): def __init__(self): pass def __repr__(self): return "%s \n %s " % (self.calcs, self.description) def norm_weights(list_of_weights): norm_weights = list(np.array(list_of_weights) / np.sum(list_of_weights)) return norm_weights # To make comparision easier we compare sorted correlations to sorted correlations; otherwise we'd need many more than 10 # candidate matrices to cope with different ordering of the same matrix def get_weights_using_uncertainty_method(cmatrix, data_points=100): if len(cmatrix) == 1: return [1.0] if len(cmatrix) == 2: return [0.5, 0.5] if len(cmatrix) > MAX_CLUSTER_SIZE: raise Exception("Cluster too big") average_weights = optimised_weights_given_correlation_uncertainty(cmatrix, data_points) weights = apply_min_weight(average_weights) return weights def optimised_weights_given_correlation_uncertainty(corr_matrix, data_points, p_step=PSTEP_FOR_CORR_ESTIMATION): dist_points = np.arange(p_step, stop=(1-p_step)+0.000001, step=p_step) list_of_weights = [] for conf1 in dist_points: for conf2 in dist_points: for conf3 in dist_points: conf_intervals = labelledCorrelations(conf1, conf2, conf3) weights = optimise_for_corr_matrix_with_uncertainty(corr_matrix, conf_intervals, data_points) list_of_weights.append(weights) array_of_weights = np.array(list_of_weights) average_weights = np.nanmean(array_of_weights, axis=0) return average_weights labelledCorrelations = namedtuple("labelledCorrelations", 'ab ac bc') def optimise_for_corr_matrix_with_uncertainty(corr_matrix, conf_intervals, data_points): labelled_correlations = extract_asset_pairwise_correlations_from_matrix(corr_matrix) labelled_correlation_points = calculate_correlation_points_from_tuples(labelled_correlations, conf_intervals, data_points) corr_matrix_at_distribution_point = three_asset_corr_matrix(labelled_correlation_points) weights = optimise_for_corr_matrix(corr_matrix_at_distribution_point) return weights def extract_asset_pairwise_correlations_from_matrix(corr_matrix): ab = corr_matrix[0][1] ac = corr_matrix[0][2] bc = corr_matrix[1][2] return labelledCorrelations(ab=ab, ac=ac, bc=bc) def calculate_correlation_points_from_tuples(labelled_correlations, conf_intervals, data_points): correlation_point_list = [get_correlation_distribution_point(corr_value, data_points, confidence_interval) for corr_value, confidence_interval in zip(labelled_correlations, conf_intervals)] labelled_correlation_points = labelledCorrelations(*correlation_point_list) return labelled_correlation_points def get_correlation_distribution_point(corr_value, data_points, conf_interval): fisher_corr = fisher_transform(corr_value) point_in_fisher_units = \ get_fisher_confidence_point(fisher_corr, data_points, conf_interval) point_in_natural_units = inverse_fisher(point_in_fisher_units) return point_in_natural_units def fisher_transform(corr_value): if corr_value>=1.0: corr_value = 0.99999999999999 elif corr_value<=-1.0: corr_value = -0.99999999999999 return 0.5*np.log((1+corr_value) / (1-corr_value)) # also arctanh def get_fisher_confidence_point(fisher_corr, data_points, conf_interval): if conf_interval<0.5: confidence_in_fisher_units = fisher_confidence(data_points, conf_interval) point_in_fisher_units = fisher_corr - confidence_in_fisher_units elif conf_interval>0.5: confidence_in_fisher_units = fisher_confidence(data_points, 1-conf_interval) point_in_fisher_units = fisher_corr + confidence_in_fisher_units else: point_in_fisher_units = fisher_corr return point_in_fisher_units def fisher_confidence(data_points, conf_interval): data_point_root =fisher_stdev(data_points)*FUDGE_FACTOR_FOR_CORR_WEIGHT_UNCERTAINTY conf_point = get_confidence_point(conf_interval) return data_point_root * conf_point def fisher_stdev(data_points): data_point_root = 1/((data_points-3)**.5) return data_point_root def get_confidence_point(conf_interval): conf_point = norm.ppf(1-(conf_interval/2)) return conf_point def inverse_fisher(fisher_corr_value): return (np.exp(2*fisher_corr_value) - 1) / (np.exp(2*fisher_corr_value) + 1) def three_asset_corr_matrix(labelled_correlations): """ :return: np.array 2 dimensions, size """ ab = labelled_correlations.ab ac = labelled_correlations.ac bc = labelled_correlations.bc m = [[1.0, ab, ac], [ab, 1.0, bc], [ac, bc, 1.0]] m = np.array(m) return m def optimise_for_corr_matrix(corr_matrix): ## arbitrary mean_list = [.05]*3 std = .1 stdev_list = np.full(len(mean_list), std) sigma = sigma_from_corr_and_std(stdev_list, corr_matrix) return optimise(sigma, mean_list) def apply_min_weight(average_weights): weights_with_min = [min_weight(weight) for weight in average_weights] adj_weights = norm_weights(weights_with_min) return adj_weights def min_weight(weight): if weight<APPROX_MIN_WEIGHT_IN_CORR_WEIGHTS: return APPROX_MIN_WEIGHT_IN_CORR_WEIGHTS else: return weight """ SR adjustment """ def multiplier_from_relative_SR(relative_SR, avg_correlation, years_of_data): # Return a multiplier # 1 implies no adjustment required ratio = mini_bootstrap_ratio_given_SR_diff( relative_SR, avg_correlation, years_of_data ) return ratio def mini_bootstrap_ratio_given_SR_diff( SR_diff, avg_correlation, years_of_data, avg_SR=0.5, std=0.15, how_many_assets=2, p_step=0.01, ): """ Do a parametric bootstrap of portfolio weights to tell you what the ratio should be between an asset which has a higher backtested SR (by SR_diff) versus another asset(s) with average Sharpe Ratio (avg_SR) All assets are assumed to have same standard deviation and correlation :param SR_diff: Difference in performance in Sharpe Ratio (SR) units between one asset and the rest :param avg_correlation: Average correlation across portfolio :param years_of_data: How many years of data do you have (can be float for partial years) :param avg_SR: Should be realistic for your type of trading :param std: Standard deviation (doesn't affect results, just a scaling parameter) :param how_many_assets: How many assets in the imaginary portfolio :param p_step: Step size to go through in the CDF of the mean estimate :return: float, ratio of weight of asset with different SR to 1/n weight """ dist_points = np.arange( p_step, stop=( 1 - p_step) + 0.00000001, step=p_step) list_of_weights = [ weights_given_SR_diff( SR_diff, avg_correlation, confidence_interval, years_of_data, avg_SR=avg_SR, std=std, how_many_assets=how_many_assets, ) for confidence_interval in dist_points ] array_of_weights = np.array(list_of_weights) average_weights = np.nanmean(array_of_weights, axis=0) ratio_of_weights = weight_ratio(average_weights) if np.sign(ratio_of_weights - 1.0) != np.sign(SR_diff): # This shouldn't happen, and only occurs because weight distributions # get curtailed at zero return 1.0 return ratio_of_weights def weight_ratio(weights): """ Return the ratio of weight of first asset to other weights :param weights: :return: float """ one_over_N_weight = 1.0 / len(weights) weight_first_asset = weights[0] return weight_first_asset / one_over_N_weight def weights_given_SR_diff( SR_diff, avg_correlation, confidence_interval, years_of_data, avg_SR=0.5, std=0.15, how_many_assets=2, ): """ Return the ratio of weight to 1/N weight for an asset with unusual SR :param SR_diff: Difference between the SR and the average SR. 0.0 indicates same as average :param avg_correlation: Average correlation amongst assets :param years_of_data: How long has this been going one :param avg_SR: Average SR to use for other asset :param confidence_interval: How confident are we about our mean estimate (i.e. cdf point) :param how_many_assets: .... are we optimising over (I only consider 2, but let's keep it general) :param std: Standard deviation to use :return: Ratio of weight, where 1.0 means no difference """ average_mean = avg_SR * std asset1_mean = (SR_diff + avg_SR) * std mean_difference = asset1_mean - average_mean # Work out what the mean is with appropriate confidence confident_mean_difference = calculate_confident_mean_difference( std, years_of_data, mean_difference, confidence_interval, avg_correlation) confident_asset1_mean = confident_mean_difference + average_mean mean_list = [confident_asset1_mean] + \ [average_mean] * (how_many_assets - 1) weights = optimise_using_correlation(mean_list, avg_correlation, std) return list(weights) def optimise_using_correlation(mean_list, avg_correlation, std): corr_matrix = boring_corr_matrix(len(mean_list), offdiag=avg_correlation) stdev_list = np.full(len(mean_list), std) sigma = sigma_from_corr_and_std(stdev_list, corr_matrix) return optimise(sigma, mean_list) def boring_corr_matrix(size, offdiag=0.99, diag=1.0): """ Create a boring correlation matrix :param size: dimensions :param offdiag: value to put in off diagonal :param diag: value to put in diagonal :return: np.array 2 dimensions, size """ size_index = range(size) def _od(i, j, offdiag, diag): if i == j: return diag else: return offdiag m = [[_od(i, j, offdiag, diag) for i in size_index] for j in size_index] m = np.array(m) return m def calculate_confident_mean_difference( std, years_of_data, mean_difference, confidence_interval, avg_correlation ): omega_difference = calculate_omega_difference( std, years_of_data, avg_correlation) confident_mean_difference = stats.norm( mean_difference, omega_difference).ppf(confidence_interval) return confident_mean_difference def calculate_omega_difference(std, years_of_data, avg_correlation): omega_one_asset = std / (years_of_data) ** 0.5 omega_variance_difference = 2 * \ (omega_one_asset ** 2) * (1 - avg_correlation) omega_difference = omega_variance_difference ** 0.5 return omega_difference def adjust_weights_for_SR(weights, SR_list, years_of_data, avg_correlation): """ Adjust weights according to heuristic method :param weights: List of float, starting weights :param SR_list: np.array of Sharpe Ratios :param years_of_data: float :return: list of adjusted weights """ assert len(weights) == len(SR_list) avg_SR = np.nanmean(SR_list) relative_SR_list = SR_list - avg_SR multipliers = [ float(multiplier_from_relative_SR(relative_SR, avg_correlation, years_of_data)) for relative_SR in relative_SR_list ] new_weights = list(np.array(weights) * np.array(multipliers)) norm_new_weights = norm_weights(new_weights) return norm_new_weights class Portfolio: """ Portfolios; what do they contain: a list of instruments, return characteristics, [vol weights], [cash weights] can contain sub portfolios they are initially created with some returns """ def __init__( self, instrument_returns, allow_leverage=False, risk_target=NO_RISK_TARGET, use_SR_estimates=True, top_level_weights=NO_TOP_LEVEL_WEIGHTS, log=print, ): """ :param instrument_returns: A pandas data frame labelled with instrument names, containing weekly instrument_returns :param allow_leverage: bool. Ignored if NO_RISK_TARGET :param risk_target: (optionally) float, annual standard deviation estimate :param use_SR_estimates: bool :param top_level_weights: (optionally) pass a list, same length as top level. Used for partioning to hit risk target. """ instrument_returns = self._clean_instruments_remove_missing( instrument_returns) self.instrument_returns = instrument_returns self.instruments = list(instrument_returns.columns) self.corr_matrix = calc_correlation(instrument_returns) self.vol_vector = np.array( instrument_returns.std() * (WEEKS_IN_YEAR ** 0.5)) self.returns_vector = np.array( instrument_returns.mean() * WEEKS_IN_YEAR) self.sharpe_ratio = self.returns_vector / self.vol_vector self.years_of_data = minimum_many_years_of_data_in_dataframe( instrument_returns) self.allow_leverage = allow_leverage self.risk_target = risk_target self.use_SR_estimates = use_SR_estimates self.top_level_weights = top_level_weights self.log = log def __repr__(self): return "Portfolio with %d instruments" % len(self.instruments) def _missing_data_instruments(self, instrument_returns, min_periods=2): """ This will only affect top level portfolios :return: list of instruments without enough data for correlation estimate """ instrument_returns[instrument_returns == 0.0] = np.nan missing_values = instrument_returns.isna().sum() total_data_length = len(instrument_returns) missing_instruments = [ instrument for instrument, missing_value_this_instrument in zip( instrument_returns.columns, missing_values) if ( total_data_length - missing_value_this_instrument) < min_periods] return missing_instruments def _clean_instruments_remove_missing(self, instrument_returns): """ :return: pd.DataFrame with only valid instruments left in """ all_instruments = instrument_returns.columns missing_instruments = self._missing_data_instruments( instrument_returns) valid_instruments = [ x for x in all_instruments if x not in missing_instruments] self.all_instruments = all_instruments self.missing_instruments = missing_instruments self.valid_instruments = valid_instruments return instrument_returns[valid_instruments] def _cluster_breakdown(self) -> list: """ Creates clusters from the portfolio (doesn't create sub portfolios, but tells you which ones to make) Credit to this notebook: https://github.com/TheLoneNut/CorrelationMatrixClustering/blob/master/CorrelationMatrixClustering.ipynb :return: list of int same length as instruments """ corr_matrix = self.corr_matrix.values ind = cluster_correlation_matrix(corr_matrix, max_cluster_size=MAX_CLUSTER_SIZE) return ind def _cluster_breakdown_using_risk_partition(self): """ Creates clusters, using a risk partitioning method :return: list of int, same length as instruments """ risk_target = self.risk_target self.log( "Partioning into two groups to hit risk target of %f" % risk_target) assert risk_target is not NO_RISK_TARGET vol_vector = self.vol_vector count_is_higher_risk = sum( [instrument_vol > risk_target for instrument_vol in vol_vector] ) if count_is_higher_risk == 0: raise Exception( "Risk target greater than vol of any instrument: will be impossible to hit risk target" ) if count_is_higher_risk < ( len(self.instruments) * WARN_ON_SUBPORTFOLIO_SIZE): self.log( "Not many instruments have risk higher than target; portfolio will be concentrated to hit risk target" ) def _cluster_id(instrument_vol, risk_target): # hard coded do not change; high vol is second group if instrument_vol > risk_target: return 2 else: return 1 cluster_list = [ _cluster_id( instrument_vol, risk_target) for instrument_vol in vol_vector] return cluster_list def _create_single_subportfolio(self, instrument_list): """ Create a single sub portfolio object :param instrument_list: a subset of the instruments in self.instruments :return: a new Portfolio object """ sub_portfolio_returns = self.instrument_returns[instrument_list] # IMPORTANT NOTE: Sub portfolios don't inherit risk targets or # leverage... that is only applied at top level sub_portfolio = Portfolio( sub_portfolio_returns, use_SR_estimates=self.use_SR_estimates ) return sub_portfolio def _create_child_subportfolios(self): """ Create sub portfolios. This doesn't create the entire 'tree', just the level below us (our children) :return: a list of new portfolio objects (also modifies self.sub_portfolios) """ # get clusters if len(self.instruments) <= MAX_CLUSTER_SIZE: return NO_SUB_PORTFOLIOS if self._require_partioned_portfolio(): # Break into two groups to hit a risk target self.log("Applying partition to hit risk target") cluster_list = self._cluster_breakdown_using_risk_partition() else: self.log("Natural top level grouping used") cluster_list = self._cluster_breakdown() unique_clusters = list(set(cluster_list)) instruments_by_cluster = [ [ self.instruments[idx] for idx, i in enumerate(cluster_list) if i == cluster_id ] for cluster_id in unique_clusters ] sub_portfolios = [ self._create_single_subportfolio(instruments_for_this_cluster) for instruments_for_this_cluster in instruments_by_cluster ] return sub_portfolios def _require_partioned_portfolio(self): """ If risk_target set and no leverage allowed will be True, OR if top level weights are passed otherwise False :return: bool """ if self.top_level_weights is not NO_TOP_LEVEL_WEIGHTS: # if top level weights are passed we need to partition return True elif (self.risk_target is not NO_RISK_TARGET) and (not self.allow_leverage): # if a risk target is set, but also no leverage allowed, we need to # partition return True return False def _create_all_subportfolios(self): """ Decluster the entire portfolio into a tree of subportfolios :return: None [populates self.subportfolios] or NO_SUB_PORTFOLIOS """ # Create the first level of sub portfolios underneath us sub_portfolios = self._create_child_subportfolios() if sub_portfolios is NO_SUB_PORTFOLIOS: # nothing to do return NO_SUB_PORTFOLIOS # Create the rest of the tree for single_sub_portfolio in sub_portfolios: # This will create all nested portfolios single_sub_portfolio._create_all_subportfolios() return sub_portfolios def show_subportfolio_tree(self, prefix=""): """ Display the sub portfolio tree :return: None """ descrlist = [] if self.sub_portfolios is NO_SUB_PORTFOLIOS: descrlist = ["%s Contains %s" % (prefix, str(self.instruments))] return descrlist descrlist.append("%s Contains %d sub portfolios" % (prefix, len(self.sub_portfolios))) for idx, sub_portfolio in enumerate(self.sub_portfolios): descrlist.append( sub_portfolio.show_subportfolio_tree( prefix="%s[%d]" % (prefix, idx))) return descrlist def _diags_as_dataframe(self): """ :return: A list of tuples (label, dataframes) showing how the portfolio weights were built up """ diag = diagobject() # not used - make sure everything is available vw = self.volatility_weights if self.sub_portfolios is NO_SUB_PORTFOLIOS: description = "Portfolio containing %s instruments " % ( str(self.instruments) ) diag.description = description vol_weights = self.volatility_weights raw_weights = self.raw_weights SR = self.sharpe_ratio diagmatrix = pd.DataFrame( [raw_weights, vol_weights, list(SR)], columns=self.instruments, index=["Raw vol (no SR adj)", "Vol (with SR adj)", "Sharpe Ratio"], ) diag.calcs = diagmatrix diag.cash = "No cash calculated" diag.aggregate = "Not an aggregate portfolio" return diag description = "Portfolio containing %d sub portfolios" % len( self.sub_portfolios ) diag.description = description # do instrument level dm_by_instrument_list = self.dm_by_instrument_list instrument_vol_weight_in_sub_list = self.instrument_vol_weight_in_sub_list sub_portfolio_vol_weight_list = self.sub_portfolio_vol_weight_list vol_weights = self.volatility_weights diagmatrix = pd.DataFrame( [ instrument_vol_weight_in_sub_list, sub_portfolio_vol_weight_list, dm_by_instrument_list, vol_weights, ], columns=self.instruments, index=[ "Vol wt in group", "Vol wt. of group", "Div mult of group", "Vol wt.", ], ) diag.calcs = diagmatrix # do aggregate next diag.aggregate = diagobject() diag.aggregate.description = description + " aggregate" vol_weights = self.aggregate_portfolio.volatility_weights raw_weights = self.aggregate_portfolio.raw_weights div_mult = [ sub_portfolio.div_mult for sub_portfolio in self.sub_portfolios] sharpe_ratios = list(self.aggregate_portfolio.sharpe_ratio) # unlabelled, sub portfolios don't get names diagmatrix = pd.DataFrame( [raw_weights, vol_weights, sharpe_ratios, div_mult], index=[ "Raw vol (no SR adj or DM)", "Vol (with SR adj no DM)", "SR", "Div mult", ], ) diag.aggregate.calcs = diagmatrix # do cash diag.cash = diagobject() description = "Portfolio containing %d instruments (cash calculations)" % len( self.instruments) diag.cash.description = description vol_weights = self.volatility_weights cash_weights = self.cash_weights vol_vector = list(self.vol_vector) diagmatrix = pd.DataFrame( [vol_weights, vol_vector, cash_weights], columns=self.instruments, index=["Vol weights", "Std.", "Cash weights"], ) diag.cash.calcs = diagmatrix return diag def _calculate_weights_standalone_portfolio(self): """ For a standalone portfolio, calculates volatility weights Uses the candidate matching method :return: list of weights """ assert len(self.instruments) <= MAX_CLUSTER_SIZE assert self.sub_portfolios is NO_SUB_PORTFOLIOS raw_weights = get_weights_using_uncertainty_method( self.corr_matrix.values, len(self.instrument_returns.index)) self.raw_weights = raw_weights use_SR_estimates = self.use_SR_estimates if use_SR_estimates: SR_list = self.sharpe_ratio years_of_data = self.years_of_data avg_correlation = get_avg_corr(self.corr_matrix.values) adjusted_weights = adjust_weights_for_SR( raw_weights, SR_list, years_of_data, avg_correlation ) else: adjusted_weights = raw_weights return adjusted_weights def _calculate_portfolio_returns(self): """ If we have some weights, calculate the returns of the entire portfolio Needs cash weights :return: pd.Series of returns """ cash_weights = self.cash_weights instrument_returns = self.instrument_returns cash_weights_as_df = pd.DataFrame( [cash_weights] * len(instrument_returns.index), instrument_returns.index ) cash_weights_as_df.columns = instrument_returns.columns portfolio_returns_df = cash_weights_as_df * instrument_returns portfolio_returns = portfolio_returns_df.sum(axis=1) return portfolio_returns def _calculate_portfolio_returns_std(self): return self.portfolio_returns.std() * (WEEKS_IN_YEAR ** 0.5) def _calculate_diversification_mult(self): """ Calculates the diversification multiplier for a portfolio :return: float """ corr_matrix = self.corr_matrix.values vol_weights = np.array(self.volatility_weights) div_mult = 1.0 / ( (np.dot(np.dot(vol_weights, corr_matrix), vol_weights.transpose())) ** 0.5 ) return div_mult def _calculate_sub_portfolio_returns(self): """ Return a matrix of returns with sub portfolios each representing a single asset :return: pd.DataFrame """ assert self.sub_portfolios is not NO_SUB_PORTFOLIOS sub_portfolio_returns = [ sub_portfolio.portfolio_returns for sub_portfolio in self.sub_portfolios] sub_portfolio_returns = pd.concat(sub_portfolio_returns, axis=1) return sub_portfolio_returns def _calculate_weights_aggregated_portfolio(self): """ Calculate weights when we have sub portfolios This is done by pulling in the weights from each sub portfolio, giving weights to each sub portfolio, and then getting the product :return: list of weights """ sub_portfolio_returns = self._calculate_sub_portfolio_returns() # create another Portfolio object made up of the sub portfolios aggregate_portfolio = Portfolio( sub_portfolio_returns, use_SR_estimates=self.use_SR_estimates ) # store to look at later if you want self.aggregate_portfolio = aggregate_portfolio # calculate the weights- these will be the weight on each sub portfolio if self.top_level_weights is NO_TOP_LEVEL_WEIGHTS: # calculate the weights in the normal way aggregate_weights = aggregate_portfolio.volatility_weights raw_weights = aggregate_portfolio.raw_weights else: # override with top_level_weights - used when risk targeting try: assert len(self.top_level_weights) == len( aggregate_portfolio.instruments ) except BaseException: raise Exception( "Top level weights length %d is different from number of top level groups %d" % (len( self.top_level_weights) == len( self.aggregate_portfolio.instruments))) aggregate_weights = self.top_level_weights raw_weights = aggregate_weights # calculate the product of div_mult, aggregate weights and sub # portfolio weights, return as list vol_weights = [] dm_by_instrument_list = [] instrument_vol_weight_in_sub_list = [] sub_portfolio_vol_weight_list = [] for instrument_code in self.instruments: weight = None for sub_portfolio, sub_weight in zip( self.sub_portfolios, aggregate_weights ): if instrument_code in sub_portfolio.instruments: if weight is not None: raise Exception( "Instrument %s in multiple sub portfolios" % instrument_code) # A weight is the product of: the diversification multiplier for the subportfolio it comes from, # the weight of that instrument within that subportfolio, and # the weight of the subportfolio within the larger # portfolio div_mult = sub_portfolio.div_mult instrument_idx = sub_portfolio.instruments.index( instrument_code) instrument_weight = sub_portfolio.volatility_weights[instrument_idx] weight = div_mult * instrument_weight * sub_weight # useful diagnostics dm_by_instrument_list.append(div_mult) instrument_vol_weight_in_sub_list.append(instrument_weight) sub_portfolio_vol_weight_list.append(sub_weight) if weight is None: raise Exception( "Instrument %s missing from all sub portfolios" % instrument_code) vol_weights.append(weight) vol_weights = norm_weights(vol_weights) # store diags self.dm_by_instrument_list = dm_by_instrument_list self.instrument_vol_weight_in_sub_list = instrument_vol_weight_in_sub_list self.sub_portfolio_vol_weight_list = sub_portfolio_vol_weight_list self.raw_weights = raw_weights return vol_weights def _calculate_volatility_weights(self): """ Calculates the volatility weights of the portfolio If the portfolio contains sub_portfolios; it will calculate the volatility weights of each sub_portfolio, and then weight towards sub_portfolios, and then calculate the multiplied out weights If the portfolio does not contain sub_portfolios; just calculate the weights :return: volatility weights, also sets self.volatility_weights """ if self.sub_portfolios is NO_SUB_PORTFOLIOS: vol_weights = self._calculate_weights_standalone_portfolio() else: vol_weights = self._calculate_weights_aggregated_portfolio() return vol_weights def _calculate_cash_weights_no_risk_target(self): """ Calculate cash weights without worrying about risk targets :return: list of cash weights """ vol_weights = self.volatility_weights instrument_std = self.vol_vector raw_cash_weights = [ vweight / vol for vweight, vol in zip(vol_weights, instrument_std) ] raw_cash_weights = norm_weights(raw_cash_weights) return raw_cash_weights def _calculate_cash_weights_with_risk_target_partitioned(self): """ Readjust partitioned top level groups to hit a risk target (https://qoppac.blogspot.com/2018/12/portfolio-construction-through_7.html) :return: list of weights """ assert self._require_partioned_portfolio() assert len(self.sub_portfolios) == 2 # hard coded - high vol is second group. Don't change! high_vol_sub_portfolio = self.sub_portfolios[1] low_vol_sub_portfolio = self.sub_portfolios[0] high_vol_std = high_vol_sub_portfolio.portfolio_std low_vol_std = low_vol_sub_portfolio.portfolio_std risk_target_std = self.risk_target assert high_vol_std > low_vol_std # Now for the correlation estimate # first create another Portfolio object made up of the sub portfolios sub_portfolio_returns = self._calculate_sub_portfolio_returns() assert ( len(sub_portfolio_returns.columns) == 2 ) # should be guaranteed by partioning but just to check correlation = sub_portfolio_returns.corr().values[0][ 1 ] # only works for groups of 2 # formula from # https://qoppac.blogspot.com/2018/12/portfolio-construction-through_7.html a_value = ( (high_vol_std ** 2) + (low_vol_std ** 2) - (2 * high_vol_std * low_vol_std * correlation) ) b_value = (2 * high_vol_std * low_vol_std * correlation) - 2 * ( low_vol_std ** 2 ) c_value = (low_vol_std ** 2) - (risk_target_std ** 2) # standard formula for solving a quadratic high_cash_weight = ( -b_value + (((b_value ** 2) - (4 * a_value * c_value)) ** 0.5) ) / (2 * a_value) try: assert high_cash_weight >= 0.0 except BaseException: raise Exception( "Something went wrong; cash weight target on high risk portfolio is negative!" ) try: assert high_cash_weight <= 1.0 except BaseException: raise Exception( "Can't hit risk target of %f - make it lower or include riskier assets!" % risk_target_std) # new_weight is the weight on the HIGH_VOL portfolio low_cash_weight = 1.0 - high_cash_weight # These are cash weights; change to a vol weight high_vol_weight = high_cash_weight * high_vol_std low_vol_weight = low_cash_weight * low_vol_std self.log( "Need to limit low cash group to %f (vol) %f (cash) of portfolio to hit risk target of %f" % (low_vol_weight, low_cash_weight, risk_target_std)) # Hard coded - high vol is second group top_level_weights = norm_weights([low_vol_weight, high_vol_weight]) #p.top_level_weights = top_level_weights # We create an adjusted portfolio with the required top level weights as constraints # we also need to pass the risk target to get same partitioning # and use_SR_estimates to guarantee weights are the same # adjusted_portfolio = Portfolio( self.instrument_returns, use_SR_estimates=self.use_SR_estimates, top_level_weights=top_level_weights, risk_target=self.risk_target, ) return adjusted_portfolio.cash_weights def _calculate_cash_weights_with_risk_target(self): """ Calculate cash weights given a risk target :return: list of weights """ target_std = self.risk_target self.log("Calculating weights to hit a risk target of %f" % target_std) # create version without risk target to check natural risk # note all sub portfolios are like this natural_portfolio = Portfolio( self.instrument_returns, risk_target=NO_RISK_TARGET ) natural_std = natural_portfolio.portfolio_std natural_cash_weights = natural_portfolio.cash_weights # store for diagnostics self.natural_cash_weights = natural_cash_weights self.natural_std = natural_std if natural_std > target_std: # Too much risk # blend with cash cash_required = (natural_std - target_std) / natural_std portfolio_capital_left = 1.0 - cash_required self.log( "Too much risk %f of the portfolio will be cash" % cash_required) cash_weights = list( np.array(natural_cash_weights) * portfolio_capital_left) # stored as diag self.cash_required = cash_required return cash_weights elif natural_std < target_std: # Not enough risk if self.allow_leverage: # calc leverage leverage = target_std / natural_std self.log( "Not enough risk leverage factor of %f applied" % leverage) cash_weights = list(np.array(natural_cash_weights) * leverage) # stored as diag self.leverage = leverage return cash_weights else: # no leverage allowed # need to adjust weights self.log( "Not enough risk, no leverage allowed, using partition method") return self._calculate_cash_weights_with_risk_target_partitioned() # will only get here if the target and natural std are identical... # unlikely - but! return natural_cash_weights def _calculate_cash_weights(self): """ Calculate cash weights Note - this will apply a risk target if required Note 2 - only top level portfolios have risk targets - sub portfolios don't :return: list of weights """ target_std = self.risk_target if target_std is NO_RISK_TARGET: # no risk target, can use natural weights return self._calculate_cash_weights_no_risk_target() elif self.top_level_weights is not NO_TOP_LEVEL_WEIGHTS: # top level weights passed, use natural weights return self._calculate_cash_weights_no_risk_target() else: # need a risk target return self._calculate_cash_weights_with_risk_target() """ Functions to return including missing data """ def _weights_with_missing_data(self, original_weights): """ :param original_weights: :return: weights adding back original instruments """ original_weights_valid_only = dict( [ (instrument, weight) for instrument, weight in zip(self.valid_instruments, original_weights) ] ) new_weights = [] for instrument in self.all_instruments: if instrument in self.missing_instruments: new_weights.append(np.nan) elif instrument in self.valid_instruments: new_weights.append(original_weights_valid_only[instrument]) else: raise Exception("Gone horribly wrong") return new_weights def volatility_weights_with_missing_data(self): """ :return: vol weights, adding back any missing instruments """ vol_weights_valid_only = self.volatility_weights vol_weights = self._weights_with_missing_data(vol_weights_valid_only) return vol_weights def cash_weights_with_missing_data(self): """ :return: cash weights, adding back any missing instruments """ cash_weights_valid_only = self.cash_weights cash_weights = self._weights_with_missing_data(cash_weights_valid_only) return cash_weights """ Boilerplate getter functions """ @property def volatility_weights(self): if hasattr(self, "_volatility_weights"): return self._volatility_weights else: weights_vol = self._calculate_volatility_weights() self._volatility_weights = weights_vol return weights_vol @property def cash_weights(self): if hasattr(self, "_cash_weights"): return self._cash_weights else: weights_cash = self._calculate_cash_weights() self._cash_weights = weights_cash return weights_cash @property def sub_portfolios(self): if hasattr(self, "_sub_portfolios"): return self._sub_portfolios else: sub_portfolios = self._create_all_subportfolios() self._sub_portfolios = sub_portfolios return sub_portfolios @property def portfolio_returns(self): if hasattr(self, "_portfolio_returns"): return self._portfolio_returns else: portfolio_returns = self._calculate_portfolio_returns() self._portfolio_returns = portfolio_returns return portfolio_returns @property def portfolio_std(self): if hasattr(self, "_portfolio_returns_std"): return self._portfolio_returns_std else: portfolio_returns_std = self._calculate_portfolio_returns_std() self._portfolio_returns_std = portfolio_returns_std return portfolio_returns_std @property def div_mult(self): if hasattr(self, "_div_mult"): return self._div_mult else: div_mult = self._calculate_diversification_mult() self._div_mult = div_mult return div_mult @property def diags(self): if hasattr(self, "_diags"): return self._diags else: diags = self._diags_as_dataframe() self._diags = diags return diags def calc_correlation(instrument_returns): recent_instrument_returns = instrument_returns[-MAX_ROWS_FOR_CORR_ESTIMATION:] corr = recent_instrument_returns.corr() return corr def minimum_many_years_of_data_in_dataframe(data): years_of_data_dict = how_many_years_of_data_in_dataframe(data) years_of_data_values = years_of_data_dict.values() min_years_of_data = min(years_of_data_values) return min_years_of_data def how_many_years_of_data_in_dataframe(data): """ How many years of non NA data do we have? Assumes daily timestamp :param data: pd.DataFrame with labelled columns :return: dict of floats, """ result_dict = dict(data.apply(how_many_years_of_data_in_pd_series, axis=0)) return result_dict from syscore.pdutils import pd_readcsv def how_many_years_of_data_in_pd_series(data_series): """ How many years of actual data do we have Assume daily timestamp which is fairly regular :param data_series: :return: float """ first_valid_date = data_series.first_valid_index() last_valid_date = data_series.last_valid_index() date_difference = last_valid_date - first_valid_date date_difference_days = date_difference.days date_difference_years = float(date_difference_days) / CALENDAR_DAYS_IN_YEAR return date_difference_years def get_avg_corr(sigma): """ >>> sigma=np.array([[1.0,0.0,0.5], [0.0, 1.0, 0.75],[0.5, 0.75, 1.0]]) >>> get_avg_corr(sigma) 0.41666666666666669 >>> sigma=np.array([[1.0,np.nan], [np.nan, 1.0]]) >>> get_avg_corr(sigma) nan """ new_sigma = copy(sigma) np.fill_diagonal(new_sigma, np.nan) if np.all(np.isnan(new_sigma)): return np.nan avg_corr = np.nanmean(new_sigma) return avg_corr def cluster_correlation_matrix(corr_matrix: np.array, max_cluster_size = 3) -> list: d = sch.distance.pdist(corr_matrix) L = sch.linkage(d, method="complete") ind = sch.fcluster(L, max_cluster_size, criterion="maxclust") ind = list(ind) return ind def optimise(sigma, mean_list): # will replace nans with big negatives mean_list = fix_mus(mean_list) # replaces nans with zeros sigma = fix_sigma(sigma) mus = np.array(mean_list, ndmin=2).transpose() number_assets = sigma.shape[1] start_weights = [1.0 / number_assets] * number_assets # Constraints - positive weights, adding to 1.0 bounds = [(0.0, 1.0)] * number_assets cdict = [{"type": "eq", "fun": addem}] ans = minimize( neg_SR, start_weights, (sigma, mus), method="SLSQP", bounds=bounds, constraints=cdict, tol=0.00001, ) # anything that had a nan will now have a zero weight weights = ans["x"] # put back the nans weights = un_fix_weights(mean_list, weights) return weights def sigma_from_corr_and_std(stdev_list, corrmatrix): sigma = np.diag(stdev_list).dot(corrmatrix).dot(np.diag(stdev_list)) return sigma def fix_mus(mean_list): """ Replace nans with unfeasibly large negatives result will be zero weights for these assets """ def _fixit(x): if np.isnan(x): return FLAG_BAD_RETURN else: return x mean_list = [_fixit(x) for x in mean_list] return mean_list def un_fix_weights(mean_list, weights): """ When mean has been replaced, use nan weight """ def _unfixit(xmean, xweight): if xmean == FLAG_BAD_RETURN: return np.nan else: return xweight fixed_weights = [ _unfixit( xmean, xweight) for ( xmean, xweight) in zip( mean_list, weights)] return fixed_weights def fix_sigma(sigma): """ Replace nans with zeros """ def _fixit(x): if np.isnan(x): return 0.0 else: return x sigma = [[_fixit(x) for x in sigma_row] for sigma_row in sigma] sigma = np.array(sigma) return sigma def neg_SR(weights, sigma, mus): # Returns minus the Sharpe Ratio (as we're minimising) weights = np.matrix(weights) estreturn = (weights * mus)[0, 0] std_dev = variance(weights, sigma) ** 0.5 return -estreturn / std_dev def addem(weights): # Used for constraints return 1.0 - sum(weights) def variance(weights, sigma): # returns the variance (NOT standard deviation) given weights and sigma return (weights * sigma * weights.transpose())[0, 0]
gpl-3.0
midnightradio/gensim
gensim/sklearn_api/tfidf.py
3
6995
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """Scikit-learn interface for :class:`~gensim.models.tfidfmodel.TfidfModel`. Follows scikit-learn API conventions to facilitate using gensim along with scikit-learn. Examples -------- .. sourcecode:: pycon >>> from gensim.test.utils import common_corpus, common_dictionary >>> from gensim.sklearn_api import TfIdfTransformer >>> >>> # Transform the word counts inversely to their global frequency using the sklearn interface. >>> model = TfIdfTransformer(dictionary=common_dictionary) >>> tfidf_corpus = model.fit_transform(common_corpus) """ from sklearn.base import TransformerMixin, BaseEstimator from sklearn.exceptions import NotFittedError from gensim.models import TfidfModel import gensim class TfIdfTransformer(TransformerMixin, BaseEstimator): """Base TfIdf module, wraps :class:`~gensim.models.tfidfmodel.TfidfModel`. For more information see `tf-idf <https://en.wikipedia.org/wiki/Tf%E2%80%93idf>`_. """ def __init__(self, id2word=None, dictionary=None, wlocal=gensim.utils.identity, wglobal=gensim.models.tfidfmodel.df2idf, normalize=True, smartirs="nfc", pivot=None, slope=0.65): """ Parameters ---------- id2word : {dict, :class:`~gensim.corpora.Dictionary`}, optional Mapping from int id to word token, that was used for converting input data to bag of words format. dictionary : :class:`~gensim.corpora.Dictionary`, optional If specified it will be used to directly construct the inverse document frequency mapping. wlocals : function, optional Function for local weighting, default for `wlocal` is :func:`~gensim.utils.identity` which does nothing. Other options include :func:`math.sqrt`, :func:`math.log1p`, etc. wglobal : function, optional Function for global weighting, default is :func:`~gensim.models.tfidfmodel.df2idf`. normalize : bool, optional It dictates how the final transformed vectors will be normalized. `normalize=True` means set to unit length (default); `False` means don't normalize. You can also set `normalize` to your own function that accepts and returns a sparse vector. smartirs : str, optional SMART (System for the Mechanical Analysis and Retrieval of Text) Information Retrieval System, a mnemonic scheme for denoting tf-idf weighting variants in the vector space model. The mnemonic for representing a combination of weights takes the form XYZ, for example 'ntc', 'bpn' and so on, where the letters represents the term weighting of the document vector. local_letter : str Term frequency weighing, one of: * `b` - binary, * `t` or `n` - raw, * `a` - augmented, * `l` - logarithm, * `d` - double logarithm, * `L` - log average. global_letter : str Document frequency weighting, one of: * `x` or `n` - none, * `f` - idf, * `t` - zero-corrected idf, * `p` - probabilistic idf. normalization_letter : str Document normalization, one of: * `x` or `n` - none, * `c` - cosine, * `u` - pivoted unique, * `b` - pivoted character length. Default is `nfc`. For more info, visit `"Wikipedia" <https://en.wikipedia.org/wiki/SMART_Information_Retrieval_System>`_. pivot : float, optional It is the point around which the regular normalization curve is `tilted` to get the new pivoted normalization curve. In the paper `Amit Singhal, Chris Buckley, Mandar Mitra: "Pivoted Document Length Normalization" <http://singhal.info/pivoted-dln.pdf>`_ it is the point where the retrieval and relevance curves intersect. This parameter along with `slope` is used for pivoted document length normalization. When `pivot` is None, `smartirs` specifies the pivoted unique document normalization scheme, and either `corpus` or `dictionary` are specified, then the pivot will be determined automatically. Otherwise, no pivoted document length normalization is applied. slope : float, optional It is the parameter required by pivoted document length normalization which determines the slope to which the `old normalization` can be tilted. This parameter only works when pivot is defined by user and is not None. See Also -------- ~gensim.models.tfidfmodel.TfidfModel : Class that also uses the SMART scheme. ~gensim.models.tfidfmodel.resolve_weights : Function that also uses the SMART scheme. """ self.gensim_model = None self.id2word = id2word self.dictionary = dictionary self.wlocal = wlocal self.wglobal = wglobal self.normalize = normalize self.smartirs = smartirs self.slope = slope self.pivot = pivot def fit(self, X, y=None): """Fit the model from the given training data. Parameters ---------- X : iterable of iterable of (int, int) Input corpus y : None Ignored. TF-IDF is an unsupervised model. Returns ------- :class:`~gensim.sklearn_api.tfidf.TfIdfTransformer` The trained model. """ self.gensim_model = TfidfModel( corpus=X, id2word=self.id2word, dictionary=self.dictionary, wlocal=self.wlocal, wglobal=self.wglobal, normalize=self.normalize, smartirs=self.smartirs, pivot=self.pivot, slope=self.slope, ) return self def transform(self, docs): """Get the tf-idf scores for `docs` in a bag-of-words representation. Parameters ---------- docs: {iterable of list of (int, number)} Document or corpus in bag-of-words format. Returns ------- iterable of list (int, float) 2-tuples. The bag-of-words representation of each input document. """ if self.gensim_model is None: raise NotFittedError( "This model has not been fitted yet. Call 'fit' with appropriate arguments before using this method." ) # Is the input a single document? if isinstance(docs[0], tuple): docs = [docs] # Yes => convert it to a corpus (of 1 document). return [self.gensim_model[doc] for doc in docs]
gpl-3.0
LucianU/ThinkStats2
code/populations.py
68
2609
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import csv import logging import sys import numpy as np import pandas import thinkplot import thinkstats2 def ReadData(filename='PEP_2012_PEPANNRES_with_ann.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ df = pandas.read_csv(filename, header=None, skiprows=2, encoding='iso-8859-1') populations = df[7] populations.replace(0, np.nan, inplace=True) return populations.dropna() def MakeFigures(): """Plots the CDF of populations in several forms. On a log-log scale the tail of the CCDF looks like a straight line, which suggests a Pareto distribution, but that turns out to be misleading. On a log-x scale the distribution has the characteristic sigmoid of a lognormal distribution. The normal probability plot of log(sizes) confirms that the data fit the lognormal model very well. Many phenomena that have been described with Pareto models can be described as well, or better, with lognormal models. """ pops = ReadData() print('Number of cities/towns', len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label='data') cdf_log = thinkstats2.Cdf(log_pops, label='data') # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config(xlabel='log10 population', ylabel='CCDF', yscale='log') thinkplot.Save(root='populations_pareto') # lognormal plot thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 population', ylabel='CDF') thinkplot.SubPlot(2) thinkstats2.NormalProbabilityPlot(log_pops, label='data') thinkplot.Config(xlabel='z', ylabel='log10 population', xlim=[-5, 5]) thinkplot.Save(root='populations_normal') def main(): thinkstats2.RandomSeed(17) MakeFigures() if __name__ == "__main__": main()
gpl-3.0
shaunwbell/FOCI_Analysis
ReanalysisRetreival_orig/GOA_Winds/GOA_Winds_NARR_model_prep.py
1
10003
#!/usr/bin/env """ GOA_Winds_NARR_model_prep.py Retrieve NARR winds for two locations: GorePoint - 58deg 58min N, 150deg 56min W and Globec3 59.273701N, 148.9653W Filter NARR winds with a triangular filter (1/4, 1/2, 1/4) and output every 3hrs Provide U, V Save in EPIC NetCDF standard """ #System Stack import datetime import sys #Science Stack import numpy as np from netCDF4 import Dataset # User Stack import general_utilities.haversine as sphered from utilities import ncutilities as ncutil # Visual Stack import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, shiftgrid __author__ = 'Shaun Bell' __email__ = '[email protected]' __created__ = datetime.datetime(2014, 01, 13) __modified__ = datetime.datetime(2014, 01, 13) __version__ = "0.1.0" __status__ = "Development" __keywords__ = 'NARR','GLOBEC3', 'Gorept','3hr filtered', 'U,V','Winds', 'Gulf of Alaska' """------------------------General Modules-------------------------------------------""" def from_netcdf(infile): """ Uses ncreadfile_dic which returns a dictionary of all data from netcdf""" ###nc readin/out nchandle = ncutil.ncopen(infile) params = ncutil.get_vars(nchandle) #gets all of them ncdata = ncutil.ncreadfile_dic(nchandle, params) ncutil.ncclose(nchandle) return (ncdata, params) def from_netcdf_1dsplice(infile, height_ind, lat_ind, lon_ind): """ Uses ncreadfile_dic which returns a dictionary of all data from netcdf""" ###nc readin/out nchandle = ncutil.ncopen(infile) params = ncutil.get_vars(nchandle) #gets all of them print "Parameters available: " print params ncdata = ncutil.ncreadfile_dic_slice(nchandle, params, height_ind=height_ind, lat_ind=lat_ind, lon_ind=lon_ind) ncutil.ncclose(nchandle) return ncdata def latlon_grid(infile): nchandle = ncutil.ncopen(infile) lat_lon = ncutil.get_geocoords(nchandle) ncutil.ncclose(nchandle) return (lat_lon) def write2epic( file_name, stationid, time, lat_lon, data ): ncinstance = ncutil.EPIC_NC(savefile=file_name) ncinstance.file_create() ncinstance.sbeglobal_atts() ncinstance.PMELglobal_atts(Station_Name=stationid, file_name=( __file__.split('/')[-1]) ) ncinstance.dimension_init(len_time=len(time[0])) ncinstance.variable_init() ncinstance.add_coord_data(time1=time[0], time2=time[1], latitude=lat_lon[0], longitude=-1 * lat_lon[1], \ depth_level=10. ) ncinstance.add_data('WU_422', data[0]) ncinstance.add_data('WV_423', data[1]) ncinstance.close() def date2pydate(file_time, file_time2=None, file_flag='EPIC'): """ Ingest EPIC date or NCEP Date and provide python serial date""" if file_flag == 'EPIC': ref_time_py = datetime.datetime.toordinal(datetime.datetime(1968, 5, 23)) ref_time_epic = 2440000 offset = ref_time_epic - ref_time_py try: #if input is an array python_time = [None] * len(file_time) for i, val in enumerate(file_time): pyday = file_time[i] - offset pyfrac = file_time2[i] / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time[i] = (pyday + pyfrac) except: pyday = file_time - offset pyfrac = file_time2 / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time = (pyday + pyfrac) elif file_flag == 'NARR': """ Hours since 1800-1-1""" base_date=datetime.datetime.strptime('1800-01-01','%Y-%m-%d').toordinal() python_time = file_time / 24. + base_date elif file_flag == 'NCEP': """ Hours since 1800-1-1""" base_date=datetime.datetime.strptime('1800-01-01','%Y-%m-%d').toordinal() python_time = file_time / 24. + base_date else: print "time flag not recognized" sys.exit() return np.array(python_time) def pydate2EPIC(file_time): ref_time_py = datetime.datetime.toordinal(datetime.datetime(1968, 5, 23)) ref_time_epic = 2440000 offset = ref_time_epic - ref_time_py time1 = np.floor(file_time) + offset #truncate to get day and add 2440000 for true julian day time2 = ( file_time - np.floor(file_time) ) * (1000. * 60. * 60.* 24.) #milliseconds since 0000GMT return(time1, time2) "---" def triangle_smoothing(data_in): weights=np.array([0.25,0.5,0.25]) filtered_data = np.convolve(data_in,np.array(weights),'same') #edge effects return filtered_data """------------------------- Topo Modules -------------------------------------------""" def etopo5_data(): """ read in etopo5 topography/bathymetry. """ file = '/Users/bell/Data_Local/MapGrids/etopo5.nc' etopodata = Dataset(file) topoin = etopodata.variables['bath'][:] lons = etopodata.variables['X'][:] lats = etopodata.variables['Y'][:] etopodata.close() topoin,lons = shiftgrid(0.,topoin,lons,start=False) # -360 -> 0 lons, lats = np.meshgrid(lons, lats) return(topoin, lats, lons) """------------------------- Main Modules -------------------------------------------""" ### list of files NARR = '/Users/bell/Data_Local/Reanalysis_Files/NARR/3hourly/' infile = [NARR + 'uwnd.10m.2003.nc'] ### Grab grid points for future slicing - assume grid is same in all model output lat_lon = latlon_grid(infile[0]) station_name = ['Globec3','GorePt'] sta_lat = [59.273701,58.9666666666666667] sta_long = [148.9653,150.9333333333333333] #Find NARR nearest point to moorings - haversine formula # NARR data is -180->180 (positive east), Moorings are usually expressed +W for FOCI globec_pt = sphered.nearest_point([sta_lat[0],-1 * sta_long[0]],lat_lon['lat'],lat_lon['lon'], '2d') gorept_pt = sphered.nearest_point([sta_lat[1],-1 * sta_long[1]],lat_lon['lat'],lat_lon['lon'], '2d') globec_modelpt = [lat_lon['lat'][globec_pt[3],globec_pt[4]],lat_lon['lon'][globec_pt[3],globec_pt[4]]] gorept_modelpt = [lat_lon['lat'][gorept_pt[3],gorept_pt[4]],lat_lon['lon'][gorept_pt[3],gorept_pt[4]]] print "Globec nearest point to %s, %s which is lat:%s , lon:%s" \ % (sta_lat[0], sta_long[0], globec_modelpt[0], globec_modelpt[1]) print "GorePt nearest point to %s, %s which is lat:%s , lon:%s" \ % (sta_lat[1], sta_long[1], gorept_modelpt[0], gorept_modelpt[1]) #loop over all requested data #years = arange(1984,2014,1) #years = [1984, 1987, 1989, 1991, 1994, 2001, 2002, 2003, 2004, 2005, 2006, 2011, 2013] years = [1986,] for yy in years: # retrieve only these location's data # uwnd infile = NARR + 'uwnd.10m.'+ str(yy) + '.nc' print "Working on file " + infile globec3_data = from_netcdf_1dsplice(infile, None, globec_pt[3], globec_pt[4]) gorept_data = from_netcdf_1dsplice(infile, None, gorept_pt[3], gorept_pt[4]) #filter data globec3u_f = triangle_smoothing(globec3_data['uwnd']) goreptu_f = triangle_smoothing(gorept_data['uwnd']) # retrieve only these location's data # vwnd infile = NARR + 'vwnd.10m.'+ str(yy) + '.nc' print "Working on file " + infile globec3_data = from_netcdf_1dsplice(infile, None, globec_pt[3], globec_pt[4]) gorept_data = from_netcdf_1dsplice(infile, None, gorept_pt[3], gorept_pt[4]) #filter data globec3v_f = triangle_smoothing(globec3_data['vwnd']) goreptv_f = triangle_smoothing(gorept_data['vwnd']) #convert to EPIC time pydate = date2pydate(globec3_data['time'], file_flag='NARR') epic_time, epic_time1 = pydate2EPIC(pydate) # output u,v wind components from model grid points save_to_nc = True if save_to_nc: # write to NetCDF outfile = 'data/NARR_globec_' + str(yy) + '.nc' print "Writing to Epic NetCDF " + outfile write2epic( outfile, station_name[1], [epic_time, epic_time1], globec_modelpt, [globec3u_f, globec3v_f]) outfile = 'data/NARR_gorept_' + str(yy) + '.nc' print "Writing to Epic NetCDF " + outfile write2epic( outfile, station_name[0], [epic_time, epic_time1], gorept_modelpt, [goreptu_f, goreptv_f]) plot_geoloc = True if plot_geoloc: (topoin, elats, elons) = etopo5_data() fig = plt.figure() ax = plt.subplot(111) m = Basemap(resolution='i',projection='merc', llcrnrlat=55, \ urcrnrlat=62,llcrnrlon=-155,urcrnrlon=-145, lat_ts=45) # Mooring Data x_moor, y_moor = m([-1. * sta_long[0], -1. * sta_long[1]],sta_lat) x_close, y_close = m([globec_modelpt[1],gorept_modelpt[1]], [globec_modelpt[0],gorept_modelpt[0]]) #ETOPO 5 contour data ex, ey = m(elons, elats) CS = m.contourf(ex,ey,topoin, levels=range(250,5000,250), cmap='gray_r', alpha=.75) #colors='black' CS = m.contour(ex,ey,topoin, levels=range(250,5000,250), linewidths=0.2, colors='black', alpha=.75) # CS = m.contour(ex,ey,topoin, levels=[-1000, -200, -100], linestyle='--', linewidths=0.2, colors='black', alpha=.75) # #plot points m.scatter(x_close,y_close,20,marker='+',color='b') m.scatter(x_moor,y_moor,20,marker='o',color='g') m.drawcountries(linewidth=0.5) m.drawcoastlines(linewidth=0.5) m.drawparallels(np.arange(55,62,2.),labels=[1,0,0,0],color='black',dashes=[1,1],labelstyle='+/-',linewidth=0.2) # draw parallels m.drawmeridians(np.arange(-155,-145,2.),labels=[0,0,0,1],color='black',dashes=[1,1],labelstyle='+/-',linewidth=0.2) # draw meridians #m.fillcontinents(color='black') DefaultSize = fig.get_size_inches() fig.set_size_inches( (DefaultSize[0], DefaultSize[1]) ) plt.savefig('images/Gorepoint_region.png', bbox_inches='tight', dpi = (100)) plt.close() fig = plt.figure() ax = plt.subplot(111) m = Basemap(resolution='i',projection='merc', llcrnrlat=55, \ urcrnrlat=62,llcrnrlon=-155,urcrnrlon=-145, lat_ts=45)
mit
ch3ll0v3k/scikit-learn
examples/cluster/plot_lena_compress.py
271
2229
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Vector Quantization Example ========================================================= The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to illustrate how `k`-means is used for vector quantization. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster n_clusters = 5 np.random.seed(0) try: lena = sp.lena() except AttributeError: # Newer versions of scipy have lena in misc from scipy import misc lena = misc.lena() X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values lena_compressed = np.choose(labels, values) lena_compressed.shape = lena.shape vmin = lena.min() vmax = lena.max() # original lena plt.figure(1, figsize=(3, 2.2)) plt.imshow(lena, cmap=plt.cm.gray, vmin=vmin, vmax=256) # compressed lena plt.figure(2, figsize=(3, 2.2)) plt.imshow(lena_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # equal bins lena regular_values = np.linspace(0, 256, n_clusters + 1) regular_labels = np.searchsorted(regular_values, lena) - 1 regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean regular_lena = np.choose(regular_labels.ravel(), regular_values) regular_lena.shape = lena.shape plt.figure(3, figsize=(3, 2.2)) plt.imshow(regular_lena, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # histogram plt.figure(4, figsize=(3, 2.2)) plt.clf() plt.axes([.01, .01, .98, .98]) plt.hist(X, bins=256, color='.5', edgecolor='.5') plt.yticks(()) plt.xticks(regular_values) values = np.sort(values) for center_1, center_2 in zip(values[:-1], values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b') for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--') plt.show()
bsd-3-clause
paris-saclay-cds/ramp-workflow
rampwf/tests/kits/mars_craters/problem.py
1
3667
import os import numpy as np import pandas as pd import rampwf as rw problem_title = 'Mars craters detection and classification' # A type (class) which will be used to create wrapper objects for y_pred Predictions = rw.prediction_types.make_detection() # An object implementing the workflow workflow = rw.workflows.ObjectDetector() # The overlap between adjacent patches is 56 pixels # The scoring region is chosen so that despite the overlap, # no crater is scored twice, hence the boundaries of # 28 = 56 / 2 and 196 = 224 - 56 / 2 minipatch = [28, 196, 28, 196] score_types = [ rw.score_types.OSPA(minipatch=minipatch), rw.score_types.SCP(shape=(224, 224), minipatch=minipatch), rw.score_types.DetectionAveragePrecision(name='ap'), rw.score_types.DetectionPrecision( name='prec(0)', iou_threshold=0.0, minipatch=minipatch), rw.score_types.DetectionPrecision( name='prec(0.5)', iou_threshold=0.5, minipatch=minipatch), rw.score_types.DetectionPrecision( name='prec(0.9)', iou_threshold=0.9, minipatch=minipatch), rw.score_types.DetectionRecall( name='rec(0)', iou_threshold=0.0, minipatch=minipatch), rw.score_types.DetectionRecall( name='rec(0.5)', iou_threshold=0.5, minipatch=minipatch), rw.score_types.DetectionRecall( name='rec(0.9)', iou_threshold=0.9, minipatch=minipatch), rw.score_types.MADCenter(name='madc', minipatch=minipatch), rw.score_types.MADRadius(name='madr', minipatch=minipatch) ] def get_cv(X, y): # 3 quadrangles for training have not exactly the same size, # but for simplicity just cut in 3 # for each fold use one quadrangle as test set, the other two as training n_tot = len(X) n1 = n_tot // 3 n2 = n1 * 2 return [(np.r_[0:n2], np.r_[n2:n_tot]), (np.r_[n1:n_tot], np.r_[0:n1]), (np.r_[0:n1, n2:n_tot], np.r_[n1:n2])] def _read_data(path, typ): """ Read and process data and labels. Parameters ---------- path : path to directory that has 'data' subdir typ : {'train', 'test'} Returns ------- X, y data """ suffix = '_mini' try: data_path = os.path.join(path, 'data', 'data_{0}{1}.npy'.format(typ, suffix)) src = np.load(data_path, mmap_mode='r') labels_path = os.path.join(path, 'data', 'labels_{0}{1}.csv'.format(typ, suffix)) labels = pd.read_csv(labels_path) except IOError: raise IOError("'data/data_{0}.npy' and 'data/labels_{0}.csv' are not " "found. Ensure you ran 'python download_data.py' to " "obtain the train/test data".format(typ)) # convert the dataframe with crater positions to list of # list of (x, y, radius) tuples (list of arrays of shape (n, 3) with n # true craters on an image # determine locations of craters for each patch in the labels array n_true_patches = labels.groupby('i').size().reindex( range(src.shape[0]), fill_value=0).values # make cumulative sum to obtain start/stop to slice the labels n_cum = np.array(n_true_patches).cumsum() n_cum = np.insert(n_cum, 0, 0) labels_array = labels[['row_p', 'col_p', 'radius_p']].values y = [[tuple(x) for x in labels_array[i:j]] for i, j in zip(n_cum[:-1], n_cum[1:])] # convert list to object array of lists y_array = np.empty(len(y), dtype=object) y_array[:] = y return src, y_array def get_test_data(path='.'): return _read_data(path, 'test') def get_train_data(path='.'): return _read_data(path, 'train')
bsd-3-clause
errantlinguist/tangrams-analysis
tangrams_analysis/cross_validation.py
1
5008
""" Functionalities for cross-validating words-as-classifiers reference resolution (not yet finished!). """ __author__ = "Todd Shore <[email protected]>" __copyright__ = "Copyright 2017 Todd Shore" __license__ = "Apache License, Version 2.0" import csv import itertools from collections import namedtuple from typing import Callable, Iterable, Iterator, Mapping, Optional, Tuple import pandas as pd from . import game_utterances from . import iristk from . import session_data as sd CATEGORICAL_VAR_COL_NAMES = ( game_utterances.EventColumn.ENTITY_SHAPE.value, game_utterances.EventColumn.EVENT_SUBMITTER.value) # NOTE: For some reason, "pandas.get_dummies(..., columns=[col_name_1,...])" works with list objects but not with tuples CATEGORICAL_DEPENDENT_VAR_COL_NAMES = [game_utterances.EventColumn.ENTITY_SHAPE.value] assert all(col_name in CATEGORICAL_VAR_COL_NAMES for col_name in CATEGORICAL_DEPENDENT_VAR_COL_NAMES) RESULTS_FILE_ENCODING = "utf-8" __RESULTS_FILE_DTYPES = {"Cleaning.DISFLUENCIES": bool, "Cleaning.DUPLICATES": bool, "Cleaning.FILLERS": bool} CrossValidationDataFrames = namedtuple("CrossValidationDataFrames", ("training", "testing")) class CachingSessionDataFrameFactory(object): def __init__(self, session_data_frame_factory: Optional[Callable[[sd.SessionData], pd.DataFrame]] = None): self.session_data_frame_factory = game_utterances.SessionGameRoundUtteranceSequenceFactory() if session_data_frame_factory is None else session_data_frame_factory self.cache = {} def __call__(self, infile: str, session: sd.SessionData) -> pd.DataFrame: try: result = self.cache[infile] except KeyError: result = self.session_data_frame_factory(session) result[game_utterances.EventColumn.DYAD_ID.value] = infile self.cache[infile] = result return result class CrossValidationData(object): def __init__(self, testing_data: Tuple[str, sd.SessionData], training_data: Mapping[str, sd.SessionData]): self.testing_data = testing_data self.training_data = training_data @property def __key(self): return self.testing_data, self.training_data def __eq__(self, other): return (self is other or (isinstance(other, type(self)) and self.__key == other.__key)) def __hash__(self): return hash(self.__key) def __ne__(self, other): return not (self == other) def __repr__(self): return self.__class__.__name__ + str(self.__dict__) class CrossValidationDataFrameFactory(object): @staticmethod def __categoricize_data(training_feature_df: pd.DataFrame, testing_feature_df: pd.DataFrame): for col_name in CATEGORICAL_VAR_COL_NAMES: unique_values = tuple(sorted(frozenset( itertools.chain(training_feature_df[col_name].unique(), testing_feature_df[col_name].unique())))) training_feature_df[col_name] = pd.Categorical(training_feature_df[col_name], categories=unique_values, ordered=False) testing_feature_df[col_name] = pd.Categorical(testing_feature_df[col_name], categories=unique_values, ordered=False) def __init__(self, session_data_frame_factory: Optional[Callable[[str, sd.SessionData], pd.DataFrame]]): self.session_data_frame_factory = CachingSessionDataFrameFactory() if session_data_frame_factory is None else session_data_frame_factory def __call__(self, named_session_data=Iterable[Tuple[str, sd.SessionData]]) -> Iterator[CrossValidationDataFrames]: for testing_session_name, testing_session_data in named_session_data: training_sessions = dict( (infile, training_session_data) for (infile, training_session_data) in named_session_data if testing_session_data != training_session_data) cross_validation_set = CrossValidationData((testing_session_name, testing_session_data), training_sessions) yield self.__create_cross_validation_data_frames(cross_validation_set) def __create_cross_validation_data_frames(self, cross_validation_data: CrossValidationData) -> CrossValidationDataFrames: training_feature_df = pd.concat(self.session_data_frame_factory(infile, session) for (infile, session) in cross_validation_data.training_data.items()) testing_feature_df = self.session_data_frame_factory(*cross_validation_data.testing_data) # noinspection PyTypeChecker self.__categoricize_data(training_feature_df, testing_feature_df) dummified_training_feature_df = pd.get_dummies(training_feature_df, columns=CATEGORICAL_DEPENDENT_VAR_COL_NAMES) dummified_testing_feature_df = pd.get_dummies(testing_feature_df, columns=CATEGORICAL_DEPENDENT_VAR_COL_NAMES) return CrossValidationDataFrames(dummified_training_feature_df, dummified_testing_feature_df) def read_results_file(inpath: str) -> pd.DataFrame: return pd.read_csv(inpath, sep=csv.excel_tab.delimiter, dialect=csv.excel_tab, float_precision="round_trip", encoding=RESULTS_FILE_ENCODING, memory_map=True, parse_dates=["TIME", "EVENT_TIME"], date_parser=iristk.parse_timestamp, dtype=__RESULTS_FILE_DTYPES)
apache-2.0
wkfwkf/statsmodels
docs/source/plots/graphics_gofplots_qqplot.py
38
1911
# -*- coding: utf-8 -*- """ Created on Sun May 06 05:32:15 2012 Author: Josef Perktold editted by: Paul Hobson (2012-08-19) """ from scipy import stats from matplotlib import pyplot as plt import statsmodels.api as sm #example from docstring data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog, prepend=True) mod_fit = sm.OLS(data.endog, data.exog).fit() res = mod_fit.resid left = -1.8 #x coordinate for text insert fig = plt.figure() ax = fig.add_subplot(2, 2, 1) sm.graphics.qqplot(res, ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, 'no keywords', verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 2) sm.graphics.qqplot(res, line='s', ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='s'", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 3) sm.graphics.qqplot(res, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 4) sm.graphics.qqplot(res, dist=stats.t, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "dist=stats.t, \nline='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) fig.tight_layout() plt.gcf() # example with the new ProbPlot class import numpy as np x = np.random.normal(loc=8.25, scale=3.5, size=37) y = np.random.normal(loc=8.00, scale=3.25, size=37) pp_x = sm.ProbPlot(x, fit=True) pp_y = sm.ProbPlot(y, fit=True) # probability of exceedance fig2 = pp_x.probplot(exceed=True) # compare x quantiles to y quantiles fig3 = pp_x.qqplot(other=pp_y, line='45') # same as above with probabilities/percentiles fig4 = pp_x.ppplot(other=pp_y, line='45')
bsd-3-clause
justthetips/PerformanceAnalytics
performanceanalytics/drawdowns.py
1
6741
# MIT License # Copyright (c) 2017 Jacob Bourne # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import pandas as pd def find_drawdowns(series: pd.Series): """ find the drawdowns of a series, returns a list of drawdown holder objects :param series: the series :return: list of drawdown holders """ if not isinstance(series, pd.Series): raise ValueError("Only works for Pandas Series, you passed in {}".format(type(series))) # first turn the series into the cumprod dd_series = (1 + series).cumprod() # now walk through the time series finding the dd prior_max = dd_series.iloc[0] prior_min = prior_max in_drawdown = False current_dd = None dd_list = [] for dt, value in dd_series.iteritems(): # if the value is lower than the previous we are in a drawdown if value < prior_max: # if we are not already in a drawdown we are now if not in_drawdown: in_drawdown = True dd = DrawdownHolder(dt) dd.max_value = prior_max dd.min_value = value dd.trough_date = dt prior_min = value current_dd = dd elif value < prior_min: # if we are in a drawdown, check to see if we are at the min current_dd.min_value = value current_dd.trough_date = dt prior_min = value else: if in_drawdown: # the drawdown is over current_dd.end_date = dt prior_max = value in_drawdown = False dd_list.append(current_dd) else: prior_max = value return dd_list class DrawdownHolder(object): """ Custom class to hold all the information about a drawdown """ def __init__(self, dd_start): """ initialization, must pass in the start date :param dd_start: """ self._dd_start = dd_start @property def start_date(self): """ the start date :return: the start date of the drawdown """ return self._dd_start @property def trough_date(self): """ the date of the trough of the drawdown :return: the date """ return self._trough_date @trough_date.setter def trough_date(self, td): """ set the trough date :param td: the date :return: """ self._trough_date = td @property def end_date(self): """ the end date of the drawdown :return: the date """ return self._end_date @end_date.setter def end_date(self, ed): """ the end date of the drawdown :param ed: the date :return: """ self._end_date = ed @property def max_value(self): """ the max value before the drawdown began :return: the value """ return self._max_value @max_value.setter def max_value(self, mv): """ the max value before the drawdown began :param mv: the value :return: """ self._max_value = mv @property def min_value(self): """ the min value of the drawdown :return: the value """ return self._min_value @min_value.setter def min_value(self, mv): """ the min value of the drawdown :param mv: the value :return: """ self._min_value = mv @property def depth(self): """ the depth of the drawdown (min / max) - 1 :return: the depth """ if (self.min_value is None) or (self.max_value is None): raise AttributeError("Cannot be called until min value and max value are set") return (self.min_value / self.max_value) - 1 @property def length(self): """ the length of the drawdown in days :return: the length """ if self.end_date is None: raise AttributeError("Cannot be called until the end date is set") return (self.end_date - self.start_date).days @property def recovery(self): """ the length of the recovery in days :return: the length """ if (self.trough_date is None) or (self.end_date is None): raise AttributeError("Cannot be called until trough date and end date are set") return (self.end_date - self.trough_date).days @property def to_trough(self): """ the length from the start to the trough in days :return: the length """ if self.trough_date is None: raise AttributeError("Cannot be called until trough date is set") return (self.trough_date - self.start_date).days def __repr__(self): return '{}: {} {} {}'.format(self.__class__.__name__, self.start_date, self.end_date, self.depth) def __lt__(self, other): return self.depth < other.depth def __le__(self, other): return self.depth <= other.depth def __gt__(self, other): return self.depth > other.depth def __ge__(self, other): return self.depth >= other.depth def __eq__(self, other): return self.start_date == other.start_date and self.trough_date == other.trough_date and self.end_date == other.end_date def __ne__(self, other): return self.start_date != other.start_date or self.trough_date != other.trough_date or self.end_date != other.end_date
mit
bartosh/zipline
zipline/testing/predicates.py
1
15559
from contextlib import contextmanager import datetime from functools import partial import inspect import re from nose.tools import ( # noqa assert_almost_equal, assert_almost_equals, assert_dict_contains_subset, assert_false, assert_greater, assert_greater_equal, assert_in, assert_is, assert_is_instance, assert_is_none, assert_is_not, assert_is_not_none, assert_less, assert_less_equal, assert_multi_line_equal, assert_not_almost_equal, assert_not_almost_equals, assert_not_equal, assert_not_equals, assert_not_in, assert_not_is_instance, assert_raises, assert_raises_regexp, assert_regexp_matches, assert_true, assert_tuple_equal, ) import numpy as np import pandas as pd from pandas.util.testing import ( assert_frame_equal, assert_panel_equal, assert_series_equal, assert_index_equal, ) from six import iteritems, viewkeys, PY2 from toolz import dissoc, keyfilter import toolz.curried.operator as op from zipline.testing.core import ensure_doctest from zipline.dispatch import dispatch from zipline.lib.adjustment import Adjustment from zipline.lib.labelarray import LabelArray from zipline.utils.functional import dzip_exact, instance from zipline.utils.math_utils import tolerant_equals @instance @ensure_doctest class wildcard(object): """An object that compares equal to any other object. This is useful when using :func:`~zipline.testing.predicates.assert_equal` with a large recursive structure and some fields to be ignored. Examples -------- >>> wildcard == 5 True >>> wildcard == 'ayy' True # reflected >>> 5 == wildcard True >>> 'ayy' == wildcard True """ @staticmethod def __eq__(other): return True @staticmethod def __ne__(other): return False def __repr__(self): return '<%s>' % type(self).__name__ __str__ = __repr__ def keywords(func): """Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] Notes ----- Taken from odo.utils """ if isinstance(func, type): return keywords(func.__init__) elif isinstance(func, partial): return keywords(func.func) return inspect.getargspec(func).args def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 Notes ----- Taken from odo.utils """ return keyfilter(op.contains(keywords(f)), kwargs) def _s(word, seq, suffix='s'): """Adds a suffix to ``word`` if some sequence has anything other than exactly one element. word : str The string to add the suffix to. seq : sequence The sequence to check the length of. suffix : str, optional. The suffix to add to ``word`` Returns ------- maybe_plural : str ``word`` with ``suffix`` added if ``len(seq) != 1``. """ return word + (suffix if len(seq) != 1 else '') def _fmt_path(path): """Format the path for final display. Parameters ---------- path : iterable of str The path to the values that are not equal. Returns ------- fmtd : str The formatted path to put into the error message. """ if not path: return '' return 'path: _' + ''.join(path) def _fmt_msg(msg): """Format the message for final display. Parameters ---------- msg : str The message to show to the user to provide additional context. returns ------- fmtd : str The formatted message to put into the error message. """ if not msg: return '' return msg + '\n' def _safe_cls_name(cls): try: return cls.__name__ except AttributeError: return repr(cls) def assert_is_subclass(subcls, cls, msg=''): """Assert that ``subcls`` is a subclass of ``cls``. Parameters ---------- subcls : type The type to check. cls : type The type to check ``subcls`` against. msg : str, optional An extra assertion message to print if this fails. """ assert issubclass(subcls, cls), ( '%s is not a subclass of %s\n%s' % ( _safe_cls_name(subcls), _safe_cls_name(cls), msg, ) ) def assert_regex(result, expected, msg=''): """Assert that ``expected`` matches the result. Parameters ---------- result : str The string to search. expected : str or compiled regex The pattern to search for in ``result``. msg : str, optional An extra assertion message to print if this fails. """ assert re.search(expected, result), ( '%s%r not found in %r' % (_fmt_msg(msg), expected, result) ) @contextmanager def assert_raises_regex(exc, pattern, msg=''): """Assert that some exception is raised in a context and that the message matches some pattern. Parameters ---------- exc : type or tuple[type] The exception type or types to expect. pattern : str or compiled regex The pattern to search for in the str of the raised exception. msg : str, optional An extra assertion message to print if this fails. """ try: yield except exc as e: assert re.search(pattern, str(e)), ( '%s%r not found in %r' % (_fmt_msg(msg), pattern, str(e)) ) else: raise AssertionError('%s%s was not raised' % (_fmt_msg(msg), exc)) @dispatch(object, object) def assert_equal(result, expected, path=(), msg='', **kwargs): """Assert that two objects are equal using the ``==`` operator. Parameters ---------- result : object The result that came from the function under test. expected : object The expected result. Raises ------ AssertionError Raised when ``result`` is not equal to ``expected``. """ assert result == expected, '%s%s != %s\n%s' % ( _fmt_msg(msg), result, expected, _fmt_path(path), ) @assert_equal.register(float, float) def assert_float_equal(result, expected, path=(), msg='', float_rtol=10e-7, float_atol=10e-7, float_equal_nan=True, **kwargs): assert tolerant_equals( result, expected, rtol=float_rtol, atol=float_atol, equal_nan=float_equal_nan, ), '%s%s != %s with rtol=%s and atol=%s%s\n%s' % ( _fmt_msg(msg), result, expected, float_rtol, float_atol, (' (with nan != nan)' if not float_equal_nan else ''), _fmt_path(path), ) def _check_sets(result, expected, msg, path, type_): """Compare two sets. This is used to check dictionary keys and sets. Parameters ---------- result : set expected : set msg : str path : tuple type : str The type of an element. For dict we use ``'key'`` and for set we use ``'element'``. """ if result != expected: if result > expected: diff = result - expected msg = 'extra %s in result: %r' % (_s(type_, diff), diff) elif result < expected: diff = expected - result msg = 'result is missing %s: %r' % (_s(type_, diff), diff) else: in_result = result - expected in_expected = expected - result msg = '%s only in result: %s\n%s only in expected: %s' % ( _s(type_, in_result), in_result, _s(type_, in_expected), in_expected, ) raise AssertionError( '%s%ss do not match\n%s' % ( _fmt_msg(msg), type_, _fmt_path(path), ), ) @assert_equal.register(dict, dict) def assert_dict_equal(result, expected, path=(), msg='', **kwargs): _check_sets( viewkeys(result), viewkeys(expected), msg, path + ('.%s()' % ('viewkeys' if PY2 else 'keys'),), 'key', ) failures = [] for k, (resultv, expectedv) in iteritems(dzip_exact(result, expected)): try: assert_equal( resultv, expectedv, path=path + ('[%r]' % (k,),), msg=msg, **kwargs ) except AssertionError as e: failures.append(str(e)) if failures: raise AssertionError('\n'.join(failures)) @assert_equal.register(list, list) @assert_equal.register(tuple, tuple) def assert_sequence_equal(result, expected, path=(), msg='', **kwargs): result_len = len(result) expected_len = len(expected) assert result_len == expected_len, ( '%s%s lengths do not match: %d != %d\n%s' % ( _fmt_msg(msg), type(result).__name__, result_len, expected_len, _fmt_path(path), ) ) for n, (resultv, expectedv) in enumerate(zip(result, expected)): assert_equal( resultv, expectedv, path=path + ('[%d]' % n,), msg=msg, **kwargs ) @assert_equal.register(set, set) def assert_set_equal(result, expected, path=(), msg='', **kwargs): _check_sets( result, expected, msg, path, 'element', ) @assert_equal.register(np.ndarray, np.ndarray) def assert_array_equal(result, expected, path=(), msg='', array_verbose=True, array_decimal=None, **kwargs): f = ( np.testing.assert_array_equal if array_decimal is None else partial(np.testing.assert_array_almost_equal, decimal=array_decimal) ) try: f( result, expected, verbose=array_verbose, err_msg=msg, ) except AssertionError as e: raise AssertionError('\n'.join((str(e), _fmt_path(path)))) @assert_equal.register(LabelArray, LabelArray) def assert_labelarray_equal(result, expected, path=(), **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), **kwargs ) assert_equal( result.as_int_array(), expected.as_int_array(), path=path + ('.as_int_array()',), **kwargs ) def _register_assert_equal_wrapper(type_, assert_eq): """Register a new check for an ndframe object. Parameters ---------- type_ : type The class to register an ``assert_equal`` dispatch for. assert_eq : callable[type_, type_] The function which checks that if the two ndframes are equal. Returns ------- assert_ndframe_equal : callable[type_, type_] The wrapped function registered with ``assert_equal``. """ @assert_equal.register(type_, type_) def assert_ndframe_equal(result, expected, path=(), msg='', **kwargs): try: assert_eq( result, expected, **filter_kwargs(assert_eq, kwargs) ) except AssertionError as e: raise AssertionError( _fmt_msg(msg) + '\n'.join((str(e), _fmt_path(path))), ) return assert_ndframe_equal assert_frame_equal = _register_assert_equal_wrapper( pd.DataFrame, assert_frame_equal, ) assert_panel_equal = _register_assert_equal_wrapper( pd.Panel, assert_panel_equal, ) assert_series_equal = _register_assert_equal_wrapper( pd.Series, assert_series_equal, ) assert_index_equal = _register_assert_equal_wrapper( pd.Index, assert_index_equal, ) @assert_equal.register(pd.Categorical, pd.Categorical) def assert_categorical_equal(result, expected, path=(), msg='', **kwargs): assert_equal( result.categories, expected.categories, path=path + ('.categories',), msg=msg, **kwargs ) assert_equal( result.codes, expected.codes, path=path + ('.codes',), msg=msg, **kwargs ) @assert_equal.register(Adjustment, Adjustment) def assert_adjustment_equal(result, expected, path=(), **kwargs): for attr in ('first_row', 'last_row', 'first_col', 'last_col', 'value'): assert_equal( getattr(result, attr), getattr(expected, attr), path=path + ('.' + attr,), **kwargs ) @assert_equal.register( (datetime.datetime, np.datetime64), (datetime.datetime, np.datetime64), ) def assert_timestamp_and_datetime_equal(result, expected, path=(), msg='', allow_datetime_coercions=False, compare_nat_equal=True, **kwargs): """ Branch for comparing python datetime (which includes pandas Timestamp) and np.datetime64 as equal. Returns raises unless ``allow_datetime_coercions`` is passed as True. """ assert allow_datetime_coercions or type(result) == type(expected), ( "%sdatetime types (%s, %s) don't match and " "allow_datetime_coercions was not set.\n%s" % ( _fmt_msg(msg), type(result), type(expected), _fmt_path(path), ) ) result = pd.Timestamp(result) expected = pd.Timestamp(result) if compare_nat_equal and pd.isnull(result) and pd.isnull(expected): return assert_equal.dispatch(object, object)( result, expected, path=path, **kwargs ) @assert_equal.register(slice, slice) def assert_slice_equal(result, expected, path=(), msg=''): diff_start = ( ('starts are not equal: %s != %s' % (result.start, result.stop)) if result.start != expected.start else '' ) diff_stop = ( ('stops are not equal: %s != %s' % (result.stop, result.stop)) if result.stop != expected.stop else '' ) diff_step = ( ('steps are not equal: %s != %s' % (result.step, result.stop)) if result.step != expected.step else '' ) diffs = diff_start, diff_stop, diff_step assert not any(diffs), '%s%s\n%s' % ( _fmt_msg(msg), '\n'.join(filter(None, diffs)), _fmt_path(path), ) def assert_isidentical(result, expected, msg=''): assert result.isidentical(expected), ( '%s%s is not identical to %s' % (_fmt_msg(msg), result, expected) ) try: # pull the dshape cases in from datashape.util.testing import assert_dshape_equal except ImportError: pass else: assert_equal.funcs.update( dissoc(assert_dshape_equal.funcs, (object, object)), )
apache-2.0
pnedunuri/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
harveywwu/vnpy
vnpy/trader/gateway/tkproGateway/DataApi/utils.py
4
3883
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import * from collections import namedtuple import datetime as dt import pandas as pd import numpy as np long_nan = 9223372036854775807 def is_long_nan(v): if v == long_nan: return True else: return False def to_nan(x): if is_long_nan(x): return np.nan else: return x def _to_date(row): date = int(row['DATE']) return pd.datetime(year=date // 10000, month=date // 100 % 100, day=date % 100) def _to_datetime(row): date = int(row['DATE']) time = int(row['TIME']) // 1000 return pd.datetime(year=date // 10000, month=date / 100 % 100, day=date % 100, hour=time // 10000, minute=time // 100 % 100, second=time % 100) def _to_dataframe(cloumset, index_func=None, index_column=None): df = pd.DataFrame(cloumset) for col in df.columns: if df.dtypes.loc[col] == np.int64: df.loc[:, col] = df.loc[:, col].apply(to_nan) if index_func: df.index = df.apply(index_func, axis=1) elif index_column: df.index = df[index_column] del df.index.name return df def _error_to_str(error): if error: if 'message' in error: return str(error['error']) + "," + error['message'] else: return str(error['error']) + "," else: return "," def to_obj(class_name, data): try: if type(data) == list or type(data) == tuple: result = [] for d in data: result.append(namedtuple(class_name, list(d.keys()))(*list(d.values()))) return result elif type(data) == dict: result = namedtuple(class_name, list(data.keys()))(*list(data.values())) return result else: return data except Exception as e: print(class_name, data, e) return data def to_date_int(date): if isinstance(date, str): t = dt.datetime.strptime(date, "%Y-%m-%d") date_int = t.year * 10000 + t.month * 100 + t.day return date_int elif isinstance(date, (int, np.integer)): return date else: return -1 def to_time_int(time): if isinstance(time, str): t = dt.datetime.strptime(time, "%H:%M:%S") time_int = t.hour * 10000 + t.minute * 100 + t.second return time_int elif isinstance(time, (int, np.integer)): return time else: return -1 def extract_result(cr, data_format="", index_column=None, class_name=""): """ format supports pandas, obj. """ err = _error_to_str(cr['error']) if 'error' in cr else None if 'result' in cr: if data_format == "pandas": if index_column: return (_to_dataframe(cr['result'], None, index_column), err) # if 'TIME' in cr['result']: # return (_to_dataframe(cr['result'], _to_datetime), err) # elif 'DATE' in cr['result']: # return (_to_dataframe(cr['result'], _to_date), err) else: return (_to_dataframe(cr['result']), err) elif data_format == "obj" and cr['result'] and class_name: r = cr['result'] if type(r) == list or type(r) == tuple: result = [] for d in r: result.append(namedtuple(class_name, list(d.keys()))(*list(d.values()))) elif type(r) == dict: result = namedtuple(class_name, list(r.keys()))(*list(r.values())) else: result = r return (result, err) else: return (cr['result'], err) else: return (None, err)
mit
nlpaueb/aueb.twitter.sentiment
regularization.py
1
1421
from sklearn import preprocessing import numpy as np import math #reguralize features to [-1,1] , xi=xi-meam/3*variance def regularize(features): #regularize per column for i in range(0,len(features[0])): try: #take evary column feat=features[:,i] #mean and variance of every column mean=np.mean(feat) var=np.var(feat) if(var!=0): features[:,i]=(features[:,i]-mean)/float(3*var) else : features[:,i]=0 except: pass features[features>1]=1 features[features<-1]=-1 return features #reguralize features to [-1,1] horizontally, yi=yi/norm(yi,2) def regularizeHorizontally(features): for i in range(0,features.shape[0]): if (features[i] == np.zeros(features[i].shape)).all() == True: pass else: features[i] = features[i]/np.linalg.norm(features[i],ord=2) features[features>1]=1 features[features<-1]=-1 return features #xi=xi-xmin/xman-xmin def regularizeMaxMin(features): #regularize per column for i in range(0,len(features[0])): #take evary column feat=features[:,i] #max and min value of every feature xmax=max(feat) xmin=min(feat) if((xmax-xmin)!=0): features[:,i]=(features[:,i]-xmin)/float(xmax-xmin) else : features[:,i]=0 return features
gpl-3.0
pseudocubic/neutronpy
neutronpy/data/plot.py
1
14569
import numpy as np from ..lsfit import Fitter from ..lsfit.tools import convert_params class PlotData(object): """Class containing data plotting methods Methods ------- plot plot_line plot_contour plot_volume """ def plot(self, x=None, y=None, z=None, w=None, show_err=True, to_bin=None, plot_options=None, fit_options=None, smooth_options=None, output_file='', show_plot=True, **kwargs): r"""Plots the data in the class. x and y must at least be specified, and z and/or w being specified will produce higher dimensional plots (contour and volume, respectively). Parameters ---------- x : str, optional `data_column` key defining the x-axis. Default: :py:attr:`plot_default_x`. y : str, optional `data_column` key defining the y-axis. Default: :py:attr:`plot_default_y`. z : str, optional `data_column` key defining the z-axis. Default: None w : str, optional `data_column` key defining the w-axis. Default: None bounds : dict, optional If set, data will be rebinned to the specified parameters, in the format `[min, max, num points]` for each `data_column` key. See documentation for :py:meth:`.Data.bin`. Default: None show_err : bool, optional Plot error bars. Only applies to xy scatter plots. Default: True show_plot : bool, optional Execute `plt.show()` to show the plot. Incompatible with `output_file` param. Default: True output_file : str, optional If set, the plot will be saved to the location given, in the format specified, provided that the format is supported. Default: None plot_options : dict, optional Plot options to be passed to the the matplotlib plotting routine. Default: None fit_options : dict, optional Fitting options to be passed to the Fitter routine. Default: None smooth_otions : dict, optional Smoothing options for Gaussian smoothing from `scipy.ndimage.filters.gaussian_filter`. Default: None kwargs : optional Additional plotting keyword arguments passed to the plotting function. """ if to_bin is None: to_bin = dict() if plot_options is None: plot_options = dict() if fit_options is None: fit_options = dict() if smooth_options is None: smooth_options = dict(sigma=0) if x is None: try: x = self.plot_default_x except AttributeError: raise if y is None: try: y = self.plot_default_y except AttributeError: raise if w is not None: self.plot_volume(x, y, z, w, to_bin, plot_options, smooth_options, output_file, show_plot, **kwargs) elif w is None and z is not None: self.plot_contour(x, y, z, to_bin, plot_options, smooth_options, output_file, show_plot, **kwargs) elif w is None and z is None: self.plot_line(x, y, show_err, to_bin, plot_options, fit_options, smooth_options, output_file, show_plot, **kwargs) def plot_volume(self, x, y, z, w, to_bin=None, plot_options=None, smooth_options=None, output_file='', show_plot=True, **kwargs): r"""Plots a 3D volume of 4D data Parameters ---------- x : str `data_column` key defining the x-axis. Default: :py:attr:`plot_default_x`. y : str `data_column` key defining the y-axis. Default: :py:attr:`plot_default_y`. z : str `data_column` key defining the z-axis. Default: None w : str `data_column` key defining the w-axis. Default: None bounds : dict, optional If set, data will be rebinned to the specified parameters, in the format `[min, max, num points]` for each `data_column` key. See documentation for :py:meth:`.Data.bin`. Default: None show_err : bool, optional Plot error bars. Only applies to xy scatter plots. Default: True show_plot : bool, optional Execute `plt.show()` to show the plot. Incompatible with `output_file` param. Default: True output_file : str, optional If set, the plot will be saved to the location given, in the format specified, provided that the format is supported. Default: None plot_options : dict, optional Plot options to be passed to the the matplotlib plotting routine. Default: None fit_options : dict, optional Fitting options to be passed to the Fitter routine. Default: None smooth_otions : dict, optional Smoothing options for Gaussian smoothing from `scipy.ndimage.filters.gaussian_filter`. Default: None kwargs : optional Additional plotting keyword arguments passed to the plotting function. """ try: import matplotlib.pyplot as plt from matplotlib import colors from mpl_toolkits.mplot3d import Axes3D except ImportError: raise ImportError('Matplotlib >= 1.3.0 is necessary for plotting.') if to_bin: data_bin = self.bin(to_bin) _x = data_bin.data[x] _y = data_bin.data[y] _z = data_bin.data[z] if w == 'intensity': _w = data_bin.intensity else: _w = data_bin.data[w] else: _x = self.data[x] _y = self.data[y] _z = self.data[z] if w == 'intensity': _w = self.intensity else: _w = self.data[w] if smooth_options['sigma'] > 0: from scipy.ndimage.filters import gaussian_filter _w = gaussian_filter(_w, **smooth_options) _x, _y, _z, _w = (np.ma.masked_where(_w <= 0, _x), np.ma.masked_where(_w <= 0, _y), np.ma.masked_where(_w <= 0, _z), np.ma.masked_where(_w <= 0, _w)) fig = plt.figure() axis = fig.add_subplot(111, projection='3d') axis.scatter(_x, _y, _z, c=_w, linewidths=0, vmin=1.e-4, vmax=0.1, norm=colors.LogNorm()) if output_file: plt.savefig(output_file) elif show_plot: plt.show() else: pass def plot_contour(self, x, y, z, to_bin=None, plot_options=None, smooth_options=None, output_file='', show_plot=True, **kwargs): r"""Method for plotting a 2D contour plot of 3D data Parameters ---------- x : str `data_column` key defining the x-axis. Default: :py:attr:`plot_default_x`. y : str `data_column` key defining the y-axis. Default: :py:attr:`plot_default_y`. z : str `data_column` key defining the z-axis. Default: None bounds : dict, optional If set, data will be rebinned to the specified parameters, in the format `[min, max, num points]` for each `data_column` key. See documentation for :py:meth:`.Data.bin`. Default: None show_err : bool, optional Plot error bars. Only applies to xy scatter plots. Default: True show_plot : bool, optional Execute `plt.show()` to show the plot. Incompatible with `output_file` param. Default: True output_file : str, optional If set, the plot will be saved to the location given, in the format specified, provided that the format is supported. Default: None plot_options : dict, optional Plot options to be passed to the the matplotlib plotting routine. Default: None fit_options : dict, optional Fitting options to be passed to the Fitter routine. Default: None smooth_otions : dict, optional Smoothing options for Gaussian smoothing from `scipy.ndimage.filters.gaussian_filter`. Default: None kwargs : optional Additional plotting keyword arguments passed to the plotting function. """ try: import matplotlib.pyplot as plt except ImportError: raise if to_bin: data_bin = self.bin(to_bin) _x = data_bin.data[x] _y = data_bin.data[y] if z == 'intensity': _z = data_bin.intensity else: _z = data_bin.data[z] else: _x = self.data[x] _y = self.data[y] if z == 'intensity': _z = self.intensity else: _z = self.data[z] if smooth_options['sigma'] > 0: from scipy.ndimage.filters import gaussian_filter _z = gaussian_filter(_z, **smooth_options) x_step = np.around( np.abs(np.unique(_x) - np.roll(np.unique(_x), 1))[1], decimals=4) y_step = np.around( np.abs(np.unique(_y) - np.roll(np.unique(_y), 1))[1], decimals=4) x_sparse = np.linspace( _x.min(), _x.max(), (_x.max() - _x.min()) / x_step + 1) y_sparse = np.linspace( _y.min(), _y.max(), (_y.max() - _y.min()) / y_step + 1) X, Y = np.meshgrid(x_sparse, y_sparse) from scipy.interpolate import griddata Z = griddata((_x, _y), _z, (X, Y)) plt.pcolormesh(X, Y, Z, **plot_options) if output_file: plt.savefig(output_file) elif show_plot: plt.show() else: pass def plot_line(self, x, y, show_err=True, to_bin=None, plot_options=None, fit_options=None, smooth_options=None, output_file='', show_plot=True, **kwargs): r"""Method to Plot a line of 2D data Parameters ---------- x : str `data_column` key defining the x-axis. Default: :py:attr:`plot_default_x`. y : str `data_column` key defining the y-axis. Default: :py:attr:`plot_default_y`. bounds : dict, optional If set, data will be rebinned to the specified parameters, in the format `[min, max, num points]` for each `data_column` key. See documentation for :py:meth:`.Data.bin`. Default: None show_err : bool, optional Plot error bars. Only applies to xy scatter plots. Default: True show_plot : bool, optional Execute `plt.show()` to show the plot. Incompatible with `output_file` param. Default: True output_file : str, optional If set, the plot will be saved to the location given, in the format specified, provided that the format is supported. Default: None plot_options : dict, optional Plot options to be passed to the the matplotlib plotting routine. Default: None fit_options : dict, optional Fitting options to be passed to the Fitter routine. Default: None smooth_otions : dict, optional Smoothing options for Gaussian smoothing from `scipy.ndimage.filters.gaussian_filter`. Default: None kwargs : optional Additional plotting keyword arguments passed to the plotting function. """ try: import matplotlib.pyplot as plt except ImportError: raise if to_bin: data_bin = self.bin(to_bin) _x = data_bin.data[x] if y == 'intensity': _y = data_bin.intensity _err = data_bin.error else: _y = data_bin.data[y] _err = np.sqrt(data_bin.data[y]) else: _x = self.data[x] if y == 'intensity': _y = self.intensity _err = self.error else: _y = self.data[y] _err = np.sqrt(self.data[y]) if smooth_options['sigma'] > 0: from scipy.ndimage.filters import gaussian_filter _y = gaussian_filter(_y, **smooth_options) if not plot_options: plot_options['fmt'] = 'rs' if show_err: plt.errorbar(_x, _y, yerr=_err, **plot_options) else: plt.errorbar(_x, _y, **plot_options) # add axis labels plt.xlabel(x) plt.ylabel(y) if fit_options: def residuals(params, data): funct, x, y, err = data return (y - funct(params, x)) / err fitobj = Fitter(residuals, data=( fit_options['function'], _x, _y, _err)) if 'fixp' in fit_options: fitobj.parinfo = [{'fixed': fix} for fix in fit_options['fixp']] try: fitobj.fit(params0=fit_options['p']) fit_x = np.linspace(min(_x), max(_x), len(_x) * 10) fit_y = fit_options['function'](fitobj.params, fit_x) plt.plot(fit_x, fit_y, '{0}-'.format(plot_options['fmt'][0])) param_string = u'\n'.join(['p$_{{{0:d}}}$: {1:.3f}'.format(i, p) for i, p in enumerate(fitobj.params)]) chi2_params = u'$\chi^2$: {0:.3f}\n\n'.format( fitobj.chi2_min) + param_string plt.annotate(chi2_params, xy=(0.05, 0.95), xycoords='axes fraction', horizontalalignment='left', verticalalignment='top', bbox=dict(alpha=0.75, facecolor='white', edgecolor='none')) except Exception as mes: # pylint: disable=broad-except raise Exception("Something wrong with fit: {0}".format(mes)) if output_file: plt.savefig(output_file) elif show_plot: plt.show() else: pass
mit
mehdidc/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
5
11439
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence from ..utils.fixes import frombuffer_empty def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = frombuffer_empty(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
steverobbins/mycli
mycli/packages/tabulate.py
28
38075
# -*- coding: utf-8 -*- """Pretty-print tabular data.""" from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple from decimal import Decimal from platform import python_version_tuple from wcwidth import wcswidth import re if python_version_tuple()[0] < "3": from itertools import izip_longest from functools import partial _none_type = type(None) _int_type = int _long_type = long _float_type = float _text_type = unicode _binary_type = str def _is_file(f): return isinstance(f, file) else: from itertools import zip_longest as izip_longest from functools import reduce, partial _none_type = type(None) _int_type = int _long_type = int _float_type = float _text_type = str _binary_type = bytes import io def _is_file(f): return isinstance(f, io.IOBase) __all__ = ["tabulate", "tabulate_formats", "simple_separated_format"] __version__ = "0.7.4" MIN_PADDING = 2 Line = namedtuple("Line", ["begin", "hline", "sep", "end"]) DataRow = namedtuple("DataRow", ["begin", "sep", "end"]) # A table structure is suppposed to be: # # --- lineabove --------- # headerrow # --- linebelowheader --- # datarow # --- linebewteenrows --- # ... (more datarows) ... # --- linebewteenrows --- # last datarow # --- linebelow --------- # # TableFormat's line* elements can be # # - either None, if the element is not used, # - or a Line tuple, # - or a function: [col_widths], [col_alignments] -> string. # # TableFormat's *row elements can be # # - either None, if the element is not used, # - or a DataRow tuple, # - or a function: [cell_values], [col_widths], [col_alignments] -> string. # # padding (an integer) is the amount of white space around data values. # # with_header_hide: # # - either None, to display all table elements unconditionally, # - or a list of elements not to be displayed if the table has column headers. # TableFormat = namedtuple("TableFormat", ["lineabove", "linebelowheader", "linebetweenrows", "linebelow", "headerrow", "datarow", "padding", "with_header_hide"]) def _pipe_segment_with_colons(align, colwidth): """Return a segment of a horizontal line with optional colons which indicate column's alignment (as in `pipe` output format).""" w = colwidth if align in ["right", "decimal"]: return ('-' * (w - 1)) + ":" elif align == "center": return ":" + ('-' * (w - 2)) + ":" elif align == "left": return ":" + ('-' * (w - 1)) else: return '-' * w def _pipe_line_with_colons(colwidths, colaligns): """Return a horizontal line with optional colons to indicate column's alignment (as in `pipe` output format).""" segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)] return "|" + "|".join(segments) + "|" def _mediawiki_row_with_attrs(separator, cell_values, colwidths, colaligns): alignment = { "left": '', "right": 'align="right"| ', "center": 'align="center"| ', "decimal": 'align="right"| ' } # hard-coded padding _around_ align attribute and value together # rather than padding parameter which affects only the value values_with_attrs = [' ' + alignment.get(a, '') + c + ' ' for c, a in zip(cell_values, colaligns)] colsep = separator*2 return (separator + colsep.join(values_with_attrs)).rstrip() def _html_row_with_attrs(celltag, cell_values, colwidths, colaligns): alignment = { "left": '', "right": ' style="text-align: right;"', "center": ' style="text-align: center;"', "decimal": ' style="text-align: right;"' } values_with_attrs = ["<{0}{1}>{2}</{0}>".format(celltag, alignment.get(a, ''), c) for c, a in zip(cell_values, colaligns)] return "<tr>" + "".join(values_with_attrs).rstrip() + "</tr>" def _latex_line_begin_tabular(colwidths, colaligns, booktabs=False): alignment = { "left": "l", "right": "r", "center": "c", "decimal": "r" } tabular_columns_fmt = "".join([alignment.get(a, "l") for a in colaligns]) return "\n".join(["\\begin{tabular}{" + tabular_columns_fmt + "}", "\\toprule" if booktabs else "\hline"]) LATEX_ESCAPE_RULES = {r"&": r"\&", r"%": r"\%", r"$": r"\$", r"#": r"\#", r"_": r"\_", r"^": r"\^{}", r"{": r"\{", r"}": r"\}", r"~": r"\textasciitilde{}", "\\": r"\textbackslash{}", r"<": r"\ensuremath{<}", r">": r"\ensuremath{>}"} def _latex_row(cell_values, colwidths, colaligns): def escape_char(c): return LATEX_ESCAPE_RULES.get(c, c) escaped_values = ["".join(map(escape_char, cell)) for cell in cell_values] rowfmt = DataRow("", "&", "\\\\") return _build_simple_row(escaped_values, rowfmt) _table_formats = {"simple": TableFormat(lineabove=Line("", "-", " ", ""), linebelowheader=Line("", "-", " ", ""), linebetweenrows=None, linebelow=Line("", "-", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=["lineabove", "linebelow"]), "plain": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "grid": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("+", "=", "+", "+"), linebetweenrows=Line("+", "-", "+", "+"), linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "fancy_grid": TableFormat(lineabove=Line("╒", "═", "╤", "╕"), linebelowheader=Line("╞", "═", "╪", "╡"), linebetweenrows=Line("├", "─", "┼", "┤"), linebelow=Line("╘", "═", "╧", "╛"), headerrow=DataRow("│", "│", "│"), datarow=DataRow("│", "│", "│"), padding=1, with_header_hide=None), "pipe": TableFormat(lineabove=_pipe_line_with_colons, linebelowheader=_pipe_line_with_colons, linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "orgtbl": TableFormat(lineabove=None, linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "psql": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "rst": TableFormat(lineabove=Line("", "=", " ", ""), linebelowheader=Line("", "=", " ", ""), linebetweenrows=None, linebelow=Line("", "=", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "mediawiki": TableFormat(lineabove=Line("{| class=\"wikitable\" style=\"text-align: left;\"", "", "", "\n|+ <!-- caption -->\n|-"), linebelowheader=Line("|-", "", "", ""), linebetweenrows=Line("|-", "", "", ""), linebelow=Line("|}", "", "", ""), headerrow=partial(_mediawiki_row_with_attrs, "!"), datarow=partial(_mediawiki_row_with_attrs, "|"), padding=0, with_header_hide=None), "html": TableFormat(lineabove=Line("<table>", "", "", ""), linebelowheader=None, linebetweenrows=None, linebelow=Line("</table>", "", "", ""), headerrow=partial(_html_row_with_attrs, "th"), datarow=partial(_html_row_with_attrs, "td"), padding=0, with_header_hide=None), "latex": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "latex_booktabs": TableFormat(lineabove=partial(_latex_line_begin_tabular, booktabs=True), linebelowheader=Line("\\midrule", "", "", ""), linebetweenrows=None, linebelow=Line("\\bottomrule\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "tsv": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "\t", ""), datarow=DataRow("", "\t", ""), padding=0, with_header_hide=None)} tabulate_formats = list(sorted(_table_formats.keys())) _invisible_codes = re.compile(r"\x1b\[\d*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes _invisible_codes_bytes = re.compile(b"\x1b\[\d*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes def simple_separated_format(separator): """Construct a simple TableFormat with columns separated by a separator. >>> tsv = simple_separated_format("\\t") ; \ tabulate([["foo", 1], ["spam", 23]], tablefmt=tsv) == 'foo \\t 1\\nspam\\t23' True """ return TableFormat(None, None, None, None, headerrow=DataRow('', separator, ''), datarow=DataRow('', separator, ''), padding=0, with_header_hide=None) def _isconvertible(conv, string): try: n = conv(string) return True except (ValueError, TypeError): return False def _isnumber(string): """ >>> _isnumber("123.45") True >>> _isnumber("123") True >>> _isnumber("spam") False """ return _isconvertible(float, string) def _isint(string): """ >>> _isint("123") True >>> _isint("123.45") False """ return type(string) is _int_type or type(string) is _long_type or \ (isinstance(string, _binary_type) or isinstance(string, _text_type)) and \ _isconvertible(int, string) def _type(string, has_invisible=True): """The least generic type (type(None), int, float, str, unicode). >>> _type(None) is type(None) True >>> _type("foo") is type("") True >>> _type("1") is type(1) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True """ if has_invisible and \ (isinstance(string, _text_type) or isinstance(string, _binary_type)): string = _strip_invisible(string) if string is None: return _none_type if isinstance(string, (bool, Decimal,)): return _text_type elif hasattr(string, "isoformat"): # datetime.datetime, date, and time return _text_type elif _isint(string): return int elif _isnumber(string): return float elif isinstance(string, _binary_type): return _binary_type else: return _text_type def _afterpoint(string): """Symbols after a decimal point, -1 if the string lacks the decimal point. >>> _afterpoint("123.45") 2 >>> _afterpoint("1001") -1 >>> _afterpoint("eggs") -1 >>> _afterpoint("123e45") 2 """ if _isnumber(string): if _isint(string): return -1 else: pos = string.rfind(".") pos = string.lower().rfind("e") if pos < 0 else pos if pos >= 0: return len(string) - pos - 1 else: return -1 # no point else: return -1 # not a number def _padleft(width, s, has_invisible=True): """Flush right. >>> _padleft(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430' True """ lwidth = width - wcswidth(_strip_invisible(s) if has_invisible else s) return ' ' * lwidth + s def _padright(width, s, has_invisible=True): """Flush left. >>> _padright(6, '\u044f\u0439\u0446\u0430') == '\u044f\u0439\u0446\u0430 ' True """ rwidth = width - wcswidth(_strip_invisible(s) if has_invisible else s) return s + ' ' * rwidth def _padboth(width, s, has_invisible=True): """Center string. >>> _padboth(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430 ' True """ xwidth = width - wcswidth(_strip_invisible(s) if has_invisible else s) lwidth = xwidth // 2 rwidth = 0 if xwidth <= 0 else lwidth + xwidth % 2 return ' ' * lwidth + s + ' ' * rwidth def _strip_invisible(s): "Remove invisible ANSI color codes." if isinstance(s, _text_type): return re.sub(_invisible_codes, "", s) else: # a bytestring return re.sub(_invisible_codes_bytes, "", s) def _visible_width(s): """Visible width of a printed string. ANSI color codes are removed. >>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world") (5, 5) """ if isinstance(s, _text_type) or isinstance(s, _binary_type): return wcswidth(_strip_invisible(s)) else: return wcswidth(_text_type(s)) def _align_column(strings, alignment, minwidth=0, has_invisible=True): """[string] -> [padded_string] >>> list(map(str,_align_column(["12.345", "-1234.5", "1.23", "1234.5", "1e+234", "1.0e234"], "decimal"))) [' 12.345 ', '-1234.5 ', ' 1.23 ', ' 1234.5 ', ' 1e+234 ', ' 1.0e234'] >>> list(map(str,_align_column(['123.4', '56.7890'], None))) ['123.4', '56.7890'] """ if alignment == "right": strings = [s.strip() for s in strings] padfn = _padleft elif alignment == "center": strings = [s.strip() for s in strings] padfn = _padboth elif alignment == "decimal": decimals = [_afterpoint(s) for s in strings] maxdecimals = max(decimals) strings = [s + (maxdecimals - decs) * " " for s, decs in zip(strings, decimals)] padfn = _padleft elif not alignment: return strings else: strings = [s.strip() for s in strings] padfn = _padright if has_invisible: width_fn = _visible_width else: width_fn = wcswidth maxwidth = max(max(map(width_fn, strings)), minwidth) padded_strings = [padfn(maxwidth, s, has_invisible) for s in strings] return padded_strings def _more_generic(type1, type2): types = { _none_type: 0, int: 1, float: 2, _binary_type: 3, _text_type: 4 } invtypes = { 4: _text_type, 3: _binary_type, 2: float, 1: int, 0: _none_type } moregeneric = max(types.get(type1, 4), types.get(type2, 4)) return invtypes[moregeneric] def _column_type(strings, has_invisible=True): """The least generic type all column values are convertible to. >>> _column_type(["1", "2"]) is _int_type True >>> _column_type(["1", "2.3"]) is _float_type True >>> _column_type(["1", "2.3", "four"]) is _text_type True >>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type True >>> _column_type([None, "brux"]) is _text_type True >>> _column_type([1, 2, None]) is _int_type True >>> import datetime as dt >>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type True """ types = [_type(s, has_invisible) for s in strings ] return reduce(_more_generic, types, int) def _format(val, valtype, floatfmt, missingval=""): """Format a value accoding to its type. Unicode is supported: >>> hrow = ['\u0431\u0443\u043a\u0432\u0430', '\u0446\u0438\u0444\u0440\u0430'] ; \ tbl = [['\u0430\u0437', 2], ['\u0431\u0443\u043a\u0438', 4]] ; \ good_result = '\\u0431\\u0443\\u043a\\u0432\\u0430 \\u0446\\u0438\\u0444\\u0440\\u0430\\n------- -------\\n\\u0430\\u0437 2\\n\\u0431\\u0443\\u043a\\u0438 4' ; \ tabulate(tbl, headers=hrow) == good_result True """ if val is None: return missingval if valtype in [int, _text_type]: return "{0}".format(val) elif valtype is _binary_type: try: return _text_type(val, "ascii") except TypeError: return _text_type(val) elif valtype is float: return format(float(val), floatfmt) else: return "{0}".format(val) def _align_header(header, alignment, width): if alignment == "left": return _padright(width, header) elif alignment == "center": return _padboth(width, header) elif not alignment: return "{0}".format(header) else: return _padleft(width, header) def _normalize_tabular_data(tabular_data, headers): """Transform a supported data type to a list of lists, and a list of headers. Supported tabular data types: * list-of-lists or another iterable of iterables * list of named tuples (usually used with headers="keys") * list of dicts (usually used with headers="keys") * list of OrderedDicts (usually used with headers="keys") * 2D NumPy arrays * NumPy record arrays (usually used with headers="keys") * dict of iterables (usually used with headers="keys") * pandas.DataFrame (usually used with headers="keys") The first row can be used as headers if headers="firstrow", column indices can be used as headers if headers="keys". """ if hasattr(tabular_data, "keys") and hasattr(tabular_data, "values"): # dict-like and pandas.DataFrame? if hasattr(tabular_data.values, "__call__"): # likely a conventional dict keys = tabular_data.keys() rows = list(izip_longest(*tabular_data.values())) # columns have to be transposed elif hasattr(tabular_data, "index"): # values is a property, has .index => it's likely a pandas.DataFrame (pandas 0.11.0) keys = tabular_data.keys() vals = tabular_data.values # values matrix doesn't need to be transposed names = tabular_data.index rows = [[v]+list(row) for v,row in zip(names, vals)] else: raise ValueError("tabular data doesn't appear to be a dict or a DataFrame") if headers == "keys": headers = list(map(_text_type,keys)) # headers should be strings else: # it's a usual an iterable of iterables, or a NumPy array rows = list(tabular_data) if (headers == "keys" and hasattr(tabular_data, "dtype") and getattr(tabular_data.dtype, "names")): # numpy record array headers = tabular_data.dtype.names elif (headers == "keys" and len(rows) > 0 and isinstance(rows[0], tuple) and hasattr(rows[0], "_fields")): # namedtuple headers = list(map(_text_type, rows[0]._fields)) elif (len(rows) > 0 and isinstance(rows[0], dict)): # dict or OrderedDict uniq_keys = set() # implements hashed lookup keys = [] # storage for set if headers == "firstrow": firstdict = rows[0] if len(rows) > 0 else {} keys.extend(firstdict.keys()) uniq_keys.update(keys) rows = rows[1:] for row in rows: for k in row.keys(): #Save unique items in input order if k not in uniq_keys: keys.append(k) uniq_keys.add(k) if headers == 'keys': headers = keys elif isinstance(headers, dict): # a dict of headers for a list of dicts headers = [headers.get(k, k) for k in keys] headers = list(map(_text_type, headers)) elif headers == "firstrow": if len(rows) > 0: headers = [firstdict.get(k, k) for k in keys] headers = list(map(_text_type, headers)) else: headers = [] elif headers: raise ValueError('headers for a list of dicts is not a dict or a keyword') rows = [[row.get(k) for k in keys] for row in rows] elif headers == "keys" and len(rows) > 0: # keys are column indices headers = list(map(_text_type, range(len(rows[0])))) # take headers from the first row if necessary if headers == "firstrow" and len(rows) > 0: headers = list(map(_text_type, rows[0])) # headers should be strings rows = rows[1:] headers = list(map(_text_type,headers)) rows = list(map(list,rows)) # pad with empty headers for initial columns if necessary if headers and len(rows) > 0: nhs = len(headers) ncols = len(rows[0]) if nhs < ncols: headers = [""]*(ncols - nhs) + headers return rows, headers def tabulate(tabular_data, headers=[], tablefmt="simple", floatfmt="g", numalign="decimal", stralign="left", missingval=""): """Format a fixed width table for pretty printing. >>> print(tabulate([[1, 2.34], [-56, "8.999"], ["2", "10001"]])) --- --------- 1 2.34 -56 8.999 2 10001 --- --------- The first required argument (`tabular_data`) can be a list-of-lists (or another iterable of iterables), a list of named tuples, a dictionary of iterables, an iterable of dictionaries, a two-dimensional NumPy array, NumPy record array, or a Pandas' dataframe. Table headers ------------- To print nice column headers, supply the second argument (`headers`): - `headers` can be an explicit list of column headers - if `headers="firstrow"`, then the first row of data is used - if `headers="keys"`, then dictionary keys or column indices are used Otherwise a headerless table is produced. If the number of headers is less than the number of columns, they are supposed to be names of the last columns. This is consistent with the plain-text format of R and Pandas' dataframes. >>> print(tabulate([["sex","age"],["Alice","F",24],["Bob","M",19]], ... headers="firstrow")) sex age ----- ----- ----- Alice F 24 Bob M 19 Column alignment ---------------- `tabulate` tries to detect column types automatically, and aligns the values properly. By default it aligns decimal points of the numbers (or flushes integer numbers to the right), and flushes everything else to the left. Possible column alignments (`numalign`, `stralign`) are: "right", "center", "left", "decimal" (only for `numalign`), and None (to disable alignment). Table formats ------------- `floatfmt` is a format specification used for columns which contain numeric data with a decimal point. `None` values are replaced with a `missingval` string: >>> print(tabulate([["spam", 1, None], ... ["eggs", 42, 3.14], ... ["other", None, 2.7]], missingval="?")) ----- -- ---- spam 1 ? eggs 42 3.14 other ? 2.7 ----- -- ---- Various plain-text table formats (`tablefmt`) are supported: 'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst', 'mediawiki', 'latex', and 'latex_booktabs'. Variable `tabulate_formats` contains the list of currently supported formats. "plain" format doesn't use any pseudographics to draw tables, it separates columns with a double space: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "plain")) strings numbers spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="plain")) spam 41.9999 eggs 451 "simple" format is like Pandoc simple_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "simple")) strings numbers --------- --------- spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="simple")) ---- -------- spam 41.9999 eggs 451 ---- -------- "grid" is similar to tables produced by Emacs table.el package or Pandoc grid_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "grid")) +-----------+-----------+ | strings | numbers | +===========+===========+ | spam | 41.9999 | +-----------+-----------+ | eggs | 451 | +-----------+-----------+ >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="grid")) +------+----------+ | spam | 41.9999 | +------+----------+ | eggs | 451 | +------+----------+ "fancy_grid" draws a grid using box-drawing characters: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "fancy_grid")) ╒═══════════╤═══════════╕ │ strings │ numbers │ ╞═══════════╪═══════════╡ │ spam │ 41.9999 │ ├───────────┼───────────┤ │ eggs │ 451 │ ╘═══════════╧═══════════╛ "pipe" is like tables in PHP Markdown Extra extension or Pandoc pipe_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "pipe")) | strings | numbers | |:----------|----------:| | spam | 41.9999 | | eggs | 451 | >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="pipe")) |:-----|---------:| | spam | 41.9999 | | eggs | 451 | "orgtbl" is like tables in Emacs org-mode and orgtbl-mode. They are slightly different from "pipe" format by not using colons to define column alignment, and using a "+" sign to indicate line intersections: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "orgtbl")) | strings | numbers | |-----------+-----------| | spam | 41.9999 | | eggs | 451 | >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="orgtbl")) | spam | 41.9999 | | eggs | 451 | "rst" is like a simple table format from reStructuredText; please note that reStructuredText accepts also "grid" tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "rst")) ========= ========= strings numbers ========= ========= spam 41.9999 eggs 451 ========= ========= >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="rst")) ==== ======== spam 41.9999 eggs 451 ==== ======== "mediawiki" produces a table markup used in Wikipedia and on other MediaWiki-based sites: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="mediawiki")) {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- ! strings !! align="right"| numbers |- | spam || align="right"| 41.9999 |- | eggs || align="right"| 451 |} "html" produces HTML markup: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="html")) <table> <tr><th>strings </th><th style="text-align: right;"> numbers</th></tr> <tr><td>spam </td><td style="text-align: right;"> 41.9999</td></tr> <tr><td>eggs </td><td style="text-align: right;"> 451 </td></tr> </table> "latex" produces a tabular environment of LaTeX document markup: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex")) \\begin{tabular}{lr} \\hline spam & 41.9999 \\\\ eggs & 451 \\\\ \\hline \\end{tabular} "latex_booktabs" produces a tabular environment of LaTeX document markup using the booktabs.sty package: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex_booktabs")) \\begin{tabular}{lr} \\toprule spam & 41.9999 \\\\ eggs & 451 \\\\ \\bottomrule \end{tabular} """ if tabular_data is None: tabular_data = [] list_of_lists, headers = _normalize_tabular_data(tabular_data, headers) # optimization: look for ANSI control codes once, # enable smart width functions only if a control code is found plain_text = '\n'.join(['\t'.join(map(_text_type, headers))] + \ ['\t'.join(map(_text_type, row)) for row in list_of_lists]) has_invisible = re.search(_invisible_codes, plain_text) if has_invisible: width_fn = _visible_width else: width_fn = wcswidth # format rows and columns, convert numeric values to strings cols = list(zip(*list_of_lists)) coltypes = list(map(_column_type, cols)) cols = [[_format(v, ct, floatfmt, missingval) for v in c] for c,ct in zip(cols, coltypes)] # align columns aligns = [numalign if ct in [int,float] else stralign for ct in coltypes] minwidths = [width_fn(h) + MIN_PADDING for h in headers] if headers else [0]*len(cols) cols = [_align_column(c, a, minw, has_invisible) for c, a, minw in zip(cols, aligns, minwidths)] if headers: # align headers and add headers t_cols = cols or [['']] * len(headers) t_aligns = aligns or [stralign] * len(headers) minwidths = [max(minw, width_fn(c[0])) for minw, c in zip(minwidths, t_cols)] headers = [_align_header(h, a, minw) for h, a, minw in zip(headers, t_aligns, minwidths)] rows = list(zip(*cols)) else: minwidths = [width_fn(c[0]) for c in cols] rows = list(zip(*cols)) if not isinstance(tablefmt, TableFormat): tablefmt = _table_formats.get(tablefmt, _table_formats["simple"]) return _format_table(tablefmt, headers, rows, minwidths, aligns) def _build_simple_row(padded_cells, rowfmt): "Format row according to DataRow format without padding." begin, sep, end = rowfmt return (begin + sep.join(padded_cells) + end).rstrip() def _build_row(padded_cells, colwidths, colaligns, rowfmt): "Return a string which represents a row of data cells." if not rowfmt: return None if hasattr(rowfmt, "__call__"): return rowfmt(padded_cells, colwidths, colaligns) else: return _build_simple_row(padded_cells, rowfmt) def _build_line(colwidths, colaligns, linefmt): "Return a string which represents a horizontal line." if not linefmt: return None if hasattr(linefmt, "__call__"): return linefmt(colwidths, colaligns) else: begin, fill, sep, end = linefmt cells = [fill*w for w in colwidths] return _build_simple_row(cells, (begin, sep, end)) def _pad_row(cells, padding): if cells: pad = " "*padding padded_cells = [pad + cell + pad for cell in cells] return padded_cells else: return cells def _format_table(fmt, headers, rows, colwidths, colaligns): """Produce a plain-text representation of the table.""" lines = [] hidden = fmt.with_header_hide if (headers and fmt.with_header_hide) else [] pad = fmt.padding headerrow = fmt.headerrow padded_widths = [(w + 2*pad) for w in colwidths] padded_headers = _pad_row(headers, pad) padded_rows = [_pad_row(row, pad) for row in rows] if fmt.lineabove and "lineabove" not in hidden: lines.append(_build_line(padded_widths, colaligns, fmt.lineabove)) if padded_headers: lines.append(_build_row(padded_headers, padded_widths, colaligns, headerrow)) if fmt.linebelowheader and "linebelowheader" not in hidden: lines.append(_build_line(padded_widths, colaligns, fmt.linebelowheader)) if padded_rows and fmt.linebetweenrows and "linebetweenrows" not in hidden: # initial rows with a line below for row in padded_rows[:-1]: lines.append(_build_row(row, padded_widths, colaligns, fmt.datarow)) lines.append(_build_line(padded_widths, colaligns, fmt.linebetweenrows)) # the last row without a line below lines.append(_build_row(padded_rows[-1], padded_widths, colaligns, fmt.datarow)) else: for row in padded_rows: lines.append(_build_row(row, padded_widths, colaligns, fmt.datarow)) if fmt.linebelow and "linebelow" not in hidden: lines.append(_build_line(padded_widths, colaligns, fmt.linebelow)) return "\n".join(lines) def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_booktabs, tsv (default: simple) """ import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1f:s:", ["help", "header", "format", "separator"]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] tablefmt = "simple" sep = r"\s+" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep) else: with open(f) as fobj: _pprint_file(fobj) def _pprint_file(fobject, headers, tablefmt, sep): rows = fobject.readlines() table = [re.split(sep, r.rstrip()) for r in rows] print(tabulate(table, headers, tablefmt)) if __name__ == "__main__": _main()
bsd-3-clause
microsoft/LightGBM
tests/distributed/_test_distributed.py
1
7541
import copy import io import socket import subprocess from concurrent.futures import ThreadPoolExecutor from pathlib import Path from typing import Any, Dict, Generator, List import numpy as np import pytest from sklearn.datasets import make_blobs, make_regression from sklearn.metrics import accuracy_score TESTS_DIR = Path(__file__).absolute().parent @pytest.fixture(scope='module') def executable(pytestconfig) -> str: """Returns the path to the lightgbm executable.""" return pytestconfig.getoption('execfile') def _find_random_open_port() -> int: """Find a random open port on localhost.""" with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(('', 0)) port = s.getsockname()[1] return port def _generate_n_ports(n: int) -> Generator[int, None, None]: return (_find_random_open_port() for _ in range(n)) def _write_dict(d: Dict, file: io.TextIOWrapper) -> None: for k, v in d.items(): file.write(f'{k} = {v}\n') def create_data(task: str, n_samples: int = 1_000) -> np.ndarray: """Create the appropriate data for the task. The data is returned as a numpy array with the label as the first column. """ if task == 'binary-classification': centers = [[-4, -4], [4, 4]] X, y = make_blobs(n_samples, centers=centers, random_state=42) elif task == 'regression': X, y = make_regression(n_samples, n_features=4, n_informative=2, random_state=42) dataset = np.hstack([y.reshape(-1, 1), X]) return dataset class DistributedMockup: """Simulate distributed training.""" default_train_config = { 'task': 'train', 'pre_partition': True, 'machine_list_file': TESTS_DIR / 'mlist.txt', 'tree_learner': 'data', 'force_row_wise': True, 'verbose': 0, 'num_boost_round': 20, 'num_leaves': 15, 'num_threads': 2, } default_predict_config = { 'task': 'predict', 'data': TESTS_DIR / 'train.txt', 'input_model': TESTS_DIR / 'model0.txt', 'output_result': TESTS_DIR / 'predictions.txt', } def __init__(self, executable: str): self.executable = executable def worker_train(self, i: int) -> subprocess.CompletedProcess: """Start the training process on the `i`-th worker.""" config_path = TESTS_DIR / f'train{i}.conf' cmd = [self.executable, f'config={config_path}'] return subprocess.run(cmd) def _set_ports(self) -> None: """Randomly assign a port for training to each worker and save all ports to mlist.txt.""" ports = set(_generate_n_ports(self.n_workers)) i = 0 max_tries = 100 while i < max_tries and len(ports) < self.n_workers: n_ports_left = self.n_workers - len(ports) candidates = _generate_n_ports(n_ports_left) ports.update(candidates) i += 1 if i == max_tries: raise RuntimeError('Unable to find non-colliding ports.') self.listen_ports = list(ports) with open(TESTS_DIR / 'mlist.txt', 'wt') as f: for port in self.listen_ports: f.write(f'127.0.0.1 {port}\n') def _write_data(self, partitions: List[np.ndarray]) -> None: """Write all training data as train.txt and each training partition as train{i}.txt.""" all_data = np.vstack(partitions) np.savetxt(str(TESTS_DIR / 'train.txt'), all_data, delimiter=',') for i, partition in enumerate(partitions): np.savetxt(str(TESTS_DIR / f'train{i}.txt'), partition, delimiter=',') def fit(self, partitions: List[np.ndarray], train_config: Dict = {}) -> None: """Run the distributed training process on a single machine. For each worker i: 1. The i-th partition is saved as train{i}.txt. 2. A random port is assigned for training. 3. A configuration file train{i}.conf is created. 4. The lightgbm binary is called with config=train{i}.conf in another thread. 5. The trained model is saved as model{i}.txt. Each model file only differs in data and local_listen_port. The whole training set is saved as train.txt. """ self.train_config = copy.deepcopy(self.default_train_config) self.train_config.update(train_config) self.n_workers = self.train_config['num_machines'] self._set_ports() self._write_data(partitions) self.label_ = np.hstack([partition[:, 0] for partition in partitions]) futures = [] with ThreadPoolExecutor(max_workers=self.n_workers) as executor: for i in range(self.n_workers): self.write_train_config(i) train_future = executor.submit(self.worker_train, i) futures.append(train_future) results = [f.result() for f in futures] for result in results: if result.returncode != 0: raise RuntimeError('Error in training') def predict(self, predict_config: Dict[str, Any] = {}) -> np.ndarray: """Compute the predictions using the model created in the fit step. predict_config is used to predict the training set train.txt The predictions are saved as predictions.txt and are then loaded to return them as a numpy array. """ self.predict_config = copy.deepcopy(self.default_predict_config) self.predict_config.update(predict_config) config_path = TESTS_DIR / 'predict.conf' with open(config_path, 'wt') as file: _write_dict(self.predict_config, file) cmd = [self.executable, f'config={config_path}'] result = subprocess.run(cmd) if result.returncode != 0: raise RuntimeError('Error in prediction') y_pred = np.loadtxt(str(TESTS_DIR / 'predictions.txt')) return y_pred def write_train_config(self, i: int) -> None: """Create a file train{i}.conf with the required configuration to train. Each worker gets a different port and piece of the data, the rest are the model parameters contained in `self.config`. """ with open(TESTS_DIR / f'train{i}.conf', 'wt') as file: output_model = TESTS_DIR / f'model{i}.txt' data = TESTS_DIR / f'train{i}.txt' file.write(f'output_model = {output_model}\n') file.write(f'local_listen_port = {self.listen_ports[i]}\n') file.write(f'data = {data}\n') _write_dict(self.train_config, file) def test_classifier(executable): """Test the classification task.""" num_machines = 2 data = create_data(task='binary-classification') partitions = np.array_split(data, num_machines) train_params = { 'objective': 'binary', 'num_machines': num_machines, } clf = DistributedMockup(executable) clf.fit(partitions, train_params) y_probas = clf.predict() y_pred = y_probas > 0.5 assert accuracy_score(clf.label_, y_pred) == 1. def test_regressor(executable): """Test the regression task.""" num_machines = 2 data = create_data(task='regression') partitions = np.array_split(data, num_machines) train_params = { 'objective': 'regression', 'num_machines': num_machines, } reg = DistributedMockup(executable) reg.fit(partitions, train_params) y_pred = reg.predict() np.testing.assert_allclose(y_pred, reg.label_, rtol=0.2, atol=50.)
mit
williamleif/histwords
vecanalysis/makelowdim.py
2
2913
import numpy as np import time import random from sklearn.utils.extmath import randomized_svd from multiprocessing import Queue, Process from argparse import ArgumentParser from representations.explicit import Explicit from ioutils import load_year_words, mkdir, write_pickle, words_above_count INPUT_FORMAT = '{year:d}.bin' OUT_FORMAT = '{year:d}' def worker(proc_num, queue, out_dir, in_dir, count_dir, words, dim, num_words, min_count=100): while True: if queue.empty(): break year = queue.get() print "Loading embeddings for year", year time.sleep(random.random() * 120) valid_words = set(words_above_count(count_dir, year, min_count)) print len(valid_words) words = list(valid_words.intersection(words[year][:num_words])) print len(words) base_embed = Explicit.load((in_dir + INPUT_FORMAT).format(year=year), normalize=False) base_embed = base_embed.get_subembed(words, restrict_context=True) print "SVD for year", year u, s, v = randomized_svd(base_embed.m, n_components=dim, n_iter=5) print "Saving year", year np.save((out_dir + OUT_FORMAT).format(year=year, dim=dim) + "-u.npy", u) np.save((out_dir + OUT_FORMAT).format(year=year, dim=dim) + "-v.npy", v) np.save((out_dir + OUT_FORMAT).format(year=year, dim=dim) + "-s.npy", s) write_pickle(base_embed.iw, (out_dir + OUT_FORMAT).format(year=year, dim=dim) + "-vocab.pkl") if __name__ == '__main__': parser = ArgumentParser("Run SVD on historical co-occurrence matrices") parser.add_argument("in_dir", help="Directory with PPMI data") parser.add_argument("count_dir", help="Directory with PPMI data") parser.add_argument("word_file", help="File containing sorted list of words to potentially include") parser.add_argument("--num-words", type=int, help="Number of words to include", default=1000000) parser.add_argument("--dim", type=int, default=300) parser.add_argument("--workers", type=int, default=50) parser.add_argument("--start-year", type=int, default=1800) parser.add_argument("--end-year", type=int, default=1990) parser.add_argument("--year-inc", type=int, default=10) parser.add_argument("--min-count", type=int, default=100) args = parser.parse_args() queue = Queue() years = range(args.start_year, args.end_year + 1, args.year_inc) years.reverse() for year in years: queue.put(year) out_dir = args.in_dir + "/svd/" + str(args.dim) + "/" + str(args.num_words) + "/" + str(args.min_count) + "/" mkdir(out_dir) words = load_year_words(args.word_file, years) procs = [Process(target=worker, args=[i, queue, out_dir, args.in_dir, args.count_dir, words, args.dim, args.num_words, args.min_count]) for i in range(args.workers)] for p in procs: p.start() for p in procs: p.join()
apache-2.0
jackwluo/py-quantmod
dash_example_full.py
1
8032
# In[]: # Import required libraries import os import pandas as pd import dash import dash_core_components as core import dash_html_components as html from dash.dependencies import Input, Output from flask_caching import Cache import quantmod as qm # In[]: # Create layout app = dash.Dash("Quantmod Full Demo") app.css.append_css({ 'external_url': ( 'https://rawgit.com/chriddyp/0247653a7c52feb4c48437e1c1837f75' '/raw/a68333b876edaf62df2efa7bac0e9b3613258851/dash.css' ) }) # Add caching # cache = Cache(app.server, config={ # 'CACHE_TYPE': 'redis', # 'CACHE_REDIS_URL': os.environ.get('REDIS_URL', '127.0.0.1:6379') # }) # timeout = 60 * 60 # 1 hour # Controls sp500 = ['AAPL', 'ABT', 'ABBV', 'ACN', 'ACE', 'ADBE', 'ADT', 'AAP', 'AES', 'AET', 'AFL', 'AMG', 'A', 'GAS', 'ARE', 'APD', 'AKAM', 'AA', 'AGN', 'ALXN', 'ALLE', 'ADS', 'ALL', 'ALTR', 'MO', 'AMZN', 'AEE', 'AAL', 'AEP', 'AXP', 'AIG', 'AMT', 'AMP', 'ABC', 'AME', 'AMGN', 'APH', 'APC', 'ADI', 'AON', 'APA', 'AIV', 'AMAT', 'ADM', 'AIZ', 'T', 'ADSK', 'ADP', 'AN', 'AZO', 'AVGO', 'AVB', 'AVY', 'BHI', 'BLL', 'BAC', 'BK', 'BCR', 'BXLT', 'BAX', 'BBT', 'BDX', 'BBBY', 'BRK.B', 'BBY', 'BLX', 'HRB', 'BA', 'BWA', 'BXP', 'BSX', 'BMY', 'BRCM', 'BF.B', 'CHRW', 'CA', 'CVC', 'COG', 'CAM', 'CPB', 'COF', 'CAH', 'HSIC', 'KMX', 'CCL', 'CAT', 'CBG', 'CBS', 'CELG', 'CNP', 'CTL', 'CERN', 'CF', 'SCHW', 'CHK', 'CVX', 'CMG', 'CB', 'CI', 'XEC', 'CINF', 'CTAS', 'CSCO', 'C', 'CTXS', 'CLX', 'CME', 'CMS', 'COH', 'KO', 'CCE', 'CTSH', 'CL', 'CMCSA', 'CMA', 'CSC', 'CAG', 'COP', 'CNX', 'ED', 'STZ', 'GLW', 'COST', 'CCI', 'CSX', 'CMI', 'CVS', 'DHI', 'DHR', 'DRI', 'DVA', 'DE', 'DLPH', 'DAL', 'XRAY', 'DVN', 'DO', 'DTV', 'DFS', 'DISCA', 'DISCK', 'DG', 'DLTR', 'D', 'DOV', 'DOW', 'DPS', 'DTE', 'DD', 'DUK', 'DNB', 'ETFC', 'EMN', 'ETN', 'EBAY', 'ECL', 'EIX', 'EW', 'EA', 'EMC', 'EMR', 'ENDP', 'ESV', 'ETR', 'EOG', 'EQT', 'EFX', 'EQIX', 'EQR', 'ESS', 'EL', 'ES', 'EXC', 'EXPE', 'EXPD', 'ESRX', 'XOM', 'FFIV', 'FB', 'FAST', 'FDX', 'FIS', 'FITB', 'FSLR', 'FE', 'FISV', 'FLIR', 'FLS', 'FLR', 'FMC', 'FTI', 'F', 'FOSL', 'BEN', 'FCX', 'FTR', 'GME', 'GPS', 'GRMN', 'GD', 'GE', 'GGP', 'GIS', 'GM', 'GPC', 'GNW', 'GILD', 'GS', 'GT', 'GOOGL', 'GOOG', 'GWW', 'HAL', 'HBI', 'HOG', 'HAR', 'HRS', 'HIG', 'HAS', 'HCA', 'HCP', 'HCN', 'HP', 'HES', 'HPQ', 'HD', 'HON', 'HRL', 'HSP', 'HST', 'HCBK', 'HUM', 'HBAN', 'ITW', 'IR', 'INTC', 'ICE', 'IBM', 'IP', 'IPG', 'IFF', 'INTU', 'ISRG', 'IVZ', 'IRM', 'JEC', 'JBHT', 'JNJ', 'JCI', 'JOY', 'JPM', 'JNPR', 'KSU', 'K', 'KEY', 'GMCR', 'KMB', 'KIM', 'KMI', 'KLAC', 'KSS', 'KRFT', 'KR', 'LB', 'LLL', 'LH', 'LRCX', 'LM', 'LEG', 'LEN', 'LVLT', 'LUK', 'LLY', 'LNC', 'LLTC', 'LMT', 'L', 'LOW', 'LYB', 'MTB', 'MAC', 'M', 'MNK', 'MRO', 'MPC', 'MAR', 'MMC', 'MLM', 'MAS', 'MA', 'MAT', 'MKC', 'MCD', 'MCK', 'MJN', 'MMV', 'MDT', 'MRK', 'MET', 'KORS', 'MCHP', 'MU', 'MSFT', 'MHK', 'TAP', 'MDLZ', 'MON', 'MNST', 'MCO', 'MS', 'MOS', 'MSI', 'MUR', 'MYL', 'NDAQ', 'NOV', 'NAVI', 'NTAP', 'NFLX', 'NWL', 'NFX', 'NEM', 'NWSA', 'NEE', 'NLSN', 'NKE', 'NI', 'NE', 'NBL', 'JWN', 'NSC', 'NTRS', 'NOC', 'NRG', 'NUE', 'NVDA', 'ORLY', 'OXY', 'OMC', 'OKE', 'ORCL', 'OI', 'PCAR', 'PLL', 'PH', 'PDCO', 'PAYX', 'PNR', 'PBCT', 'POM', 'PEP', 'PKI', 'PRGO', 'PFE', 'PCG', 'PM', 'PSX', 'PNW', 'PXD', 'PBI', 'PCL', 'PNC', 'RL', 'PPG', 'PPL', 'PX', 'PCP', 'PCLN', 'PFG', 'PG', 'PGR', 'PLD', 'PRU', 'PEG', 'PSA', 'PHM', 'PVH', 'QRVO', 'PWR', 'QCOM', 'DGX', 'RRC', 'RTN', 'O', 'RHT', 'REGN', 'RF', 'RSG', 'RAI', 'RHI', 'ROK', 'COL', 'ROP', 'ROST', 'RLD', 'R', 'CRM', 'SNDK', 'SCG', 'SLB', 'SNI', 'STX', 'SEE', 'SRE', 'SHW', 'SPG', 'SWKS', 'SLG', 'SJM', 'SNA', 'SO', 'LUV', 'SWN', 'SE', 'STJ', 'SWK', 'SPLS', 'SBUX', 'HOT', 'STT', 'SRCL', 'SYK', 'STI', 'SYMC', 'SYY', 'TROW', 'TGT', 'TEL', 'TE', 'TGNA', 'THC', 'TDC', 'TSO', 'TXN', 'TXT', 'HSY', 'TRV', 'TMO', 'TIF', 'TWX', 'TWC', 'TJX', 'TMK', 'TSS', 'TSCO', 'RIG', 'TRIP', 'FOXA', 'TSN', 'TYC', 'UA', 'UNP', 'UNH', 'UPS', 'URI', 'UTX', 'UHS', 'UNM', 'URBN', 'VFC', 'VLO', 'VAR', 'VTR', 'VRSN', 'VZ', 'VRTX', 'VIAB', 'V', 'VNO', 'VMC', 'WMT', 'WBA', 'DIS', 'WM', 'WAT', 'ANTM', 'WFC', 'WDC', 'WU', 'WY', 'WHR', 'WFM', 'WMB', 'WEC', 'WYN', 'WYNN', 'XEL', 'XRX', 'XLNX', 'XL', 'XYL', 'YHOO', 'YUM', 'ZBH', 'ZION', 'ZTS'] etf = ['SPY', 'XLF', 'GDX', 'EEM', 'VXX', 'IWM', 'UVXY', 'UXO', 'GDXJ', 'QQQ'] tickers = sp500 + etf tickers = [dict(label=str(ticker), value=str(ticker)) for ticker in tickers] functions = dir(qm.ta)[9:-4] functions = [dict(label=str(function[4:]), value=str(function)) for function in functions] # Layout app.layout = html.Div( [ html.H2('Quantmod Charts'), html.Div( [ html.Span( core.Dropdown( id='dropdown', options=tickers, value='SPY', ), style={ 'width': '450px', 'display': 'inline-block', 'text-align': 'left' }, ), html.Span( core.Dropdown( id='multi', options=functions, multi=True, value=[], ), style={ 'width': '450px', 'display': 'inline-block', 'text-align': 'left' }, ), ] ), html.Div( [html.Label('Custom Arguments:'), core.Input(id='arglist')], id='arg-controls', style={'display': 'none'} ), core.Graph(id='output') ], style={ 'width': '900', 'margin-left': 'auto', 'margin-right': 'auto', 'text-align': 'center', 'font-family': 'overpass', 'background-color': '#F3F3F3' } ) @app.callback(Output('arg-controls', 'style'), [Input('multi', 'value')]) def display_control(multi): if not multi: return {'display': 'none'} else: return {'display': 'inline-block'} @app.callback(Output('output', 'figure'), [Input('dropdown', 'value'), Input('multi', 'value'), Input('arglist', 'value')]) # @cache.memoize(timeout=timeout) def update_graph_from_dropdown(dropdown, multi, arglist): # Get Quantmod Chart ch = qm.get_symbol(dropdown, start='2016/01/01') # Get functions if arglist: arglist = arglist.replace('(', '').replace(')', '').split(';') arglist = [args.strip() for args in arglist] for function, args in zip(multi, arglist): if args: args = args.split(',') newargs = [] for arg in args: try: arg = int(arg) except: try: arg = float(arg) except: pass newargs.append(arg) print(newargs) getattr(qm, function)(ch, *newargs) else: getattr(qm, function)(ch) else: for function in multi: getattr(qm, function)(ch) # Return plot as figure fig = ch.to_figure(width=900) return fig # In[]: # Main if __name__ == '__main__': app.run_server(debug=True, threaded=True, port=4002)
mit
fyffyt/scikit-learn
sklearn/utils/multiclass.py
83
12343
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.ptp(y.data) == 0 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not np.all(clf.classes_ == unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
oew1v07/scikit-image
doc/examples/plot_gabor.py
11
4450
""" ============================================= Gabor filter banks for texture classification ============================================= In this example, we will see how to classify textures based on Gabor filter banks. Frequency and orientation representations of the Gabor filter are similar to those of the human visual system. The images are filtered using the real parts of various different Gabor filter kernels. The mean and variance of the filtered images are then used as features for classification, which is based on the least squared error for simplicity. """ from __future__ import print_function import matplotlib.pyplot as plt import numpy as np from scipy import ndimage as ndi from skimage import data from skimage.util import img_as_float from skimage.filters import gabor_kernel def compute_feats(image, kernels): feats = np.zeros((len(kernels), 2), dtype=np.double) for k, kernel in enumerate(kernels): filtered = ndi.convolve(image, kernel, mode='wrap') feats[k, 0] = filtered.mean() feats[k, 1] = filtered.var() return feats def match(feats, ref_feats): min_error = np.inf min_i = None for i in range(ref_feats.shape[0]): error = np.sum((feats - ref_feats[i, :])**2) if error < min_error: min_error = error min_i = i return min_i # prepare filter bank kernels kernels = [] for theta in range(4): theta = theta / 4. * np.pi for sigma in (1, 3): for frequency in (0.05, 0.25): kernel = np.real(gabor_kernel(frequency, theta=theta, sigma_x=sigma, sigma_y=sigma)) kernels.append(kernel) shrink = (slice(0, None, 3), slice(0, None, 3)) brick = img_as_float(data.load('brick.png'))[shrink] grass = img_as_float(data.load('grass.png'))[shrink] wall = img_as_float(data.load('rough-wall.png'))[shrink] image_names = ('brick', 'grass', 'wall') images = (brick, grass, wall) # prepare reference features ref_feats = np.zeros((3, len(kernels), 2), dtype=np.double) ref_feats[0, :, :] = compute_feats(brick, kernels) ref_feats[1, :, :] = compute_feats(grass, kernels) ref_feats[2, :, :] = compute_feats(wall, kernels) print('Rotated images matched against references using Gabor filter banks:') print('original: brick, rotated: 30deg, match result: ', end='') feats = compute_feats(ndi.rotate(brick, angle=190, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) print('original: brick, rotated: 70deg, match result: ', end='') feats = compute_feats(ndi.rotate(brick, angle=70, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) print('original: grass, rotated: 145deg, match result: ', end='') feats = compute_feats(ndi.rotate(grass, angle=145, reshape=False), kernels) print(image_names[match(feats, ref_feats)]) def power(image, kernel): # Normalize images for better comparison. image = (image - image.mean()) / image.std() return np.sqrt(ndi.convolve(image, np.real(kernel), mode='wrap')**2 + ndi.convolve(image, np.imag(kernel), mode='wrap')**2) # Plot a selection of the filter bank kernels and their responses. results = [] kernel_params = [] for theta in (0, 1): theta = theta / 4. * np.pi for frequency in (0.1, 0.4): kernel = gabor_kernel(frequency, theta=theta) params = 'theta=%d,\nfrequency=%.2f' % (theta * 180 / np.pi, frequency) kernel_params.append(params) # Save kernel and the power image for each image results.append((kernel, [power(img, kernel) for img in images])) fig, axes = plt.subplots(nrows=5, ncols=4, figsize=(5, 6)) plt.gray() fig.suptitle('Image responses for Gabor filter kernels', fontsize=12) axes[0][0].axis('off') # Plot original images for label, img, ax in zip(image_names, images, axes[0][1:]): ax.imshow(img) ax.set_title(label, fontsize=9) ax.axis('off') for label, (kernel, powers), ax_row in zip(kernel_params, results, axes[1:]): # Plot Gabor kernel ax = ax_row[0] ax.imshow(np.real(kernel), interpolation='nearest') ax.set_ylabel(label, fontsize=7) ax.set_xticks([]) ax.set_yticks([]) # Plot Gabor responses with the contrast normalized for each filter vmin = np.min(powers) vmax = np.max(powers) for patch, ax in zip(powers, ax_row[1:]): ax.imshow(patch, vmin=vmin, vmax=vmax) ax.axis('off') plt.show()
bsd-3-clause
jm-begon/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
PanDAWMS/panda-server
pandaserver/daemons/scripts/recover_lost_files_daemon.py
1
4606
import json import glob import time import os.path import datetime import threading import traceback from pandacommon.pandalogger.PandaLogger import PandaLogger from pandacommon.pandalogger.LogWrapper import LogWrapper from pandaserver.config import panda_config from pandaserver.dataservice import RecoverLostFilesCore # logger _logger = PandaLogger().getLogger('recover_lost_files') # main def main(tbuf=None, **kwargs): _logger.debug("===================== start =====================") # overall timeout value overallTimeout = 300 # prefix of the files prefixEVP = 'recov.' # file pattern of evp files evpFilePatt = panda_config.cache_dir + '/' + prefixEVP + '*' from pandaserver.taskbuffer.TaskBuffer import taskBuffer taskBuffer.init(panda_config.dbhost, panda_config.dbpasswd, nDBConnection=1) # thread pool class ThreadPool: def __init__(self): self.lock = threading.Lock() self.list = [] def add(self, obj): self.lock.acquire() self.list.append(obj) self.lock.release() def remove(self, obj): self.lock.acquire() self.list.remove(obj) self.lock.release() def join(self): self.lock.acquire() thrlist = tuple(self.list) self.lock.release() for thr in thrlist: thr.join() # thread to ev-pd2p class EvpThr(threading.Thread): def __init__(self, lock, pool, tb_if, file_name, to_delete): threading.Thread.__init__(self) self.lock = lock self.pool = pool self.fileName = file_name self.to_delete = to_delete self.taskBuffer = tb_if self.pool.add(self) def run(self): self.lock.acquire() with open(self.fileName) as f: ops = json.load(f) tmpLog = LogWrapper(_logger, '< jediTaskID={} >'.format(ops['jediTaskID'])) tmpLog.info('start {}'.format(self.fileName)) s, o = RecoverLostFilesCore.main(self.taskBuffer, ops, tmpLog) tmpLog.info('status={}. {}'.format(s, o)) if s is not None or self.to_delete: tmpLog.debug('delete {}'.format(self.fileName)) try: os.remove(self.fileName) except Exception: pass self.pool.remove(self) self.lock.release() # get files timeNow = datetime.datetime.utcnow() timeInt = datetime.datetime.utcnow() fileList = glob.glob(evpFilePatt) fileList.sort() # create thread pool and semaphore adderLock = threading.Semaphore(1) adderThreadPool = ThreadPool() # add while len(fileList) != 0: # time limit to aviod too many copyArchve running at the sametime if (datetime.datetime.utcnow() - timeNow) > datetime.timedelta(minutes=overallTimeout): _logger.debug("time over in main session") break # try to get Semaphore adderLock.acquire() # get fileList if (datetime.datetime.utcnow() - timeInt) > datetime.timedelta(minutes=15): timeInt = datetime.datetime.utcnow() # get file fileList = glob.glob(evpFilePatt) fileList.sort() # choose a file fileName = fileList.pop(0) # release lock adderLock.release() if not os.path.exists(fileName): continue try: modTime = datetime.datetime(*(time.gmtime(os.path.getmtime(fileName))[:7])) if (timeNow - modTime) > datetime.timedelta(hours=2): # last chance _logger.debug("Last attempt : %s" % fileName) thr = EvpThr(adderLock, adderThreadPool, taskBuffer, fileName, False) thr.start() elif (timeInt - modTime) > datetime.timedelta(seconds=5): # try _logger.debug("Normal attempt : %s" % fileName) thr = EvpThr(adderLock, adderThreadPool, taskBuffer, fileName, True) thr.start() else: _logger.debug("Wait %s : %s" % ((timeInt - modTime), fileName)) except Exception as e: _logger.error("{} {}".format(str(e), traceback.format_exc())) # join all threads adderThreadPool.join() _logger.debug("===================== end =====================") # run if __name__ == '__main__': main()
apache-2.0
trungnt13/scikit-learn
sklearn/covariance/tests/test_covariance.py
142
11068
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.covariance import empirical_covariance, EmpiricalCovariance, \ ShrunkCovariance, shrunk_covariance, \ LedoitWolf, ledoit_wolf, ledoit_wolf_shrinkage, OAS, oas X = datasets.load_diabetes().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_covariance(): # Tests Covariance module on a simple dataset. # test covariance fit from data cov = EmpiricalCovariance() cov.fit(X) emp_cov = empirical_covariance(X) assert_array_almost_equal(emp_cov, cov.covariance_, 4) assert_almost_equal(cov.error_norm(emp_cov), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='spectral'), 0) assert_almost_equal( cov.error_norm(emp_cov, norm='frobenius'), 0) assert_almost_equal( cov.error_norm(emp_cov, scaling=False), 0) assert_almost_equal( cov.error_norm(emp_cov, squared=False), 0) assert_raises(NotImplementedError, cov.error_norm, emp_cov, norm='foo') # Mahalanobis distances computation test mahal_dist = cov.mahalanobis(X) print(np.amin(mahal_dist), np.amax(mahal_dist)) assert(np.amin(mahal_dist) > 0) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = EmpiricalCovariance() cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) assert_almost_equal(cov.error_norm(empirical_covariance(X_1d)), 0) assert_almost_equal( cov.error_norm(empirical_covariance(X_1d), norm='spectral'), 0) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) cov = EmpiricalCovariance() assert_warns(UserWarning, cov.fit, X_1sample) assert_array_almost_equal(cov.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test integer type X_integer = np.asarray([[0, 1], [1, 0]]) result = np.asarray([[0.25, -0.25], [-0.25, 0.25]]) assert_array_almost_equal(empirical_covariance(X_integer), result) # test centered case cov = EmpiricalCovariance(assume_centered=True) cov.fit(X) assert_array_equal(cov.location_, np.zeros(X.shape[1])) def test_shrunk_covariance(): # Tests ShrunkCovariance module on a simple dataset. # compare shrunk covariance obtained from data and from MLE estimate cov = ShrunkCovariance(shrinkage=0.5) cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X), shrinkage=0.5), cov.covariance_, 4) # same test with shrinkage not provided cov = ShrunkCovariance() cov.fit(X) assert_array_almost_equal( shrunk_covariance(empirical_covariance(X)), cov.covariance_, 4) # same test with shrinkage = 0 (<==> empirical_covariance) cov = ShrunkCovariance(shrinkage=0.) cov.fit(X) assert_array_almost_equal(empirical_covariance(X), cov.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) cov = ShrunkCovariance(shrinkage=0.3) cov.fit(X_1d) assert_array_almost_equal(empirical_covariance(X_1d), cov.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) cov = ShrunkCovariance(shrinkage=0.5, store_precision=False) cov.fit(X) assert(cov.precision_ is None) def test_ledoit_wolf(): # Tests LedoitWolf module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) lw = LedoitWolf(assume_centered=True) lw.fit(X_centered) shrinkage_ = lw.shrinkage_ score_ = lw.score(X_centered) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True), shrinkage_) assert_almost_equal(ledoit_wolf_shrinkage(X_centered, assume_centered=True, block_size=6), shrinkage_) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_centered, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf(assume_centered=True) lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d, assume_centered=True) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, lw.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X_centered) assert_almost_equal(lw.score(X_centered), score_, 4) assert(lw.precision_ is None) # Same tests without assuming centered data # test shrinkage coeff on a simple data set lw = LedoitWolf() lw.fit(X) assert_almost_equal(lw.shrinkage_, shrinkage_, 4) assert_almost_equal(lw.shrinkage_, ledoit_wolf_shrinkage(X)) assert_almost_equal(lw.shrinkage_, ledoit_wolf(X)[1]) assert_almost_equal(lw.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) # compare estimates given by LW and ShrunkCovariance scov = ShrunkCovariance(shrinkage=lw.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, lw.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) lw = LedoitWolf() lw.fit(X_1d) lw_cov_from_mle, lw_shinkrage_from_mle = ledoit_wolf(X_1d) assert_array_almost_equal(lw_cov_from_mle, lw.covariance_, 4) assert_almost_equal(lw_shinkrage_from_mle, lw.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), lw.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) lw = LedoitWolf() assert_warns(UserWarning, lw.fit, X_1sample) assert_array_almost_equal(lw.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) lw = LedoitWolf(store_precision=False) lw.fit(X) assert_almost_equal(lw.score(X), score_, 4) assert(lw.precision_ is None) def test_ledoit_wolf_large(): # test that ledoit_wolf doesn't error on data that is wider than block_size rng = np.random.RandomState(0) # use a number of features that is larger than the block-size X = rng.normal(size=(10, 20)) lw = LedoitWolf(block_size=10).fit(X) # check that covariance is about diagonal (random normal noise) assert_almost_equal(lw.covariance_, np.eye(20), 0) cov = lw.covariance_ # check that the result is consistent with not splitting data into blocks. lw = LedoitWolf(block_size=25).fit(X) assert_almost_equal(lw.covariance_, cov) def test_oas(): # Tests OAS module on a simple dataset. # test shrinkage coeff on a simple data set X_centered = X - X.mean(axis=0) oa = OAS(assume_centered=True) oa.fit(X_centered) shrinkage_ = oa.shrinkage_ score_ = oa.score(X_centered) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_centered, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_, assume_centered=True) scov.fit(X_centered) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS(assume_centered=True) oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d, assume_centered=True) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal((X_1d ** 2).sum() / n_samples, oa.covariance_, 4) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False, assume_centered=True) oa.fit(X_centered) assert_almost_equal(oa.score(X_centered), score_, 4) assert(oa.precision_ is None) # Same tests without assuming centered data-------------------------------- # test shrinkage coeff on a simple data set oa = OAS() oa.fit(X) assert_almost_equal(oa.shrinkage_, shrinkage_, 4) assert_almost_equal(oa.score(X), score_, 4) # compare shrunk covariance obtained from data and from MLE estimate oa_cov_from_mle, oa_shinkrage_from_mle = oas(X) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) # compare estimates given by OAS and ShrunkCovariance scov = ShrunkCovariance(shrinkage=oa.shrinkage_) scov.fit(X) assert_array_almost_equal(scov.covariance_, oa.covariance_, 4) # test with n_features = 1 X_1d = X[:, 0].reshape((-1, 1)) oa = OAS() oa.fit(X_1d) oa_cov_from_mle, oa_shinkrage_from_mle = oas(X_1d) assert_array_almost_equal(oa_cov_from_mle, oa.covariance_, 4) assert_almost_equal(oa_shinkrage_from_mle, oa.shrinkage_) assert_array_almost_equal(empirical_covariance(X_1d), oa.covariance_, 4) # test with one sample # FIXME I don't know what this test does X_1sample = np.arange(5) oa = OAS() assert_warns(UserWarning, oa.fit, X_1sample) assert_array_almost_equal(oa.covariance_, np.zeros(shape=(5, 5), dtype=np.float64)) # test shrinkage coeff on a simple data set (without saving precision) oa = OAS(store_precision=False) oa.fit(X) assert_almost_equal(oa.score(X), score_, 4) assert(oa.precision_ is None)
bsd-3-clause
amolkahat/pandas
asv_bench/benchmarks/plotting.py
3
1454
import numpy as np from pandas import DataFrame, Series, DatetimeIndex, date_range try: from pandas.plotting import andrews_curves except ImportError: from pandas.tools.plotting import andrews_curves import matplotlib matplotlib.use('Agg') class Plotting(object): def setup(self): self.s = Series(np.random.randn(1000000)) self.df = DataFrame({'col': self.s}) def time_series_plot(self): self.s.plot() def time_frame_plot(self): self.df.plot() class TimeseriesPlotting(object): def setup(self): N = 2000 M = 5 idx = date_range('1/1/1975', periods=N) self.df = DataFrame(np.random.randn(N, M), index=idx) idx_irregular = DatetimeIndex(np.concatenate((idx.values[0:10], idx.values[12:]))) self.df2 = DataFrame(np.random.randn(len(idx_irregular), M), index=idx_irregular) def time_plot_regular(self): self.df.plot() def time_plot_regular_compat(self): self.df.plot(x_compat=True) def time_plot_irregular(self): self.df2.plot() class Misc(object): def setup(self): N = 500 M = 10 self.df = DataFrame(np.random.randn(N, M)) self.df['Name'] = ["A"] * N def time_plot_andrews_curves(self): andrews_curves(self.df, "Name") from .pandas_vb_common import setup # noqa: F401
bsd-3-clause
aabadie/scikit-learn
sklearn/tests/test_naive_bayes.py
72
19944
import pickle from io import BytesIO import numpy as np import scipy.sparse from sklearn.datasets import load_digits, load_iris from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(np.int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf.fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB. """ # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.sigma_, clf_sw.sigma_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.sigma_, clf2.sigma_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_) def test_gnb_neg_priors(): """Test whether an error is raised in case of negative priors""" clf = GaussianNB(priors=np.array([-1., 2.])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_priors(): """Test whether the class prior override is properly used""" clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y) assert_array_almost_equal(clf.predict_proba([[-0.1, -0.1]]), np.array([[0.825303662161683, 0.174696337838317]]), 8) assert_array_equal(clf.class_prior_, np.array([0.3, 0.7])) def test_gnb_wrong_nb_priors(): """ Test whether an error is raised if the number of prior is different from the number of class""" clf = GaussianNB(priors=np.array([.25, .25, .25, .25])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_prior_greater_one(): """Test if an error is raised if the sum of prior greater than one""" clf = GaussianNB(priors=np.array([2., 1.])) assert_raises(ValueError, clf.fit, X, y) def test_gnb_prior_large_bias(): """Test if good prediction when class prior favor largely one class""" clf = GaussianNB(priors=np.array([0.01, 0.99])) clf.fit(X, y) assert_equal(clf.predict([[-0.1, -0.1]]), np.array([2])) def test_check_update_with_no_data(): """ Test when the partial fit is called without any data""" # Create an empty array prev_points = 100 mean = 0. var = 1. x_empty = np.empty((0, X.shape[1])) tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean, var, x_empty) assert_equal(tmean, mean) assert_equal(tvar, var) def test_gnb_pfit_wrong_nb_features(): """Test whether an error is raised when the number of feature changes between two partial fit""" clf = GaussianNB() # Fit for the first time the GNB clf.fit(X, y) # Partial fit a second time with an incoherent X assert_raises(ValueError, clf.partial_fit, np.hstack((X, X)), y) def test_discrete_prior(): # Test whether class priors are properly set. for cls in [BernoulliNB, MultinomialNB]: clf = cls().fit(X2, y2) assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8) def test_mnnb(): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. for X in [X2, scipy.sparse.csr_matrix(X2)]: # Check the ability to predict the learning set. clf = MultinomialNB() assert_raises(ValueError, clf.fit, -X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def check_partial_fit(cls): clf1 = cls() clf1.fit([[0, 1], [1, 0]], [0, 1]) clf2 = cls() clf2.partial_fit([[0, 1], [1, 0]], [0, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = cls() clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) assert_array_equal(clf1.feature_count_, clf3.feature_count_) def test_discretenb_partial_fit(): for cls in [MultinomialNB, BernoulliNB]: yield check_partial_fit, cls def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.sigma_, clf_pf.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_discretenb_pickle(): # Test picklability of discrete naive Bayes classifiers for cls in [BernoulliNB, MultinomialNB, GaussianNB]: clf = cls().fit(X2, y2) y_pred = clf.predict(X2) store = BytesIO() pickle.dump(clf, store) clf = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf.predict(X2)) if cls is not GaussianNB: # TODO re-enable me when partial_fit is implemented for GaussianNB # Test pickling of estimator trained with partial_fit clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2)) clf2.partial_fit(X2[3:], y2[3:]) store = BytesIO() pickle.dump(clf2, store) clf2 = pickle.load(BytesIO(store.getvalue())) assert_array_equal(y_pred, clf2.predict(X2)) def test_input_check_fit(): # Test input checks for the fit method for cls in [BernoulliNB, MultinomialNB, GaussianNB]: # check shape consistency for number of samples at fit time assert_raises(ValueError, cls().fit, X2, y2[:-1]) # check shape consistency for number of input features at predict time clf = cls().fit(X2, y2) assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_input_check_partial_fit(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency assert_raises(ValueError, cls().partial_fit, X2, y2[:-1], classes=np.unique(y2)) # classes is required for first call to partial fit assert_raises(ValueError, cls().partial_fit, X2, y2) # check consistency of consecutive classes values clf = cls() clf.partial_fit(X2, y2, classes=np.unique(y2)) assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42)) # check consistency of input shape for partial_fit assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2) # check consistency of input shape for predict assert_raises(ValueError, clf.predict, X2[:, :-1]) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict(X[-1:]), 2) assert_equal(clf.predict_proba([X[0]]).shape, (1, 2)) assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1), np.array([1., 1.]), 6) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for cls, X in zip([BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial]): clf = cls().fit(X, y) assert_equal(clf.predict_proba(X[0:1]).shape, (1, 3)) assert_equal(clf.predict_proba(X[:2]).shape, (2, 3)) assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1) def test_discretenb_uniform_prior(): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None for cls in [BernoulliNB, MultinomialNB]: clf = cls() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) def test_discretenb_provide_prior(): # Test whether discrete NB classes use provided prior for cls in [BernoulliNB, MultinomialNB]: clf = cls(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_equal(prior, np.array([.5, .5])) # Inconsistent number of classes with prior assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2]) assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1], classes=[0, 1, 1]) def test_discretenb_provide_prior_with_partial_fit(): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415) for cls in [BernoulliNB, MultinomialNB]: for prior in [None, [0.3, 0.3, 0.4]]: clf_full = cls(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = cls(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal(clf_full.class_log_prior_, clf_partial.class_log_prior_) def test_sample_weight_multiclass(): for cls in [BernoulliNB, MultinomialNB]: # check shape consistency for number of samples at fit time yield check_sample_weight_multiclass, cls def check_sample_weight_multiclass(cls): X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float64) sample_weight /= sample_weight.sum() clf = cls().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = cls() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) def test_sample_weight_mnb(): clf = MultinomialNB() clf.fit([[1, 2], [1, 2], [1, 0]], [0, 0, 1], sample_weight=[1, 1, 4]) assert_array_equal(clf.predict([[1, 0]]), [1]) positive_prior = np.exp(clf.intercept_[0]) assert_array_almost_equal([1 - positive_prior, positive_prior], [1 / 3., 2 / 3.]) def test_coef_intercept_shape(): # coef_ and intercept_ should have shapes as in other linear models. # Non-regression test for issue #2127. X = [[1, 0, 0], [1, 1, 1]] y = [1, 2] # binary classification for clf in [MultinomialNB(), BernoulliNB()]: clf.fit(X, y) assert_equal(clf.coef_.shape, (1, 3)) assert_equal(clf.intercept_.shape, (1,)) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset digits = load_digits() X, y = digits.data, digits.target binary_3v8 = np.logical_or(digits.target == 3, digits.target == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert_greater(scores.mean(), 0.86) scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.94) # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert_greater(scores.mean(), 0.83) scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert_greater(scores.mean(), 0.92) # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert_greater(scores.mean(), 0.77) scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert_greater(scores.mean(), 0.86) def test_feature_log_prob_bnb(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_equal(clf.feature_log_prob_, (num - denom)) def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array([[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]]) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1/3.0, 2/3.0, 2/3.0, 1/3.0, 1/3.0, 2/3.0]]) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([[0, 1, 1, 0, 0, 1]]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba) def test_naive_bayes_scale_invariance(): # Scaling the data should not change the prediction results iris = load_iris() X, y = iris.data, iris.target labels = [GaussianNB().fit(f * X, y).predict(f * X) for f in [1E-10, 1, 1E10]] assert_array_equal(labels[0], labels[1]) assert_array_equal(labels[1], labels[2])
bsd-3-clause
hduongtrong/hyperemble
hyperemble/data/param_dist.py
1
4020
from __future__ import print_function, absolute_import, division import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import LinearSVC from sklearn.svm import SVC from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis n = 1000 p = 100 n_jobs = 1 seed = 1 classification_models = [ KNeighborsClassifier, LogisticRegression, GaussianNB, RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, LinearSVC, SVC, LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis ] default_params = { "KNeighborsClassifier": { "n_neighbors": 5, "weights": 'uniform', "n_jobs": 1, }, "LogisticRegression": { "solver": "lbfgs", "multi_class": "multinomial", "penalty": "l2", "C": 1.0, }, "GaussianNB": { }, "RandomForestClassifier": { "n_estimators": 500, "criterion": "gini", "max_depth": 8, "bootstrap": True, "random_state": seed, "verbose": 0, "n_jobs": -1, }, "ExtraTreesClassifier": { "n_estimators": 500, "criterion": "gini", "max_depth": 8, "bootstrap": True, "random_state": seed, "verbose": 0, "n_jobs": -1, }, "GradientBoostingClassifier": { "loss": "deviance", "learning_rate": 0.1, "n_estimators": 100, "subsample": 1.0, "max_depth": 6, "random_state": seed, "max_features": 10, "verbose": 0, }, "LinearSVC": { "penalty": "l2", "loss": "hinge", "C": 1.0, "verbose": 0, "random_state": seed, "multi_class": "ovr", }, "SVC": { "C": 1.0, "kernel": "rbf", "gamma": .01, "random_state": seed, "verbose": 0, }, "LinearDiscriminantAnalysis": { "solver": "lsqr", "shrinkage": "auto", }, "QuadraticDiscriminantAnalysis": { "reg_param": .1, }, } dist_params = { "KNeighborsClassifier": { "n_neighbors": np.arange(int(np.sqrt(n))), "weights": ['uniform', 'distance'], "n_jobs": -1, "algorithm": ["auto", "ball_tree", "kd_tree", "brute"], "leaf_size": np.arange(1, 30) }, "LogisticRegression": { "solver": "lbfgs", "multi_class": "multinomial", "penalty": "l2", "C": 1.0, }, "GaussianNB": { }, "RandomForestClassifier": { "n_estimators": 500, "criterion": "gini", "max_depth": 8, "bootstrap": True, "random_state": seed, "verbose": 0, "n_jobs": -1, }, "ExtraTreesClassifier": { "n_estimators": 500, "criterion": "gini", "max_depth": 8, "bootstrap": True, "random_state": seed, "verbose": 0, "n_jobs": -1, }, "GradientBoostingClassifier": { "loss": "deviance", "learning_rate": 0.1, "n_estimators": 100, "subsample": 1.0, "max_depth": 6, "random_state": seed, "max_features": 10, "verbose": 0, }, "LinearSVC": { "penalty": "l2", "loss": "hinge", "C": 1.0, "verbose": 0, "random_state": seed, "multi_class": "ovr", }, "SVC": { "C": 1.0, "kernel": "rbf", "gamma": .01, "random_state": seed, "verbose": 0, }, "LinearDiscriminantAnalysis": { "solver": "lsqr", "shrinkage": "auto", }, "QuadraticDiscriminantAnalysis": { "reg_param": .1, }, }
bsd-2-clause
cython-testbed/pandas
pandas/tests/frame/test_query_eval.py
3
40886
# -*- coding: utf-8 -*- from __future__ import print_function import operator import pytest from pandas.compat import (zip, range, lrange, StringIO) from pandas import DataFrame, Series, Index, MultiIndex, date_range import pandas as pd import numpy as np from numpy.random import randn from pandas.util.testing import (assert_series_equal, assert_frame_equal, makeCustomDataframe as mkdf) import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.computation.check import _NUMEXPR_INSTALLED from pandas.tests.frame.common import TestData PARSERS = 'python', 'pandas' ENGINES = 'python', pytest.param('numexpr', marks=td.skip_if_no_ne) @pytest.fixture(params=PARSERS, ids=lambda x: x) def parser(request): return request.param @pytest.fixture(params=ENGINES, ids=lambda x: x) def engine(request): return request.param def skip_if_no_pandas_parser(parser): if parser != 'pandas': pytest.skip("cannot evaluate with parser {0!r}".format(parser)) class TestCompat(object): def setup_method(self, method): self.df = DataFrame({'A': [1, 2, 3]}) self.expected1 = self.df[self.df.A > 0] self.expected2 = self.df.A + 1 def test_query_default(self): # GH 12749 # this should always work, whether _NUMEXPR_INSTALLED or not df = self.df result = df.query('A>0') assert_frame_equal(result, self.expected1) result = df.eval('A+1') assert_series_equal(result, self.expected2, check_names=False) def test_query_None(self): df = self.df result = df.query('A>0', engine=None) assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine=None) assert_series_equal(result, self.expected2, check_names=False) def test_query_python(self): df = self.df result = df.query('A>0', engine='python') assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine='python') assert_series_equal(result, self.expected2, check_names=False) def test_query_numexpr(self): df = self.df if _NUMEXPR_INSTALLED: result = df.query('A>0', engine='numexpr') assert_frame_equal(result, self.expected1) result = df.eval('A+1', engine='numexpr') assert_series_equal(result, self.expected2, check_names=False) else: pytest.raises(ImportError, lambda: df.query('A>0', engine='numexpr')) pytest.raises(ImportError, lambda: df.eval('A+1', engine='numexpr')) class TestDataFrameEval(TestData): def test_ops(self): # tst ops and reversed ops in evaluation # GH7198 # smaller hits python, larger hits numexpr for n in [4, 4000]: df = DataFrame(1, index=range(n), columns=list('abcd')) df.iloc[0] = 2 m = df.mean() for op_str, op, rop in [('+', '__add__', '__radd__'), ('-', '__sub__', '__rsub__'), ('*', '__mul__', '__rmul__'), ('/', '__truediv__', '__rtruediv__')]: base = (DataFrame(np.tile(m.values, n) # noqa .reshape(n, -1), columns=list('abcd'))) expected = eval("base{op}df".format(op=op_str)) # ops as strings result = eval("m{op}df".format(op=op_str)) assert_frame_equal(result, expected) # these are commutative if op in ['+', '*']: result = getattr(df, op)(m) assert_frame_equal(result, expected) # these are not elif op in ['-', '/']: result = getattr(df, rop)(m) assert_frame_equal(result, expected) # GH7192 df = DataFrame(dict(A=np.random.randn(25000))) df.iloc[0:5] = np.nan expected = (1 - np.isnan(df.iloc[0:25])) result = (1 - np.isnan(df)).iloc[0:25] assert_frame_equal(result, expected) def test_query_non_str(self): # GH 11485 df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'b']}) msg = "expr must be a string to be evaluated" with tm.assert_raises_regex(ValueError, msg): df.query(lambda x: x.B == "b") with tm.assert_raises_regex(ValueError, msg): df.query(111) def test_query_empty_string(self): # GH 13139 df = pd.DataFrame({'A': [1, 2, 3]}) msg = "expr cannot be an empty string" with tm.assert_raises_regex(ValueError, msg): df.query('') def test_eval_resolvers_as_list(self): # GH 14095 df = DataFrame(randn(10, 2), columns=list('ab')) dict1 = {'a': 1} dict2 = {'b': 2} assert (df.eval('a + b', resolvers=[dict1, dict2]) == dict1['a'] + dict2['b']) assert (pd.eval('a + b', resolvers=[dict1, dict2]) == dict1['a'] + dict2['b']) class TestDataFrameQueryWithMultiIndex(object): def test_query_with_named_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.random.choice(['eggs', 'ham'], size=10) index = MultiIndex.from_arrays([a, b], names=['color', 'food']) df = DataFrame(randn(10, 2), index=index) ind = Series(df.index.get_level_values('color').values, index=index, name='color') # equality res1 = df.query('color == "red"', parser=parser, engine=engine) res2 = df.query('"red" == color', parser=parser, engine=engine) exp = df[ind == 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('color != "red"', parser=parser, engine=engine) res2 = df.query('"red" != color', parser=parser, engine=engine) exp = df[ind != 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('color == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == color', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('color != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != color', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in color', parser=parser, engine=engine) res2 = df.query('"red" in color', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["red"] not in color', parser=parser, engine=engine) res2 = df.query('"red" not in color', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) def test_query_with_unnamed_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.random.choice(['eggs', 'ham'], size=10) index = MultiIndex.from_arrays([a, b]) df = DataFrame(randn(10, 2), index=index) ind = Series(df.index.get_level_values(0).values, index=index) res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine) res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine) exp = df[ind == 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine) res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine) exp = df[ind != 'red'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine) res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine) exp = df[ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["red"] not in ilevel_0', parser=parser, engine=engine) res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine) exp = df[~ind.isin(['red'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # ## LEVEL 1 ind = Series(df.index.get_level_values(1).values, index=index) res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine) res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine) exp = df[ind == 'eggs'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # inequality res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine) res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine) exp = df[ind != 'eggs'] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # list equality (really just set membership) res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine) res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine) exp = df[ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine) res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine) exp = df[~ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) # in/not in ops res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine) res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine) exp = df[ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) res1 = df.query('["eggs"] not in ilevel_1', parser=parser, engine=engine) res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine) exp = df[~ind.isin(['eggs'])] assert_frame_equal(res1, exp) assert_frame_equal(res2, exp) def test_query_with_partially_named_multiindex(self, parser, engine): skip_if_no_pandas_parser(parser) a = np.random.choice(['red', 'green'], size=10) b = np.arange(10) index = MultiIndex.from_arrays([a, b]) index.names = [None, 'rating'] df = DataFrame(randn(10, 2), index=index) res = df.query('rating == 1', parser=parser, engine=engine) ind = Series(df.index.get_level_values('rating').values, index=index, name='rating') exp = df[ind == 1] assert_frame_equal(res, exp) res = df.query('rating != 1', parser=parser, engine=engine) ind = Series(df.index.get_level_values('rating').values, index=index, name='rating') exp = df[ind != 1] assert_frame_equal(res, exp) res = df.query('ilevel_0 == "red"', parser=parser, engine=engine) ind = Series(df.index.get_level_values(0).values, index=index) exp = df[ind == "red"] assert_frame_equal(res, exp) res = df.query('ilevel_0 != "red"', parser=parser, engine=engine) ind = Series(df.index.get_level_values(0).values, index=index) exp = df[ind != "red"] assert_frame_equal(res, exp) def test_query_multiindex_get_index_resolvers(self): df = mkdf(10, 3, r_idx_nlevels=2, r_idx_names=['spam', 'eggs']) resolvers = df._get_index_resolvers() def to_series(mi, level): level_values = mi.get_level_values(level) s = level_values.to_series() s.index = mi return s col_series = df.columns.to_series() expected = {'index': df.index, 'columns': col_series, 'spam': to_series(df.index, 'spam'), 'eggs': to_series(df.index, 'eggs'), 'C0': col_series} for k, v in resolvers.items(): if isinstance(v, Index): assert v.is_(expected[k]) elif isinstance(v, Series): assert_series_equal(v, expected[k]) else: raise AssertionError("object must be a Series or Index") @pytest.mark.filterwarnings("ignore::FutureWarning") def test_raise_on_panel_with_multiindex(self, parser, engine): p = tm.makePanel(7) p.items = tm.makeCustomIndex(len(p.items), nlevels=2) with pytest.raises(NotImplementedError): pd.eval('p + 1', parser=parser, engine=engine) @td.skip_if_no_ne class TestDataFrameQueryNumExprPandas(object): @classmethod def setup_class(cls): cls.engine = 'numexpr' cls.parser = 'pandas' @classmethod def teardown_class(cls): del cls.engine, cls.parser def test_date_query_with_attribute_access(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('@df.dates1 < 20130101 < @df.dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_no_attribute_access(self): engine, parser = self.engine, self.parser df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates2'] = date_range('1/1/2013', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.set_index('dates1', inplace=True, drop=True) res = df.query('index < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.iloc[0, 0] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('index < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT_duplicates(self): engine, parser = self.engine, self.parser n = 10 d = {} d['dates1'] = date_range('1/1/2012', periods=n) d['dates3'] = date_range('1/1/2014', periods=n) df = DataFrame(d) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('dates1 < 20130101 < dates3', engine=engine, parser=parser) expec = df[(df.index.to_series() < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_non_date(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame({'dates': date_range('1/1/2012', periods=n), 'nondate': np.arange(n)}) result = df.query('dates == nondate', parser=parser, engine=engine) assert len(result) == 0 result = df.query('dates != nondate', parser=parser, engine=engine) assert_frame_equal(result, df) for op in ['<', '>', '<=', '>=']: with pytest.raises(TypeError): df.query('dates %s nondate' % op, parser=parser, engine=engine) def test_query_syntax_error(self): engine, parser = self.engine, self.parser df = DataFrame({"i": lrange(10), "+": lrange(3, 13), "r": lrange(4, 14)}) with pytest.raises(SyntaxError): df.query('i - +', engine=engine, parser=parser) def test_query_scope(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.randn(20, 2), columns=list('ab')) a, b = 1, 2 # noqa res = df.query('a > b', engine=engine, parser=parser) expected = df[df.a > df.b] assert_frame_equal(res, expected) res = df.query('@a > b', engine=engine, parser=parser) expected = df[a > df.b] assert_frame_equal(res, expected) # no local variable c with pytest.raises(UndefinedVariableError): df.query('@a > b > @c', engine=engine, parser=parser) # no column named 'c' with pytest.raises(UndefinedVariableError): df.query('@a > b > c', engine=engine, parser=parser) def test_query_doesnt_pickup_local(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) # we don't pick up the local 'sin' with pytest.raises(UndefinedVariableError): df.query('sin > 5', engine=engine, parser=parser) def test_query_builtin(self): from pandas.core.computation.engines import NumExprClobberingError engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' with tm.assert_raises_regex(NumExprClobberingError, 'Variables in expression.+'): df.query('sin > 5', engine=engine, parser=parser) def test_query(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randn(10, 3), columns=['a', 'b', 'c']) assert_frame_equal(df.query('a < b', engine=engine, parser=parser), df[df.a < df.b]) assert_frame_equal(df.query('a + b > b * c', engine=engine, parser=parser), df[df.a + df.b > df.b * df.c]) def test_query_index_with_name(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randint(10, size=(10, 3)), index=Index(range(10), name='blob'), columns=['a', 'b', 'c']) res = df.query('(blob < 5) & (a < b)', engine=engine, parser=parser) expec = df[(df.index < 5) & (df.a < df.b)] assert_frame_equal(res, expec) res = df.query('blob < b', engine=engine, parser=parser) expec = df[df.index < df.b] assert_frame_equal(res, expec) def test_query_index_without_name(self): engine, parser = self.engine, self.parser df = DataFrame(np.random.randint(10, size=(10, 3)), index=range(10), columns=['a', 'b', 'c']) # "index" should refer to the index res = df.query('index < b', engine=engine, parser=parser) expec = df[df.index < df.b] assert_frame_equal(res, expec) # test against a scalar res = df.query('index < 5', engine=engine, parser=parser) expec = df[df.index < 5] assert_frame_equal(res, expec) def test_nested_scope(self): engine = self.engine parser = self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.randn(5, 3)) df2 = DataFrame(np.random.randn(5, 3)) expected = df[(df > 0) & (df2 > 0)] result = df.query('(@df > 0) & (@df2 > 0)', engine=engine, parser=parser) assert_frame_equal(result, expected) result = pd.eval('df[df > 0 and df2 > 0]', engine=engine, parser=parser) assert_frame_equal(result, expected) result = pd.eval('df[df > 0 and df2 > 0 and df[df > 0] > 0]', engine=engine, parser=parser) expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)] assert_frame_equal(result, expected) result = pd.eval('df[(df>0) & (df2>0)]', engine=engine, parser=parser) expected = df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser) assert_frame_equal(result, expected) def test_nested_raises_on_local_self_reference(self): from pandas.core.computation.ops import UndefinedVariableError df = DataFrame(np.random.randn(5, 3)) # can't reference ourself b/c we're a local so @ is necessary with pytest.raises(UndefinedVariableError): df.query('df > 0', engine=self.engine, parser=self.parser) def test_local_syntax(self): skip_if_no_pandas_parser(self.parser) engine, parser = self.engine, self.parser df = DataFrame(randn(100, 10), columns=list('abcdefghij')) b = 1 expect = df[df.a < b] result = df.query('a < @b', engine=engine, parser=parser) assert_frame_equal(result, expect) expect = df[df.a < df.b] result = df.query('a < b', engine=engine, parser=parser) assert_frame_equal(result, expect) def test_chained_cmp_and_in(self): skip_if_no_pandas_parser(self.parser) engine, parser = self.engine, self.parser cols = list('abc') df = DataFrame(randn(100, len(cols)), columns=cols) res = df.query('a < b < c and a not in b not in c', engine=engine, parser=parser) ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b) # noqa expec = df[ind] assert_frame_equal(res, expec) def test_local_variable_with_in(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) a = Series(np.random.randint(3, size=15), name='a') b = Series(np.random.randint(10, size=15), name='b') df = DataFrame({'a': a, 'b': b}) expected = df.loc[(df.b - 1).isin(a)] result = df.query('b - 1 in a', engine=engine, parser=parser) assert_frame_equal(expected, result) b = Series(np.random.randint(10, size=15), name='b') expected = df.loc[(b - 1).isin(a)] result = df.query('@b - 1 in a', engine=engine, parser=parser) assert_frame_equal(expected, result) def test_at_inside_string(self): engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) c = 1 # noqa df = DataFrame({'a': ['a', 'a', 'b', 'b', '@c', '@c']}) result = df.query('a == "@c"', engine=engine, parser=parser) expected = df[df.a == "@c"] assert_frame_equal(result, expected) def test_query_undefined_local(self): from pandas.core.computation.ops import UndefinedVariableError engine, parser = self.engine, self.parser skip_if_no_pandas_parser(parser) df = DataFrame(np.random.rand(10, 2), columns=list('ab')) with tm.assert_raises_regex(UndefinedVariableError, "local variable 'c' is not defined"): df.query('a == @c', engine=engine, parser=parser) def test_index_resolvers_come_after_columns_with_the_same_name(self): n = 1 # noqa a = np.r_[20:101:20] df = DataFrame({'index': a, 'b': np.random.randn(a.size)}) df.index.name = 'index' result = df.query('index > 5', engine=self.engine, parser=self.parser) expected = df[df['index'] > 5] assert_frame_equal(result, expected) df = DataFrame({'index': a, 'b': np.random.randn(a.size)}) result = df.query('ilevel_0 > 5', engine=self.engine, parser=self.parser) expected = df.loc[df.index[df.index > 5]] assert_frame_equal(result, expected) df = DataFrame({'a': a, 'b': np.random.randn(a.size)}) df.index.name = 'a' result = df.query('a > 5', engine=self.engine, parser=self.parser) expected = df[df.a > 5] assert_frame_equal(result, expected) result = df.query('index > 5', engine=self.engine, parser=self.parser) expected = df.loc[df.index[df.index > 5]] assert_frame_equal(result, expected) def test_inf(self): n = 10 df = DataFrame({'a': np.random.rand(n), 'b': np.random.rand(n)}) df.loc[::2, 0] = np.inf ops = '==', '!=' d = dict(zip(ops, (operator.eq, operator.ne))) for op, f in d.items(): q = 'a %s inf' % op expected = df[f(df.a, np.inf)] result = df.query(q, engine=self.engine, parser=self.parser) assert_frame_equal(result, expected) @td.skip_if_no_ne class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameQueryNumExprPython, cls).setup_class() cls.engine = 'numexpr' cls.parser = 'python' cls.frame = TestData().frame def test_date_query_no_attribute_access(self): engine, parser = self.engine, self.parser df = DataFrame(randn(5, 3)) df['dates1'] = date_range('1/1/2012', periods=5) df['dates2'] = date_range('1/1/2013', periods=5) df['dates3'] = date_range('1/1/2014', periods=5) res = df.query('(dates1 < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates2'] = date_range('1/1/2013', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.loc[np.random.rand(n) > 0.5, 'dates3'] = pd.NaT res = df.query('(dates1 < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.dates1 < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.set_index('dates1', inplace=True, drop=True) res = df.query('(index < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.iloc[0, 0] = pd.NaT df.set_index('dates1', inplace=True, drop=True) res = df.query('(index < 20130101) & (20130101 < dates3)', engine=engine, parser=parser) expec = df[(df.index < '20130101') & ('20130101' < df.dates3)] assert_frame_equal(res, expec) def test_date_index_query_with_NaT_duplicates(self): engine, parser = self.engine, self.parser n = 10 df = DataFrame(randn(n, 3)) df['dates1'] = date_range('1/1/2012', periods=n) df['dates3'] = date_range('1/1/2014', periods=n) df.loc[np.random.rand(n) > 0.5, 'dates1'] = pd.NaT df.set_index('dates1', inplace=True, drop=True) with pytest.raises(NotImplementedError): df.query('index < 20130101 < dates3', engine=engine, parser=parser) def test_nested_scope(self): from pandas.core.computation.ops import UndefinedVariableError engine = self.engine parser = self.parser # smoke test x = 1 # noqa result = pd.eval('x + 1', engine=engine, parser=parser) assert result == 2 df = DataFrame(np.random.randn(5, 3)) df2 = DataFrame(np.random.randn(5, 3)) # don't have the pandas parser with pytest.raises(SyntaxError): df.query('(@df>0) & (@df2>0)', engine=engine, parser=parser) with pytest.raises(UndefinedVariableError): df.query('(df>0) & (df2>0)', engine=engine, parser=parser) expected = df[(df > 0) & (df2 > 0)] result = pd.eval('df[(df > 0) & (df2 > 0)]', engine=engine, parser=parser) assert_frame_equal(expected, result) expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)] result = pd.eval('df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas): @classmethod def setup_class(cls): super(TestDataFrameQueryPythonPandas, cls).setup_class() cls.engine = 'python' cls.parser = 'pandas' cls.frame = TestData().frame def test_query_builtin(self): engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' expected = df[df.index > 5] result = df.query('sin > 5', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython): @classmethod def setup_class(cls): super(TestDataFrameQueryPythonPython, cls).setup_class() cls.engine = cls.parser = 'python' cls.frame = TestData().frame def test_query_builtin(self): engine, parser = self.engine, self.parser n = m = 10 df = DataFrame(np.random.randint(m, size=(n, 3)), columns=list('abc')) df.index.name = 'sin' expected = df[df.index > 5] result = df.query('sin > 5', engine=engine, parser=parser) assert_frame_equal(expected, result) class TestDataFrameQueryStrings(object): def test_str_query_method(self, parser, engine): df = DataFrame(randn(10, 1), columns=['b']) df['strings'] = Series(list('aabbccddee')) expect = df[df.strings == 'a'] if parser != 'pandas': col = 'strings' lst = '"a"' lhs = [col] * 2 + [lst] * 2 rhs = lhs[::-1] eq, ne = '==', '!=' ops = 2 * ([eq] + [ne]) for lhs, op, rhs in zip(lhs, ops, rhs): ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs) pytest.raises(NotImplementedError, df.query, ex, engine=engine, parser=parser, local_dict={'strings': df.strings}) else: res = df.query('"a" == strings', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('strings == "a"', engine=engine, parser=parser) assert_frame_equal(res, expect) assert_frame_equal(res, df[df.strings.isin(['a'])]) expect = df[df.strings != 'a'] res = df.query('strings != "a"', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('"a" != strings', engine=engine, parser=parser) assert_frame_equal(res, expect) assert_frame_equal(res, df[~df.strings.isin(['a'])]) def test_str_list_query_method(self, parser, engine): df = DataFrame(randn(10, 1), columns=['b']) df['strings'] = Series(list('aabbccddee')) expect = df[df.strings.isin(['a', 'b'])] if parser != 'pandas': col = 'strings' lst = '["a", "b"]' lhs = [col] * 2 + [lst] * 2 rhs = lhs[::-1] eq, ne = '==', '!=' ops = 2 * ([eq] + [ne]) for lhs, op, rhs in zip(lhs, ops, rhs): ex = '{lhs} {op} {rhs}'.format(lhs=lhs, op=op, rhs=rhs) with pytest.raises(NotImplementedError): df.query(ex, engine=engine, parser=parser) else: res = df.query('strings == ["a", "b"]', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('["a", "b"] == strings', engine=engine, parser=parser) assert_frame_equal(res, expect) expect = df[~df.strings.isin(['a', 'b'])] res = df.query('strings != ["a", "b"]', engine=engine, parser=parser) assert_frame_equal(res, expect) res = df.query('["a", "b"] != strings', engine=engine, parser=parser) assert_frame_equal(res, expect) def test_query_with_string_columns(self, parser, engine): df = DataFrame({'a': list('aaaabbbbcccc'), 'b': list('aabbccddeeff'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) if parser == 'pandas': res = df.query('a in b', parser=parser, engine=engine) expec = df[df.a.isin(df.b)] assert_frame_equal(res, expec) res = df.query('a in b and c < d', parser=parser, engine=engine) expec = df[df.a.isin(df.b) & (df.c < df.d)] assert_frame_equal(res, expec) else: with pytest.raises(NotImplementedError): df.query('a in b', parser=parser, engine=engine) with pytest.raises(NotImplementedError): df.query('a in b and c < d', parser=parser, engine=engine) def test_object_array_eq_ne(self, parser, engine): df = DataFrame({'a': list('aaaabbbbcccc'), 'b': list('aabbccddeeff'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) res = df.query('a == b', parser=parser, engine=engine) exp = df[df.a == df.b] assert_frame_equal(res, exp) res = df.query('a != b', parser=parser, engine=engine) exp = df[df.a != df.b] assert_frame_equal(res, exp) def test_query_with_nested_strings(self, parser, engine): skip_if_no_pandas_parser(parser) raw = """id event timestamp 1 "page 1 load" 1/1/2014 0:00:01 1 "page 1 exit" 1/1/2014 0:00:31 2 "page 2 load" 1/1/2014 0:01:01 2 "page 2 exit" 1/1/2014 0:01:31 3 "page 3 load" 1/1/2014 0:02:01 3 "page 3 exit" 1/1/2014 0:02:31 4 "page 1 load" 2/1/2014 1:00:01 4 "page 1 exit" 2/1/2014 1:00:31 5 "page 2 load" 2/1/2014 1:01:01 5 "page 2 exit" 2/1/2014 1:01:31 6 "page 3 load" 2/1/2014 1:02:01 6 "page 3 exit" 2/1/2014 1:02:31 """ df = pd.read_csv(StringIO(raw), sep=r'\s{2,}', engine='python', parse_dates=['timestamp']) expected = df[df.event == '"page 1 load"'] res = df.query("""'"page 1 load"' in event""", parser=parser, engine=engine) assert_frame_equal(expected, res) def test_query_with_nested_special_character(self, parser, engine): skip_if_no_pandas_parser(parser) df = DataFrame({'a': ['a', 'b', 'test & test'], 'b': [1, 2, 3]}) res = df.query('a == "test & test"', parser=parser, engine=engine) expec = df[df.a == 'test & test'] assert_frame_equal(res, expec) def test_query_lex_compare_strings(self, parser, engine): import operator as opr a = Series(np.random.choice(list('abcde'), 20)) b = Series(np.arange(a.size)) df = DataFrame({'X': a, 'Y': b}) ops = {'<': opr.lt, '>': opr.gt, '<=': opr.le, '>=': opr.ge} for op, func in ops.items(): res = df.query('X %s "d"' % op, engine=engine, parser=parser) expected = df[func(df.X, 'd')] assert_frame_equal(res, expected) def test_query_single_element_booleans(self, parser, engine): columns = 'bid', 'bidsize', 'ask', 'asksize' data = np.random.randint(2, size=(1, len(columns))).astype(bool) df = DataFrame(data, columns=columns) res = df.query('bid & ask', engine=engine, parser=parser) expected = df[df.bid & df.ask] assert_frame_equal(res, expected) def test_query_string_scalar_variable(self, parser, engine): skip_if_no_pandas_parser(parser) df = pd.DataFrame({'Symbol': ['BUD US', 'BUD US', 'IBM US', 'IBM US'], 'Price': [109.70, 109.72, 183.30, 183.35]}) e = df[df.Symbol == 'BUD US'] symb = 'BUD US' # noqa r = df.query('Symbol == @symb', parser=parser, engine=engine) assert_frame_equal(e, r) class TestDataFrameEvalWithFrame(object): def setup_method(self, method): self.frame = DataFrame(randn(10, 3), columns=list('abc')) def teardown_method(self, method): del self.frame def test_simple_expr(self, parser, engine): res = self.frame.eval('a + b', engine=engine, parser=parser) expect = self.frame.a + self.frame.b assert_series_equal(res, expect) def test_bool_arith_expr(self, parser, engine): res = self.frame.eval('a[a < 1] + b', engine=engine, parser=parser) expect = self.frame.a[self.frame.a < 1] + self.frame.b assert_series_equal(res, expect) @pytest.mark.parametrize('op', ['+', '-', '*', '/']) def test_invalid_type_for_operator_raises(self, parser, engine, op): df = DataFrame({'a': [1, 2], 'b': ['c', 'd']}) with tm.assert_raises_regex(TypeError, r"unsupported operand type\(s\) " "for .+: '.+' and '.+'"): df.eval('a {0} b'.format(op), engine=engine, parser=parser)
bsd-3-clause
viekie/tensorflow-tutorial
chap03/auto_encode.py
1
2728
#!/usr/bin/env python # -*- coding: utf8 -*- # Power by viekie2017-08-04 08:03:26 from __future__ import absolute_import from __future__ import print_function from __future__ import division from tensorflow.examples.tutorials.mnist import input_data from six.moves import xrange import tensorflow as tf import numpy as np import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) LEARNING_RATE = 0.01 EPOCHES = 10 BATCH_SIZE = 256 DISPLAY_STEP = 1 EXAMPLES_TO_SHOW = 10 N_INPUT = 784 x = tf.placeholder(tf.float32, [None, N_INPUT]) N_HIDDEN_1 = 256 N_HIDDEN_2 = 128 weights = { 'encoder_w1': tf.Variable(tf.random_normal([N_INPUT, N_HIDDEN_1])), 'encoder_w2': tf.Variable(tf.random_normal([N_HIDDEN_1, N_HIDDEN_2])), 'decoder_w1': tf.Variable(tf.random_normal([N_HIDDEN_2, N_HIDDEN_1])), 'decoder_w2': tf.Variable(tf.random_normal([N_HIDDEN_1, N_INPUT])) } bias = { 'encoder_b1': tf.Variable(tf.random_normal([N_HIDDEN_1])), 'encoder_b2': tf.Variable(tf.random_normal([N_HIDDEN_2])), 'decoder_b1': tf.Variable(tf.random_normal([N_HIDDEN_1])), 'decoder_b2': tf.Variable(tf.random_normal([N_INPUT])) } def encoder(x): layer1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_w1']), bias['encoder_b1'])) layer2 = tf.nn.sigmoid(tf.add(tf.matmul(layer1, weights['encoder_w2']), bias['encoder_b2'])) return layer2 def decoder(x): layer1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_w1']), bias['decoder_b1'])) layer2 = tf.nn.sigmoid(tf.add(tf.matmul(layer1, weights['decoder_w2']), bias['decoder_b2'])) return layer2 encoder_op = encoder(x) decoder_op = decoder(encoder_op) y_pred = decoder_op y_true = x cost = tf.reduce_mean(tf.pow(y_pred-y_true, 2)) optimizer = tf.train.AdamOptimizer(LEARNING_RATE) trainer = optimizer.minimize(cost) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) batchs = int(mnist.train.num_examples/BATCH_SIZE) for epoch in xrange(EPOCHES): for i in xrange(batchs): xs, ys = mnist.train.next_batch(BATCH_SIZE) c = sess.run(trainer, feed_dict={x: xs}) if epoch % DISPLAY_STEP == 0: print('epoch: %d, cost:%f'.format(epoch+1, c)) encoder_decoder = \ sess.run(y_pred, feed_dict={x: mnist.test.images[:EXAMPLES_TO_SHOW]}) f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(EXAMPLES_TO_SHOW): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(encoder_decoder[i], (28, 28))) plt.show()
apache-2.0
gomesfelipe/BDA_py_demos
demos_ch5/demo5_1.py
19
5055
"""Bayesian Data Analysis, 3rd ed Chapter 5, demo 1 Hierarchical model for Rats experiment (BDA3, p. 102). """ from __future__ import division import numpy as np from scipy.stats import beta from scipy.special import gammaln import matplotlib.pyplot as plt # Edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=(plt.rcParams['lines.color'],)) # Disable color cycle # rat data (BDA3, p. 102) y = np.array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 5, 2, 5, 3, 2, 7, 7, 3, 3, 2, 9, 10, 4, 4, 4, 4, 4, 4, 4, 10, 4, 4, 4, 5, 11, 12, 5, 5, 6, 5, 6, 6, 6, 6, 16, 15, 15, 9, 4 ]) n = np.array([ 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 17, 20, 20, 20, 20, 19, 19, 18, 18, 25, 24, 23, 20, 20, 20, 20, 20, 20, 10, 49, 19, 46, 27, 17, 49, 47, 20, 20, 13, 48, 50, 20, 20, 20, 20, 20, 20, 20, 48, 19, 19, 19, 22, 46, 49, 20, 20, 23, 19, 22, 20, 20, 20, 52, 46, 47, 24, 14 ]) M = len(y) # plot the separate and pooled models plt.figure(figsize=(8,10)) x = np.linspace(0, 1, 250) # separate plt.subplot(2, 1, 1) lines = plt.plot(x, beta.pdf(x[:,None], y[:-1] + 1, n[:-1] - y[:-1] + 1), linewidth=1) # highlight the last line line1, = plt.plot(x, beta.pdf(x, y[-1] + 1, n[-1] - y[-1] + 1), 'r') plt.legend((lines[0], line1), (r'Posterior of $\theta_j$', r'Posterior of $\theta_{71}$')) plt.yticks(()) plt.title('separate model') # pooled plt.subplot(2, 1, 2) plt.plot(x, beta.pdf(x, y.sum() + 1, n.sum() - y.sum() + 1), linewidth=2, label=(r'Posterior of common $\theta$')) plt.legend() plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title('pooled model') # compute the marginal posterior of alpha and beta in the hierarchical model in a grid A = np.linspace(0.5, 6, 100) B = np.linspace(3, 33, 100) # calculated in logarithms for numerical accuracy lp = ( - 5/2 * np.log(A + B[:,None]) + np.sum( gammaln(A + B[:,None]) - gammaln(A) - gammaln(B[:,None]) + gammaln(A + y[:,None,None]) + gammaln(B[:,None] + (n - y)[:,None,None]) - gammaln(A + B[:,None] + n[:,None,None]), axis=0 ) ) # subtract the maximum value to avoid over/underflow in exponentation lp -= lp.max() p = np.exp(lp) # plot the marginal posterior fig = plt.figure() plt.imshow(p, origin='lower', aspect='auto', extent=(A[0], A[-1], B[0], B[-1])) plt.xlabel(r'$\alpha$', fontsize=20) plt.ylabel(r'$\beta$', fontsize=20) plt.title('The marginal posterior of alpha and beta in hierarchical model') # sample from the posterior grid of alpha and beta nsamp = 1000 samp_indices = np.unravel_index( np.random.choice(p.size, size=nsamp, p=p.ravel()/p.sum()), p.shape ) samp_A = A[samp_indices[1]] samp_B = B[samp_indices[0]] # add random jitter, see BDA3 p. 76 samp_A += (np.random.rand(nsamp) - 0.5) * (A[1]-A[0]) samp_B += (np.random.rand(nsamp) - 0.5) * (B[1]-B[0]) # Plot samples from the distribution of distributions Beta(alpha,beta), # that is, plot Beta(alpha,beta) using the posterior samples of alpha and beta fig = plt.figure(figsize=(8,10)) plt.subplot(2, 1, 1) plt.plot(x, beta.pdf(x[:,None], samp_A[:20], samp_B[:20]), linewidth=1) plt.yticks(()) plt.title(r'Posterior samples from the distribution of distributions ' r'Beta($\alpha$,$\beta$)') # The average of above distributions, is the predictive distribution for a new # theta, and also the prior distribution for theta_j. # Plot this. plt.subplot(2, 1, 2) plt.plot(x, np.mean(beta.pdf(x, samp_A[:,None], samp_B[:,None]), axis=0)) plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title(r'Predictive distribution for a new $\theta$ ' r'and prior for $\theta_j$') # And finally compare the separate model and hierarchical model plt.figure(figsize=(8,10)) x = np.linspace(0, 1, 250) # first plot the separate model (same as above) plt.subplot(2, 1, 1) # note that for clarity only every 7th distribution is plotted plt.plot(x, beta.pdf(x[:,None], y[7:-1:7] + 1, n[7:-1:7] - y[7:-1:7] + 1), linewidth=1) # highlight the last line plt.plot(x, beta.pdf(x, y[-1] + 1, n[-1] - y[-1] + 1), 'r') plt.yticks(()) plt.title('separate model') # And the hierarchical model. Note that these marginal posteriors for theta_j are # more narrow than in separate model case, due to borrowed information from # the other theta_j's. plt.subplot(2, 1, 2) # note that for clarity only every 7th distribution is plotted lines = plt.plot( x, np.mean( beta.pdf( x[:,None], y[7::7] + samp_A[:,None,None], n[7::7] - y[7::7] + samp_B[:,None,None] ), axis=0 ), linewidth=1, ) # highlight the last line lines[-1].set_linewidth(2) lines[-1].set_color('r') plt.yticks(()) plt.xlabel(r'$\theta$', fontsize=20) plt.title('hierarchical model') plt.show()
gpl-3.0
oscarcbr/cellery
cellery/randomz.py
1
115214
#!/usr/bin/env python # -*- coding: utf-8 -*- # # randomz.py part of cellery (ceRNAs linking inference) # # Copyright 2016 Oscar Bedoya Reina <obedoya@igmm-linux-005> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # ######################################################## #~ Import external libraries ######################################################## #---------------------------- #Import matplotlib libraries import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt #---------------------------- #Import other libraries from cellery import exceptions,statistics from numpy import array,float32,divide,inf,ma,multiply,nan,random, \ vectorize,zeros from random import seed from scipy import integrate from scipy.stats import mstats,binom,norm import numpy as np ######################################################## #~ Compute randomization on only columns ######################################################## def cmptClmRndmztn(aBckgrndMetrcMskd,aBckgrndPosRows, \ aBckgrndClmnPosProb,aTrgtMetrcMskd=None,statstcTrgt=False, \ stdTrgt=False,lenTrgtRows=False,lenTrgtClms=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosRowsToGns=None,aPosClmnsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None,mirnDtype='cnt', \ outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. aBckgrndPosRows is the position of the rows in the background. aBckgrndClmnPosProb is the probability of all columns to be selected from the background. Optionally, aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns arenot None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. fnctn is the statistical function to calculate the probability {'sf' is greater or equal than}. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only columns are going to be radomized. NOTE: Positions in aBckgrndPosRows are going to be obtained in the same order for every randomization. """ #---------------------------- #Test for inputs ovrAllogRun = []#holder for log message fnctn='sf'#Greater or equal, as normal distributed 1-p is less than. assert aTrgtMetrcMskd is not None or (statstcTrgt and stdTrgt and \ lenTrgtClms) assert not lenTrgtRows#no length target for rows #mirna inputs if aBckgrndMirnMetrcMskd is not None or aTrgtMirnStatstcMskd is not \ None or outMirnStstFl is not None or aMirnNms is not None: assert aBckgrndMirnMetrcMskd is not None and \ aTrgtMirnStatstcMskd is not None and outMirnStstFl is not None \ and aMirnNms is not None assert mirnDtype in {'cnt','scr'} try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run for','miRNAs') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass #gene inputs if aPosClmnsToGns is not None and aPosRowsToGns is not None: mthdBckgrndRndmztn = rnClmRndmztnByGns try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run at the level of','gene') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass if aTrgtMetrcMskd is not None: #calculate stat for the target metrics by gene vctrzdRtrnAvrgMskdArray=vectorize(rtrnAvrgMskdArray, \ excluded={0}) aTrgtMetrcMskdGns = vctrzdRtrnAvrgMskdArray(aTrgtMetrcMskd, \ aPosRowsToGns,aPosClmnsToGns) aTrgtMetrcMskdGns = ma.masked_invalid(aTrgtMetrcMskdGns) statstcTrgt = getattr(ma,statstc)(aTrgtMetrcMskdGns) stdTrgt = ma.std(aTrgtMetrcMskdGns) lenTrgtClms = aTrgtMetrcMskd.shape[1] else: assert statstcTrgt and stdTrgt and lenTrgtClms if aTrgtMirnStatstcMskd is not None: rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) aTrgtMirnStatstcMskd = \ rtrnRndmBckgrndMirnMetrcPrGn(aTrgtMirnStatstcMskd, \ aPosRowsToGns,aPosClmnsToGns,numMrns) else: mthdBckgrndRndmztn = rnClmRndmztn#only randomize columns if statstcTrgt or stdTrgt or lenTrgtClms: assert statstcTrgt and stdTrgt and lenTrgtClms else: statstcTrgt = getattr(ma,statstc)(ma.masked_invalid \ (aTrgtMetrcMskd)) stdTrgt = ma.std(ma.masked_invalid(aTrgtMetrcMskd)) lenTrgtClms = aTrgtMetrcMskd.shape[1] #---------------------------- #Report variables to use if seedAdd: seedMssg = '\tSeed: %s'%seedAdd else: seedMssg = '' messg= '\n'.join([ '-----------------------------------------------------------', \ 'A randomization of columns is going to be conducted with parameters:', \ '\tTarget %s: %s, and standard error: %s'%(statstc,statstcTrgt, \ stdTrgt), \ '\t%s columns are going to be sampled in %s randomizations' \ %(lenTrgtClms,numRndmztns), \ "\tand significance of target's %s is going to be determined."% \ statstc, \ seedMssg, \ '-----------------------------------------------------------']) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Run randomizations p_val,zscore,meanBckgrnd,stdBckgrnd,logRun = rndmzCore \ (aBckgrndMetrcMskd,mthdBckgrndRndmztn,statstcTrgt,stdTrgt,outPltFl, \ aBckgrndClmnPosProb,aBckgrndPosRows,lenTrgtClms,lenTrgtRows, \ seedAdd,numRndmztns,maxRndmztns,statstc,fnctn,vrbse,aPosClmnsToGns, \ aPosRowsToGns,aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype, \ outMirnStstFl,aMirnNms) #---------------------------- #Set log out if p_val<=0.05: signfcn = 'in the top 5% of the values in the randomized' elif p_val<=0.01: signfcn = 'in the top 1% of the values in the randomized' elif p_val>=0.95: signfcn = 'in the bottom 5% of the values in the randomized' p_val = 1-p_val#p-val in the bottom elif p_val>=0.99: p_val = 1-p_val#p-val in the bottom signfcn = 'in the bottom 1% of the values in the randomized' else: signfcn = 'to be comparable with the values in the randomized' ovrAllogRun.append(logRun) messg = '\n'.join([ '-----------------------------------------------------------', \ '\t%s randomizations finished!'%numRndmztns, \ "\tTarget's %s was found %s background"%(statstc,signfcn), \ "\twith z-score of: %s, and p-value %s."%(zscore,p_val), \ "\tBackground had normal distribution with mean: %s and std. %s" \ %(meanBckgrnd,stdBckgrnd)]) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Return log message and p-values return ovrAllogRun,p_val ######################################################## #~ Compute full randomization on an array ######################################################## def cmptFullRndmztn(aBckgrndMetrcMskd,aBckgrndRowsPosProb, \ aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt,stdTrgt,lenTrgtRows, \ lenTrgtClms,outPltFl,numRndmztns,maxRndmztns,seedAdd,statstc,vrbse, \ aPosRowsToGns=None,aPosClmnsToGns=None,aBckgrndMirnMetrcMskd=None, \ aTrgtMirnStatstcMskd=None,mirnDtype='cnt',outMirnStstFl=None, \ aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. aBckgrndRowsPosProb is the probability of all rows in the background. aBckgrndClmnPosProb is the position probability of all columns in the background. Optionally aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Both, rows and columns are going to be radomized. """ #---------------------------- #Test for inputs ovrAllogRun = []#holder for log message fnctn='sf'#Greater or equal, as normal distributed 1-p is less than. assert aTrgtMetrcMskd is not None or (statstcTrgt and stdTrgt and \ lenTrgtRows and lenTrgtClms) #mirna inputs if aBckgrndMirnMetrcMskd is not None or aTrgtMirnStatstcMskd is not \ None or outMirnStstFl is not None or aMirnNms is not None: assert aBckgrndMirnMetrcMskd is not None and \ aTrgtMirnStatstcMskd is not None and outMirnStstFl is not None \ and aMirnNms is not None assert mirnDtype in {'cnt','scr'} try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run for','miRNAs') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass #gene inputs if aPosClmnsToGns is not None and aPosRowsToGns is not None: mthdBckgrndRndmztn = rnClmNRowRndmztnByGns try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run at the level of','gene') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass if aTrgtMetrcMskd is not None: #calculate stat for the target metrics by gene vctrzdRtrnAvrgMskdArray = vectorize(rtrnAvrgMskdArray, \ excluded={0}) aTrgtMetrcMskdGns = vctrzdRtrnAvrgMskdArray(aTrgtMetrcMskd, \ aPosRowsToGns,aPosClmnsToGns) aTrgtMetrcMskdGns = ma.masked_invalid(aTrgtMetrcMskdGns) statstcTrgt = getattr(ma,statstc)(aTrgtMetrcMskdGns) stdTrgt = ma.std(aTrgtMetrcMskdGns) lenTrgtRows,lenTrgtClms = aTrgtMetrcMskd.shape else: assert statstcTrgt and stdTrgt and lenTrgtRows and \ lenTrgtClms if aTrgtMirnStatstcMskd is not None: rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) aTrgtMirnStatstcMskd = \ rtrnRndmBckgrndMirnMetrcPrGn(aTrgtMirnStatstcMskd, \ aPosRowsToGns,aPosClmnsToGns,numMrns) else: mthdBckgrndRndmztn = rnClmNRowRndmztn#full randomz. method. if statstcTrgt or stdTrgt or lenTrgtRows or lenTrgtClms: assert statstcTrgt and stdTrgt and lenTrgtRows and \ lenTrgtClms else: statstcTrgt = getattr(ma,statstc)(ma.masked_invalid \ (aTrgtMetrcMskd)) stdTrgt = ma.std(ma.masked_invalid(aTrgtMetrcMskd)) lenTrgtRows,lenTrgtClms = aTrgtMetrcMskd.shape #---------------------------- #Report variables to use if seedAdd: seedMssg = '\tSeed: %s'%seedAdd else: seedMssg = '' messg= '\n'.join([ '-----------------------------------------------------------', \ 'A full randomization is going to be conducted with parameters:', \ '\tTarget %s: %s, and standard error: %s'%(statstc,statstcTrgt, \ stdTrgt), \ '\t%s columns and %s rows are going to be sampled in %s randomizations' \ %(lenTrgtClms,lenTrgtRows,numRndmztns), \ "\tand significance of target's %s is going to be determined."% \ statstc, \ seedMssg, \ '-----------------------------------------------------------']) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Run randomizations p_val,zscore,meanBckgrnd,stdBckgrnd,logRun = rndmzCore \ (aBckgrndMetrcMskd,mthdBckgrndRndmztn,statstcTrgt,stdTrgt,outPltFl, \ aBckgrndClmnPosProb,aBckgrndRowsPosProb,lenTrgtClms,lenTrgtRows, \ seedAdd,numRndmztns,maxRndmztns,statstc,fnctn,vrbse,aPosClmnsToGns, \ aPosRowsToGns,aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype, \ outMirnStstFl,aMirnNms) #---------------------------- #Set log out if p_val<=0.05: signfcn = 'in the top 5% of the values in the randomized' elif p_val<=0.01: signfcn = 'in the top 1% of the values in the randomized' elif p_val>=0.95: signfcn = 'in the bottom 5% of the values in the randomized' p_val = 1-p_val#p-val in the bottom elif p_val>=0.99: p_val = 1-p_val#p-val in the bottom signfcn = 'in the bottom 1% of the values in the randomized' else: signfcn = 'to be comparable with the values in the randomized' ovrAllogRun.append(logRun) messg = '\n'.join([ '-----------------------------------------------------------', \ '\t%s randomizations finished!'%numRndmztns, \ "\tTarget's %s was found %s background"%(statstc,signfcn), \ "\twith z-score of: %s, and p-value %s."%(zscore,p_val), \ "\tBackground had normal distribution with mean: %s and std. %s" \ %(meanBckgrnd,stdBckgrnd)]) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Return log message and p-values return ovrAllogRun,p_val ######################################################## #~ Compute randomization on only rows ######################################################## def cmptRowRndmztn(aBckgrndMetrcMskd,aBckgrndRowsPosProb, \ aBckgrndPosClmns,aTrgtMetrcMskd=None,statstcTrgt=False,stdTrgt=False, \ lenTrgtRows=False,lenTrgtClms=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosRowsToGns=None,aPosClmnsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None,mirnDtype='cnt', \ outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. aBckgrndRowsPosProb is the probability of all rows in the background. aBckgrndPosClmns is the position of the columns to be selected from the background. Optionally, aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only rows are going to be radomized. NOTE: Positions in aBckgrndPosClmns are going to be obtained in the same order for every randomization. """ #---------------------------- #Test for inputs ovrAllogRun = []#holder for log message fnctn='sf'#Greater or equal, as normal distributed 1-p is less than. assert aTrgtMetrcMskd is not None or (statstcTrgt and stdTrgt and \ lenTrgtRows) assert not lenTrgtClms#no length target for rows #mirna inputs if aBckgrndMirnMetrcMskd is not None or aTrgtMirnStatstcMskd is not \ None or outMirnStstFl is not None or aMirnNms is not None: assert aBckgrndMirnMetrcMskd is not None and \ aTrgtMirnStatstcMskd is not None and outMirnStstFl is not None \ and aMirnNms is not None assert mirnDtype in {'cnt','scr'} try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run for','miRNAs') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass #gene inputs if aPosClmnsToGns is not None and aPosRowsToGns is not None: mthdBckgrndRndmztn = rnRowRndmztnByGns try: raise exceptions.CelleryWarningObjct \ ('Randomizations are going to be run at the level of','gene') except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge ovrAllogRun.append(mssge) pass if aTrgtMetrcMskd is not None: #calculate stat for the target metrics by gene vctrzdRtrnAvrgMskdArray=vectorize(rtrnAvrgMskdArray, \ excluded={0}) aTrgtMetrcMskdGns = vctrzdRtrnAvrgMskdArray(aTrgtMetrcMskd, \ aPosRowsToGns,aPosClmnsToGns) aTrgtMetrcMskdGns = ma.masked_invalid(aTrgtMetrcMskdGns) statstcTrgt = getattr(ma,statstc)(aTrgtMetrcMskdGns) stdTrgt = ma.std(aTrgtMetrcMskdGns) lenTrgtRows = aTrgtMetrcMskd.shape[0] else: assert statstcTrgt and stdTrgt and lenTrgtRows if aTrgtMirnStatstcMskd is not None: rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) aTrgtMirnStatstcMskd = \ rtrnRndmBckgrndMirnMetrcPrGn(aTrgtMirnStatstcMskd, \ aPosRowsToGns,aPosClmnsToGns,numMrns) else: mthdBckgrndRndmztn = rnRowRndmztn#only randomize rows if statstcTrgt or stdTrgt or lenTrgtRows: assert statstcTrgt and stdTrgt and lenTrgtRows else: statstcTrgt = getattr(ma,statstc)(ma.masked_invalid \ (aTrgtMetrcMskd)) stdTrgt = ma.std(ma.masked_invalid(aTrgtMetrcMskd)) lenTrgtRows = aTrgtMetrcMskd.shape[0] #---------------------------- #Report variables to use if seedAdd: seedMssg = '\tSeed: %s'%seedAdd else: seedMssg = '' messg= '\n'.join([ '-----------------------------------------------------------', \ 'A randomization of rows is going to be conducted with parameters:', \ '\tTarget %s: %s, and standard error: %s'%(statstc,statstcTrgt, \ stdTrgt), \ '\t%s rows are going to be sampled in %s randomizations' \ %(lenTrgtRows,numRndmztns), \ "\tand significance of target's %s is going to be determined."% \ statstc, \ seedMssg, \ '-----------------------------------------------------------']) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Run randomizations p_val,zscore,meanBckgrnd,stdBckgrnd,logRun = rndmzCore \ (aBckgrndMetrcMskd,mthdBckgrndRndmztn,statstcTrgt,stdTrgt,outPltFl, \ aBckgrndPosClmns,aBckgrndRowsPosProb,lenTrgtClms,lenTrgtRows, \ seedAdd,numRndmztns,maxRndmztns,statstc,fnctn,vrbse,aPosClmnsToGns, \ aPosRowsToGns,aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype, \ outMirnStstFl,aMirnNms) #---------------------------- #Set log out if p_val<=0.05: signfcn = 'in the top 5% of the values in the randomized' elif p_val<=0.01: signfcn = 'in the top 1% of the values in the randomized' elif p_val>=0.95: signfcn = 'in the bottom 5% of the values in the randomized' p_val = 1-p_val#p-val in the bottom elif p_val>=0.99: p_val = 1-p_val#p-val in the bottom signfcn = 'in the bottom 1% of the values in the randomized' else: signfcn = 'to be comparable with the values in the randomized' ovrAllogRun.append(logRun) messg = '\n'.join([ '-----------------------------------------------------------', \ '\t%s randomizations finished!'%numRndmztns, \ "\tTarget's %s was found %s background"%(statstc,signfcn), \ "\twith z-score of: %s, and p-value %s."%(zscore,p_val), \ "\tBackground had normal distribution with mean: %s and std. %s" \ %(meanBckgrnd,stdBckgrnd)]) ovrAllogRun.append(messg) if vrbse: print messg #---------------------------- #Return log message and p-values return ovrAllogRun,p_val ######################################################## #~ Calculate a statistic on miRNA metrics for a pair of genes/lncrnas. ######################################################## def cmptMirnaStatRowClmnPrs(aRowsMirnMetrc,aClmnsMirnMetrc, \ aRowsClmnsMsk=None,mirnPrsStstc='add',dtype='cnt'): """ Input: aRowsMirnMetrc is an array of miRNA metric values arrays for each row. aClmnsMirnMetrc is an array of miRNA metric values arrays for each column. Optionally, aRowsClmnsMsk is an array of size len(aRowsMirnMetrc) x len(aClmnsMirnMetrc)to mask the output matrix. mirnPrsStstc is the statistic to calculate values for miRNAs. dtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. Output: aMirnMetrcMskd is an output array with stats for the metrics of shared miRNAs for each masked row-column pair. NOTE: row-column pairs masked in aRowsClmnsMsk are retrieved but they are masked. NOTE: non-shared miRNAs have values of nan. """ #---------------------------- #Test input variables lenRows,lenMirnsRows = aRowsMirnMetrc.shape lenClmns,lenMirnsClmns = aClmnsMirnMetrc.shape assert lenMirnsRows==lenMirnsClmns assert dtype in {'cnt','scr'} if aRowsClmnsMsk is not None: lenRowsMsk,lenClmnsMsk,lenMirnsMsk = aRowsClmnsMsk.shape assert lenRows==lenRowsMsk and lenClmnsMsk==lenClmns and \ lenMirnsMsk==lenMirnsRows else:#make an empty mask aRowsClmnsMsk = zeros((lenRows,lenClmns,lenMirnsRows)) if dtype=='scr': aRowsMirnMetrcMskd = ma.masked_invalid(aRowsMirnMetrc) aClmnsMirnMetrcMskd = ma.masked_invalid(aClmnsMirnMetrc) else: aRowsMirnMetrcMskd = ma.masked_less(aRowsMirnMetrc,1) aClmnsMirnMetrcMskd = ma.masked_less(aClmnsMirnMetrc,1) #---------------------------- #Calculate metric for each miRNA in each row-column pair aMirnMetrc = ma.zeros((lenRows,lenClmns,lenMirnsRows),dtype=float32) for rowPos in xrange(lenRows): for clmnPos in xrange(lenClmns): aMirnMetrc[rowPos][clmnPos] = getattr(ma,mirnPrsStstc) \ (aRowsMirnMetrcMskd[rowPos],aClmnsMirnMetrcMskd[clmnPos]) aMirnMetrc.fill_value = nan #---------------------------- #Mask the output stats array aMirnMetrcMskd = ma.array(aMirnMetrc.filled(),mask=aRowsClmnsMsk) return aMirnMetrcMskd ######################################################## #~ Plot data distribution given a background ######################################################## def mkPlt(statstcTrgt,aBcrkngdStatstc,outPltFl): """ Input: statstcTrgt is the target statistic value. aBcrkngdStatstc is an array of statistic values for the background sampling. outPltFl is the output plot file. Output: outPltFl is the output plot file with the distribution of the background indicating the position of the target. """ fig = plt.figure() xVls,yVls,info = plt.hist(aBcrkngdStatstc,100,normed=True) plt.xlabel('Mean ECP value') plt.ylabel('Number of replicates') plt.annotate('Target (%s)'%statstcTrgt, xy=(statstcTrgt, max(xVls)), \ xytext = (statstcTrgt, max(xVls)+10),arrowprops=dict(facecolor='red', \ shrink = 0.05, width=2)) plt.gcf().subplots_adjust(bottom=0.15) plt.savefig(outPltFl,bbox_inches='tight',format='eps') plt.close() return 0 ######################################################## #~ Process miRNA randomization results ######################################################## def procMirnRndmztn(aBcrkngdMirnStatstc,aTrgtMirnStatstcMskd,mirnDtype, \ outMirnStstFl,aMirnNms,fnctn='sf'): """ Input: aBcrkngdMirnStatstc is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. fnctn is the statistical function to calculate the probability {'sf' is greater or equal than}. Output: mssge is the log text of the probability calculation results. NOTE: Results are going to be written in the outMirnStstFl file. NOTE: aBcrkngdMirnStatstc is an unmasked array and aTrgtMirnStatstcMskd is masked. """ #---------------------------- #Calculate statistic for target dataset and set initial parameters aTrgtMirnStatstcMskdFlld = rtrnMirnStat(aTrgtMirnStatstcMskd) aTrgtMirnMskdAvrg = rtrnMirnStat(aTrgtMirnStatstcMskd,'mean') aTrgtMirnMskdStd = rtrnMirnStat(aTrgtMirnStatstcMskd,'std') aBcrkngdMirnStatstcMskd = ma.masked_invalid(aBcrkngdMirnStatstc) aBcrkngdMirnStatstcMskdAvrg = rtrnMirnStat(aBcrkngdMirnStatstcMskd, \ 'mean') aBcrkngdMirnStatstcMskdStd = rtrnMirnStat(aBcrkngdMirnStatstcMskd, \ 'std') nReps,nMirns = aBcrkngdMirnStatstcMskd.shape assert nMirns==len(aTrgtMirnStatstcMskdFlld)==len(aMirnNms) #---------------------------- #Calculate significance of miRNA scores/counts using z-score aMirPval = zeros(nMirns,dtype=float32) aMirZscore = zeros(nMirns,dtype=float32) aMirPval.fill(nan) aMirZscore.fill(nan) for mirnPos in xrange(nMirns): mirTrgtStat = aTrgtMirnStatstcMskdFlld[mirnPos] mirBckgrndStat = aBcrkngdMirnStatstcMskd[:,mirnPos] mirZscore = mstats.zmap(mirTrgtStat,mirBckgrndStat) aMirZscore[mirnPos] = mirZscore #equal or greater than if 'sf' aMirPval[mirnPos] = getattr(norm,fnctn)(mirZscore) aMirQvalGrtrEql = statistics.bh_qvalues(aMirPval)#FDR values gtrEql aMirQvalLssEql = statistics.bh_qvalues(1-aMirPval)#FDR values lessEql #---------------------------- #Calculate significance of miRNA counts using exact binomial if mirnDtype=='cnt': #number of trials N = ma.sum(aTrgtMirnStatstcMskd).__float__() N = float32(N) #probability of sucess single trial aMirnP_sngl = ma.sum(aBcrkngdMirnStatstcMskd,axis=0)/ma.sum \ (aBcrkngdMirnStatstcMskd) aMirnP_sngl = aMirnP_sngl.filled() #equal or greater than aMirnCntPvalGrtrEql = binom.sf(aTrgtMirnStatstcMskdFlld-1,N, \ aMirnP_sngl) #equal or less than aMirnCntPvalLssEql = 1-binom.sf(aTrgtMirnStatstcMskdFlld,N, \ aMirnP_sngl) aMirnCntQvalGrtrEql = statistics.bh_qvalues(aMirnCntPvalGrtrEql) aMirnCntQvalLssEql = statistics.bh_qvalues(aMirnCntPvalLssEql) #---------------------------- #Format output cntSngfMoreZscore = 0 cntSngfLssZscore = 0 if mirnDtype=='cnt': cntSngfLssBnml = 0 cntSngfMoreBnml = 0 outRslts = ['\t'.join(['name','target_average','target_std', \ 'target_statistic','background_statistic_average', \ 'background_statistic_std','target_statistic_k2', \ 'target_statistic_k-wPval','z-score', \ 'p-val (target_statistic >= background_statistic)', \ 'q-val (target_statistic >= background_statistic)', \ 'p-val (target_statistic =< background_statistic)', \ 'q-val (target_statistic =< background_statistic)', \ 'significance (target_statistic >= background_statistic)', \ 'significance (target_statistic =< background_statistic)', \ 'N (binomial test parameter)','k (observations)','p sucess', \ 'p-val (target_counts >= background_counts)', \ 'q-val (target_counts >= background_counts)', \ 'p-val (target_counts =< background_counts)', \ 'q-val (target_counts =< background_counts)', \ 'significance (target_counts >= background_counts)', \ 'significance (target_counts =< background_counts)'])] else: outRslts = ['\t'.join(['name','target_average','target_std', \ 'target_statistic','background_statistic_average', \ 'background_statistic_std','target_statistic_k2', \ 'target_statistic_k-wPval','z-score', \ 'p-val (target_statistic >= background_statistic)', \ 'q-val (target_statistic >= background_statistic)', \ 'p-val (target_statistic =< background_statistic)', \ 'q-val (target_statistic =< background_statistic)', \ 'significance (target_statistic >= background_statistic)', \ 'significance (target_statistic =< background_statistic)'])] for mirnPos in xrange(nMirns): mirnNm = aMirnNms[mirnPos] mirTrgtArvg = aTrgtMirnMskdAvrg[mirnPos] mirTrgtStd = aTrgtMirnMskdStd[mirnPos] mirTrgtStat = aTrgtMirnStatstcMskdFlld[mirnPos] mirBckgrndStat = aBcrkngdMirnStatstcMskd[:,mirnPos] mirBckgrndStatArvg = aBcrkngdMirnStatstcMskdAvrg[mirnPos] mirBckgrndStatStd = aBcrkngdMirnStatstcMskdStd[mirnPos] mirK2,aMirKWPval = mstats.normaltest(mirBckgrndStat) mirZscore = aMirZscore[mirnPos] mirPvalGrtrEql = aMirPval[mirnPos] mirQvalGrtrEql = aMirQvalGrtrEql[mirnPos] signfcGrtrEql = '' if mirQvalGrtrEql<=0.05: signfcGrtrEql+='*' cntSngfMoreZscore+=1 if mirQvalGrtrEql<=0.01: signfcGrtrEql+='*' mirPvalLssEql = 1-mirPvalGrtrEql mirQvalLssEql = aMirQvalLssEql[mirnPos] signfcLssEql = '' if mirQvalLssEql<=0.05: signfcLssEql+='*' cntSngfLssZscore+=1 if mirQvalLssEql<=0.01: signfcLssEql+='*' if mirnDtype=='cnt': signfcCntGrtrEql = '' signfcCntLssEql = '' mirN = N mirK = aTrgtMirnStatstcMskdFlld[mirnPos] mirPsuccs = aMirnP_sngl[mirnPos] mirPCntGrtrEql = aMirnCntPvalGrtrEql[mirnPos] mirQCntGrtrEql = aMirnCntQvalGrtrEql[mirnPos] if mirQCntGrtrEql<=0.05: signfcCntGrtrEql+='*' cntSngfMoreBnml+=1 if mirQCntGrtrEql<=0.01: signfcCntGrtrEql+='*' mirPCntLssEql = aMirnCntPvalLssEql[mirnPos] mirQCntLssEql = aMirnCntQvalLssEql[mirnPos] if mirQCntLssEql<=0.05: signfcCntLssEql+='*' cntSngfLssBnml+=1 if mirQCntLssEql<=0.01: signfcCntLssEql+='*' outRslts.append('\t'.join([str(v) for v in mirnNm, \ mirTrgtArvg,mirTrgtStd,mirTrgtStat,mirBckgrndStatArvg, \ mirBckgrndStatStd,mirK2,aMirKWPval,mirZscore,mirPvalGrtrEql, \ mirQvalGrtrEql, mirPvalLssEql,mirQvalLssEql,signfcGrtrEql, \ signfcLssEql,mirN,mirK,mirPsuccs,mirPCntGrtrEql, \ mirQCntGrtrEql,mirPCntLssEql,mirQCntLssEql,signfcCntGrtrEql, \ signfcCntLssEql])) else: outRslts.append('\t'.join([str(v) for v in mirnNm, \ mirTrgtArvg,mirTrgtStd,mirTrgtStat,mirBckgrndStatArvg, \ mirBckgrndStatStd,mirK2,aMirKWPval,mirZscore,mirPvalGrtrEql, \ mirQvalGrtrEql, mirPvalLssEql,mirQvalLssEql,signfcGrtrEql, \ signfcLssEql])) #---------------------------- #Write output file outFl = open(outMirnStstFl,'w') outFl.write('\n'.join(outRslts)) outFl.close() #---------------------------- #Make output message if mirnDtype == 'cnt': mthds = 'z-score and binomial probability' sgnfcntRprt = \ '%s miRNAs for z-score and %s for binomial probability'% \ (cntSngfMoreZscore,cntSngfMoreBnml) else: mthds = 'z-score' sgnfcntRprt = '%s miRNAs for z-score'%cntSngfMoreZscore mssge = '\n'.join([ '\t-----------------------------------------------------------', '\t The probabilities for independent miRNAs were calculated', '\t using: %s.'%mthds, '\t Results were written in the file: %s'%outMirnStstFl, '\t %s were found to be significant (q<0.05)'%sgnfcntRprt, '\t-----------------------------------------------------------']) return mssge ######################################################## #~ Run randomization on (both) rows and columns ######################################################## def rnClmNRowRndmztn(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosProbClmns,aPosProbRows,lenTrgtClms=False,lenTrgtRows=False, \ aPosClmnsToGns=None,aPosRowsToGns=None,aBckgrndMirnMetrcMskd=None, \ vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosProbClmns is an array with the probabilities of sampling the positions in columns. aPosProbRows is an array with the probabilities of sampling the positions in rows. lenTrgtClms is the size from the column samples to take (normarlly the same as the target).lenTrgtRows is the size of the samples to take from the rows (normarlly the same as the target). aPosClmnsToGns and aPosRowsToGns are always None. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of columns and rows (of size lenTrgtClms and lenTrgtRows respectively) in numRndmztns. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd isNone. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbClmns = len(aPosProbClmns) lenAPosProbRows = len(aPosProbRows) if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nRows==lenAPosProbRows and nClmns==lenAPosProbClmns aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) aPosClmns = xrange(lenAPosProbClmns) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosClmsRndm = random.choice(aPosClmns,lenTrgtClms, \ p=aPosProbClmns) # aPosRows = xrange(lenAPosProbRows) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosRowsRndm = random.choice(aPosRows,lenTrgtRows, \ p=aPosProbRows) aRndmBckgrndMetrc = aBckgrndMetrcMskd[:,aPosClmsRndm] aRndmBckgrndMetrc = aRndmBckgrndMetrc[aPosRowsRndm,:] aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = aBckgrndMirnMetrcMskd[:,aPosClmsRndm] aRndmBckgrndMirnMtrc = aRndmBckgrndMirnMtrc[aPosRowsRndm,:] aRndmBckgrndMirnMtrc.fill_value = nan aRndmBckgrndMirnMtrc = ma.masked_invalid \ (aRndmBckgrndMirnMtrc.filled()) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Run randomization on (both) rows and columns and average by gene ######################################################## def rnClmNRowRndmztnByGns(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosProbClmns,aPosProbRows,lenTrgtClms,lenTrgtRows, \ aPosClmnsToGns,aPosRowsToGns,aBckgrndMirnMetrcMskd=None,vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosProbClmns is an array with the probabilities of sampling the positions in columns. aPosProbRows is an array with the probabilities of sampling the positions in rows. lenTrgtClms is the size from the column samples to take (normarlly the same as the target).lenTrgtRows is the size of the samples to take from the rows (normarlly the same as the target).aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of columns and rows (of size lenTrgtClms and lenTrgtRows respectively) in numRndmztns. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd is None. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbClmns = len(aPosProbClmns) lenAPosProbRows = len(aPosProbRows) #vectorize the function rtrnRndmBckgrndMetrcPrGn =vectorize(rtrnAvrgMskdArray,excluded={0}) lenClmnsToGns = max(aPosClmnsToGns) lenRowsToGns = max(aPosRowsToGns) #to randomize miRNA metrics if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nRows==lenAPosProbRows and nClmns==lenAPosProbClmns aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) aPosClmns = xrange(lenAPosProbClmns) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosClmsRndmGns = zeros(lenClmnsToGns,dytpe=float32) aPosClmsRndmGns.fill(nan) aPosRowsRndmGns = zeros(lenRowsToGns,dytpe=float32) aPosRowsRndmGns.fill(nan) #~ aPosClmsRndm = random.choice(aPosClmns,lenTrgtClms, \ p=aPosProbClmns) for rltvPos,absPos in enumerate(aPosClmsRndm): aPosClmsRndmGns[aPosClmnsToGns[absPos]].append(rltvPos) # aPosRows = xrange(lenAPosProbRows) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosRowsRndm = random.choice(aPosRows,lenTrgtRows, \ p=aPosProbRows) for rltvPos,absPos in enumerate(aPosRowsRndm): aPosRowsRndmGns[aPosRowsToGns[absPos]].append(rltvPos) # aRndmBckgrndMetrc = rtrnRndmBckgrndMetrcPrGn(aBckgrndMetrcMskd, \ aPosRowsRndmGns,aPosClmsRndmGns) aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = rtrnRndmBckgrndMirnMetrcPrGn \ (aBckgrndMirnMetrcMskd,aPosRowsRndmGns,aPosClmsRndmGns, \ numMrns) aRndmBckgrndMirnMtrc=ma.masked_invalid(aRndmBckgrndMirnMtrc) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Run randomization on columns ######################################################## def rnClmRndmztn(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosProbClmns=None,aPosRows=None,lenTrgtClms=False, \ lenTrgtRows=False,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosRows is an array of positions in rows to be sampled. aPosProbClmns is an array with the probabilities of sampling the positions in columns. lenTrgtClms is the size of the samples to take from the columns (normarlly the same as the target). aPosClmnsToGns and aPosRowsToGns are always None. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of columns (of size lenTrgtClms) and values in aPosRows for numRndmztns randomizations. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd is None. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbClmns = len(aPosProbClmns) if aPosRow is None: aPosRows = xrange(aBckgrndMetrcMskd.shape[0]) try: raise exceptions.CelleryWarningObjct \ ('Columns are going to be randomized but no positions were', 'provided for rows, all of them are being included.') except exceptions.CelleryWarningObjct as err: print err pass if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nClmns==lenAPosProbClmns aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) # aPosClmns = xrange(lenAPosProbClmns) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosClmsRndm = random.choice(aPosClmns,lenTrgtClms, \ p=aPosProbClmns) aRndmBckgrndMetrc = aBckgrndMetrcMskd[:,aPosClmsRndm] aRndmBckgrndMetrc = aRndmBckgrndMetrc[aPosRows,:] aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = aBckgrndMirnMetrcMskd[:,aPosClmsRndm] aRndmBckgrndMirnMtrc = aRndmBckgrndMirnMtrc[aPosRows,:] aRndmBckgrndMirnMtrc.fill_value = nan aRndmBckgrndMirnMtrc = ma.masked_invalid \ (aRndmBckgrndMirnMtrc.filled()) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Run randomization on only columns and average by gene ######################################################## def rnClmRndmztnByGns(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosProbClmns=None,aPosRows=None,lenTrgtClms=None, \ lenTrgtRows=None,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosProbClmns is an array with the probabilities of sampling the positions in columns. aPosClmns is an array ofpositions in rows to be sampled. lenTrgtClms is the size from the column samples to take (normarlly the same as the target). lenTrgtRows is the size of the samples to take from the rows (normally the same as the target).aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosRows is mapped. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of columns and rows (of size lenTrgtClms and lenTrgtRows respectively) in numRndmztns. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd is None. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbClmns = len(aPosProbClmns) lenClmnsToGns = max(aPosClmnsToGns) lenRowsToGns = max(aPosRowsToGns) #vectorize the function rtrnRndmBckgrndMetrcPrGn =vectorize(rtrnAvrgMskdArray,excluded={0}) if aPosRow is None: aPosRows = xrange(aBckgrndMetrcMskd.shape[0]) try: raise exceptions.CelleryWarningObjct \ ('Columns are going to be randomized but no positions were', 'provided for rows, all of them are being included.') except exceptions.CelleryWarningObjct as err: print err pass #to randomize miRNA metrics if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nClmns==lenAPosProbClmns aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) # aPosClmsRndmGns = zeros(lenClmnsToGns,dytpe=float32) aPosClmsRndmGns.fill(nan) aPosRowsRndmGns = zeros(lenRowsToGns,dytpe=float32) aPosRowsRndmGns.fill(nan) #~ aPosClmns = xrange(lenAPosProbClmns) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosClmsRndm = random.choice(aPosClmns,lenTrgtClms, \ p=aPosProbClmns) for rltvPos,absPos in enumerate(aPosClmsRndm): aPosClmsRndmGns[aPosClmnsToGns[absPos]].append(rltvPos) for rltvPos,absPos in enumerate(aPosRows): aPosRowsRndmGns[aPosRowsToGns[absPos]].append(rltvPos) # aRndmBckgrndMetrc = rtrnRndmBckgrndMetrcPrGn(aBckgrndMetrcMskd, \ aPosRowsRndmGns,aPosClmsRndmGns) aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = rtrnRndmBckgrndMirnMetrcPrGn \ (aBckgrndMirnMetrcMskd,aPosRowsRndmGns,aPosClmsRndmGns, \ numMrns) aRndmBckgrndMirnMtrc=ma.masked_invalid(aRndmBckgrndMirnMtrc) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Run randomization on rows ######################################################## def rnRowRndmztn(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosClmns=None,aPosProbRows=None,lenTrgtClms=False, \ lenTrgtRows=False,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosProbRows is an array with the probabilities of sampling the positions in rows. lenTrgtRows is the size of the samples to take from the rows (normarlly the same as the target).aPosClmns is an array of positions in columns to be sampled. aPosClmnsToGns and aPosRowsToGns are always None. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of rows (of size lenTrgtRows) and values in aPosClmns for numRndmztns randomizations. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd is None. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbRows = len(aPosProbRows) if aPosClmns is None: aPosClmns = xrange(aBckgrndMetrcMskd.shape[1]) try: raise exceptions.CelleryWarningObjct \ ('Rows are going to be randomized but no positions were', 'provided for columns, all of them are being included.') except exceptions.CelleryWarningObjct as err: print err pass if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nRows==lenAPosProbRows aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) # aPosRows = xrange(lenAPosProbRows) seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosRowsRndm = random.choice(aPosRows,lenTrgtRows, \ p=aPosProbRows) aRndmBckgrndMetrc = aBckgrndMetrcMskd[:,aPosClms] aRndmBckgrndMetrc = aRndmBckgrndMetrc[aPosRowsRndm,:] aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = aBckgrndMirnMetrcMskd[:,aPosClms] aRndmBckgrndMirnMtrc = aRndmBckgrndMirnMtrc[aPosRowsRndm,:] aRndmBckgrndMirnMtrc.fill_value = nan aRndmBckgrndMirnMtrc = ma.masked_invalid \ (aRndmBckgrndMirnMtrc.filled()) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Run randomization on only rows and average by gene ######################################################## def rnRowRndmztnByGns(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aPosClmns=None,aPosProbRows=None,lenTrgtClms=False,lenTrgtRows=False, \ aPosClmnsToGns=None,aPosRowsToGns=None,aBckgrndMirnMetrcMskd=None, \ vrbse=True): """ Input: aBckgrndMetrcMskd is a 2x2 masked array with a metric of interest in each cell and rows and columns in the same order as the other input files. numRndmztns is the number of randomizations. statstc is the statistic to calculate from the background samples. seedAdd is the seed. aPosClmns is an array of positions in columns to be sampled. aPosProbRows is an array with the probabilities of sampling the positions in rows. lenTrgtClms is the size from the column samples to take (normarlly the same as the target). lenTrgtRows is the size of the samples to take from the rows (normally the same as the target).aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. Optionally, aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Output: aBcrkngdStatstc is the statistic value for each randomization of rows (of size lenTrgtRows respectively) in numRndmztns. aBcrkngdMirnStatstc is an with the miRNA metrics summarized, is None if aBckgrndMirnMetrcMskd is None. """ aBcrkngdStatstc = zeros(numRndmztns,dtype=float32) aBcrkngdStatstc.fill(nan) lenAPosProbRows = len(aPosProbRows) lenClmnsToGns = max(aPosClmnsToGns) lenRowsToGns = max(aPosRowsToGns) #vectorize the function rtrnRndmBckgrndMetrcPrGn =vectorize(rtrnAvrgMskdArray,excluded={0}) if aPosClmns is None: aPosClmns = xrange(aBckgrndMetrcMskd.shape[1]) try: raise exceptions.CelleryWarningObjct \ ('Rows are going to be randomized but no positions were', 'provided for columns, all of them are being included.') except exceptions.CelleryWarningObjct as err: print err pass #to randomize miRNA metrics if aBckgrndMirnMetrcMskd is not None: nRows,nClmns,numMrns = aBckgrndMirnMetrcMskd.shape assert nRows==lenAPosProbRows aBcrkngdMirnStatstc = zeros((numRndmztns,numMrns),dtype=float32) aBcrkngdMirnStatstc.fill(nan) rtrnRndmBckgrndMirnMetrcPrGn = \ vectorize(rtrnStstMskdMirnArray,excluded={0}) else: aBcrkngdMirnStatstc = None #---------------------------- #Run randomization for smpl in xrange(numRndmztns): if vrbse and smpl%500 == 0: print '\t...Running randomization %s out of %s'%(smpl, \ numRndmztns) # aPosClmsRndmGns = zeros(lenClmnsToGns,dytpe=float32) aPosClmsRndmGns.fill(nan) aPosRowsRndmGns = zeros(lenRowsToGns,dytpe=float32) aPosRowsRndmGns.fill(nan) #~ seed('%s'%(smpl*seedAdd))#set a seed to make it #replicable aPosRows = xrange(lenAPosProbRows) aPosRowsRndm = random.choice(aPosRows,lenTrgtRows, \ p=aPosProbRows) for rltvPos,absPos in enumerate(aPosRowsRndm): aPosRowsRndmGns[aPosRowsToGns[absPos]].append(rltvPos) for rltvPos,absPos in enumerate(aPosClmns): aPosClmsRndmGns[aPosClmnsToGns[absPos]].append(rltvPos) # aRndmBckgrndMetrc = rtrnRndmBckgrndMetrcPrGn(aBckgrndMetrcMskd, \ aPosRowsRndmGns,aPosClmsRndmGns) aRndmBckgrndMetrc = ma.masked_invalid(aRndmBckgrndMetrc) aBcrkngdStatstc[smpl] = getattr(ma,statstc)(aRndmBckgrndMetrc) #---------------------------- #Run randomization miRNA metrics if aBckgrndMirnMetrcMskd is not None: aRndmBckgrndMirnMtrc = rtrnRndmBckgrndMirnMetrcPrGn \ (aBckgrndMirnMetrcMskd,aPosRowsRndmGns,aPosClmsRndmGns, \ numMrns) aRndmBckgrndMirnMtrc=ma.masked_invalid(aRndmBckgrndMirnMtrc) aBcrkngdMirnStatstc[smpl]=rtrnMirnStat(aRndmBckgrndMirnMtrc) return aBcrkngdStatstc,aBcrkngdMirnStatstc ######################################################## #~ Core method to distribute and run different randomizations ######################################################## def rndmzCore(aBckgrndMetrcMskd,mthdBckgrndRndmztn,statstcTrgt,stdTrgt, \ outPltFl = False,aBckgrndPosProbClmnsORaPosClmns = None, \ aBckgrndPosProbRowsORaPosRows = None, lenTrgtClms = False, \ lenTrgtRows = False, seedAdd = False, numRndmztns = 1000, \ maxRndmztns = 25, statstc = 'mean', fnctn = 'sf',vrbse = True, \ aPosClmnsToGns = None, aPosRowsToGns = None, aBckgrndMirnMetrcMskd \ = None, aTrgtMirnStatstcMskd = None, mirnDtype = 'cnt', \ outMirnStstFl = None, aMirnNms = None): """ Input: aBckgrndMetrcMskd is masked array with background metric values to be randomly sampled. mthdBckgrndRndmztn is the method to make the randomization: {rnClmNRowRndmztn, rnRowRndmztn, or rnClmRndmztn}. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. Optionally, outPltFl is a file to plot the randomization and significance of target statistic. aBckgrndPosProbClmnsORaPosClmns is the position of columns of interest OR position probability of all columns in the background. aBckgrndPosProbRowsORaPosRows is the position of rows of interest OR position probability of all rows in the background. lenTrgtClms is the number of columns to be sampled. lenTrgtRows is the number of rows to be sampled. seedAdd is the seed to run the randomizations. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. fnctn is the function to compare the target statistic to the resulting normal distrubtion from the randomized background (sf == survival function/ greater equal than). If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBcrkngdMirnStatstc is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. fnctn is the statistical function to calculate the probability {'sf' is greater or equal than}. Output: p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background, with value zscore. meanBckgrnd is the mean metric of the normal distributed statistic obtained from the randomized background and stdBckgrnd is its standard error. """ #---------------------------- #Set required parameteres logRun = [] if not seedAdd: seedAdd = random.random() try: raise exceptions.CelleryWarningObjct \ ('Seed for randomizations was set to',seedAdd) except exceptions.CelleryWarningObjct as mssge: if vrbse: print mssge logRun.append(mssge) pass #---------------------------- #Run randomizations aBcrkngdStatstc,aBcrkngdMirnStatstc = \ mthdBckgrndRndmztn(aBckgrndMetrcMskd,numRndmztns,statstc,seedAdd, \ aBckgrndPosProbClmnsORaPosClmns,aBckgrndPosProbRowsORaPosRows, \ lenTrgtClms,lenTrgtRows,aPosClmnsToGns,aPosRowsToGns, \ aBckgrndMirnMetrcMskd,vrbse) #---------------------------- #Test normality in the background randomization k2,pval = mstats.normaltest(aBcrkngdStatstc) if pval <= 0.05: if maxRndmztns==0: try: raise exceptions.CelleryWarningObjct \ ('Enforce background normality will stop.', \ 'The maximum number of trials was exceeded.') except exceptions.CelleryWarningObjct as err: print err else: maxRndmztns-=1 try: raise exceptions.CelleryWarningObjct \ ('Re-running randomizations to enforce background', \ 'normality.') except exceptions.CelleryWarningObjct as mssge: print mssge pass if vrbse: print mssge logRun.append(mssge) seedAdd += numRndmztns p_val,zscore,meanBckgrnd,stdBckgrnd,logRun = rndmzCore \ (aBckgrndMetrcMskd,mthdBckgrndRndmztn,statstcTrgt,stdTrgt, \ outPltFl,aBckgrndPosProbClmnsORaPosClmns, \ aBckgrndPosProbRowsORaPosRows,lenTrgtClms,lenTrgtRows, \ seedAdd,numRndmztns,maxRndmztns,statstc,fnctn,vrbse, \ aPosClmnsToGns,aPosRowsToGns,aBckgrndMirnMetrcMskd, \ aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl,aMirnNms) return p_val,zscore,meanBckgrnd,stdBckgrnd,logRun else: mssge = '\n'.join([ '\t-----------------------------------------------------------', '\t The normality of the background distribution to test the', '\t mean score significance had a k2: %s '%k2, '\t and p-value: %s'%pval, '\t-----------------------------------------------------------']) if vrbse: print mssge logRun.append(mssge) #---------------------------- #Calculate significance zscore = mstats.zmap(statstcTrgt,aBcrkngdStatstc) p_val = getattr(norm,fnctn)(zscore)#equal or greater than if 'sf' meanBckgrnd = np.mean(aBcrkngdStatstc) stdBckgrnd = np.std(aBcrkngdStatstc) #---------------------------- #Make plots if outPltFl: mkPlt(statstcTrgt,aBcrkngdStatstc,outPltFl) #---------------------------- #Process miRNA results if aBcrkngdMirnStatstc is not None: mssge = procMirnRndmztn(aBcrkngdMirnStatstc, \ aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl,aMirnNms) if vrbse: print mssge logRun.append(mssge) return p_val,zscore,meanBckgrnd,stdBckgrnd,logRun ######################################################## #~ Function to be vectorized to calculate average values for matrix #(i.e. per gene) given a supermatrix and a set of positions ######################################################## def rtrnAvrgMskdArray(aBckgrndMetrcMskd,aRowsPosGns,aClmnsPosGns): """ Input: aBckgrndMetrcMskd is a masked array (the supermatrix) with background metric values to be averaged following aRowsPosGns and aClmnsPosGns. aRowsPosGns is an array with the position of rows in the supermatrix (aBckgrndMetrcMskd). aClmnsPosGns is an array with the positions of columns in the supermatrix. Output: avrgMskdVal is the average of the masked substracted positions in aRowsPosGns and aClmnsPosGns of the supermatrix (aBckgrndMetrcMskd). """ if len(aRowsPosGns) and len(aClmnsPosGns): mskdECPsPerGn = ma.mean(aBckgrndMetrcMskd[aRowsPosGns,:] \ [:,aClmnsPosGns]).__float__() avrgMskdVal = float32(mskdECPsPerGn) return avrgMskdVal else: return nan ######################################################## #~ Calculate summary statistic for a miRNA-metric matrix. ######################################################## def rtrnMirnStat(aMirnMetrcMskd,mirnStatstc='sum'): """ Input: aMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. Optionally, mirnStatstc is an statistic to summarized the array of metric values. Output: summrzdMirnMetrcMskd is an array of the size of the input array of metric values with the values summarized for all columns- rows. NOTE: the mask in aMirnMetrcMskd is a mask on column-rows of size rows x columns. Masked positions are going to be excluded from the final summary. NOTE: Invalid positions are going to return nan values. """ summrzdMirnMetrcMskd = getattr(ma,mirnStatstc) \ (ma.vstack(aMirnMetrcMskd),axis=0,dtype=float32) summrzdMirnMetrcMskd.fill_value = nan summrzdMirnMetrcMskd.filled() return summrzdMirnMetrcMskd ######################################################## #~ Function to be vectorized to calculate an statistic of interest for #RNA metrics given a supermatrix and a set of positions ######################################################## def rtrnStstMskdMirnArray(aBckgrndMirnMetrcMskd,aRowsPosGns,aClmnsPosGns, \ lenMirnMtrc): """ Input: aBckgrndMirnMetrcMskd is a masked array (the supermatrix) with stats for the metrics of shared miRNAs for each masked row-column pair to be averaged following aRowsPosGns and aClmnsPosGns. aRowsPosGns is an array with the position of rows in the supermatrix (aBckgrndMirnMetrcMskd). aClmnsPosGns is an array with the positions of columns in the supermatrix. lenMirnMtrc is the length of the miRNA metrics array. Output: ststcMirnMetrcMskdVal is an array with the statistic of interest caculated for aBckgrndMirnMetrcMskd following aRowsPosGns and aClmnsPosGns. NOTE: Invalid miRNA metric values are going to return nan for all positions in lenMirnMtrc. """ if len(aRowsPosGns) and len(aClmnsPosGns): ststcMirnMetrcMskdVal = ma.mean(aBckgrndMirnMetrcMskd[aRowsPosGns,:] \ [:,aClmnsPosGns],axis=0,dtype=np.float32) ststcMirnMetrcMskdVal.fill_value = nan return ststcMirnMetrcMskdVal.filled() else: return array([nan for x in xrange(lenMirnMtrc)]) ######################################################## #~ Calculate input length probabilities given an input model and params. ######################################################## def rtrndStrtEndCnt(lDtLens,mdlWprms,intrvlLgth,intvlJmp): """ Input: lDtLens is a list with gene/lncrna lengths the position as the index in the object list. mdlWprms is the model an parameters for the distribution of lengths in lDtLens. intrvlLgth is the length of the intervals (in nt) to sample, intvlJmp is the size of the length interval (in nt) to increase in case of error (i.e. p == inf). intrvlLgth is the length of the intervals (in nt) to sample. intvlJmp is the size of the length interval to increase in case of error (i.e. p == inf). Output: aDtPosProb is an array of genes/lncrna probabilities to be sampled in the ordered of values dDtLenlPos. """ #---------------------------- #Index lengths gnPos = -1 dDtLenlPos = {} for gnLen in lDtLens: gnPos+=1 if dDtLenlPos.has_key(gnLen): dDtLenlPos[gnLen].append(gnPos) else: dDtLenlPos[gnLen]=[gnPos] #---------------------------- #Calculate probabilities of intervals (uniform within them) srtdlGnLenlPos = sorted(dDtLenlPos.keys()) maxLength = max(srtdlGnLenlPos) minLength = min(srtdlGnLenlPos) dStrtlngthEndlngthProb = {} for strtLgnth in range(minLength,maxLength,intrvlLgth): endLgnth = strtLgnth + intrvlLgth if endLgnth>(maxLength): endLgnth = maxLength probd, abserr = integrate.quad(mdlWprms.pdf,strtLgnth,endLgnth) if probd == inf: intrvlLgth += intvlJmp try: raise exceptions.CelleryWarningObjct \ ('Length interval size is going to be increase by', \ intvlJmp) except exceptions.CelleryWarningObjct as err: print err pass #increase the size of the jump return rtrndStrtEndCnt(lDtLens,mdlWprms,intrvlLgth,intvlJmp) else: dStrtlngthEndlngthProb[strtLgnth,endLgnth] = float32(probd) #---------------------------- #Calculate probabilities for input length aDtPosProb = zeros(len(lDtLens),dtype=float32)#out probabilities sStrtlngthEndlngth = sorted(dStrtlngthEndlngthProb.keys()) cStrt,cEnd = sStrtlngthEndlngth.pop() cProb = dStrtlngthEndlngthProb.pop((cStrt,cEnd)) cEnd+=1#set a starter gnLenStrt = True#set a starter cPosIntrvlLens = [] while srtdlGnLenlPos:#from top to bottom if gnLenStrt: gnLen = srtdlGnLenlPos.pop() gnLenStrt = False while cStrt<=gnLen<cEnd: cPosIntrvlLens.extend(dDtLenlPos[gnLen]) if srtdlGnLenlPos: gnLen = srtdlGnLenlPos.pop() else: gnLen = -inf#set a dummny value to pass assertion assert gnLen<cStrt if cPosIntrvlLens: indvldProb = divide(cProb,len(cPosIntrvlLens)) for pos in cPosIntrvlLens: aDtPosProb[pos] = indvldProb if gnLen<0: break else: cStrt,cEnd = sStrtlngthEndlngth.pop() cProb = dStrtlngthEndlngthProb.pop((cStrt,cEnd)) cPosIntrvlLens = [] #---------------------------- #test and correct for probability to sum 1 sumIndvldProb = np.sum(aDtPosProb,dtype=float32) while sumIndvldProb < float32(1): try: raise exceptions.CelleryWarningObjct \ ('probabilities were corrected to sum 1.0 from', \ sumIndvldProb) except exceptions.CelleryWarningObjct as err: print err pass fctr = divide(1,sumIndvldProb,dtype=float32) aDtPosProb = multiply(aDtPosProb,fctr,dtype=float32) sumIndvldProb = np.sum(aDtPosProb,dtype=float32) return aDtPosProb ######################################################## #~ Wrapper for full randomization ######################################################## def wrprFllRndmztn(aBckgrndMetrcMskd,lBckgrndRowLens,lBckgrndClmnLens, \ mdlWprmsRows,mdlWprmsClmns,mskRowClmnDflt=None,intrvlLgth=15, \ intvlJmp=5,aTrgtMetrcMskd=None,statstcTrgt=False,stdTrgt=False, \ lenTrgtRows=False,lenTrgtClms=False,outPltFl=False,numRndmztns=1000, \ maxRndmztns=100,seedAdd=False,statstc='mean',vrbse=True, \ aPosClmnsToGns=None,aPosRowsToGns=None,aBckgrndMirnMetrcMskd=None, \ aTrgtMirnStatstcMskd=None,mirnDtype='cnt',outMirnStstFl=None, \ aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. lBckgrndClmnLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. IfaPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBcrkngdMirnStatstc is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Both, rows and columns are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) lenClmns = len(lBckgrndClmnLens) assert (lenRows,lenClmns) == aBckgrndMetrcMskd.shape if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) ovrAllogRun,p_val = cmptFullRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for full randomization excluding positions from background ######################################################## def wrprFllRndmztnExcldPos(aBckgrndMetrcMskd,lBckgrndRowLens, \ lBckgrndClmnLens,mdlWprmsRows,mdlWprmsClmns,lExcldBckgrndRowPos=None, \ lExcldBckgrndClmnPos=None,mskRowClmnDflt=None,intrvlLgth=15, \ intvlJmp=5,aTrgtMetrcMskd=None,statstcTrgt=False,stdTrgt=False, \ lenTrgtRows=False,lenTrgtClms=False,outPltFl=False,numRndmztns=1000, \ maxRndmztns=100,seedAdd=False,statstc='mean',vrbse=True, \ aPosClmnsToGns=None,aPosRowsToGns=None,aBckgrndMirnMetrcMskd=None, \ aTrgtMirnStatstcMskd=None,mirnDtype='cnt',outMirnStstFl=None, \ aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. lBckgrndClmnLens is a list of lengths for the columns of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, lExcldBckgrndRowPos is the list of row positions to exclude from the background. lExcldBckgrndClmnPos is the list of column positions to exclude from the background. mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBcrkngdMirnStatstc is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Both, rows and columns are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) lenClmns = len(lBckgrndClmnLens) assert (lenRows,lenClmns) == aBckgrndMetrcMskd.shape if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Exclude positions if lExcldBckgrndRowPos is not None: sExcldBckgrndRowPos = set(lExcldBckgrndRowPos) aBckgrndRowPosSlctd = [] for pos in xrange(lenRows): if pos in sExcldBckgrndRowPos: sExcldBckgrndRowPos.remove(pos) else: aBckgrndRowPosSlctd.append(pos) aBckgrndRowPosSlctd = array(aBckgrndRowPosSlctd) lBckgrndRowLens = array(lBckgrndRowLens) \ [aBckgrndRowPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lExcldBckgrndClmnPos is not None: sExcldBckgrndClmnPos = set(lExcldBckgrndClmnPos) aBckgrndClmnPosSlctd = [] for pos in xrange(lenClmns): if pos in sExcldBckgrndClmnPos: sExcldBckgrndClmnPos.remove(pos) else: aBckgrndClmnPosSlctd.append(pos) aBckgrndClmnPosSlctd = array(aBckgrndClmnPosSlctd) lBckgrndClmnLens = array(lBckgrndClmnLens) \ [aBckgrndClmnPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) ovrAllogRun,p_val = cmptFullRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for full randomization including positions from background ######################################################## def wrprFllRndmztnIncldPos(aBckgrndMetrcMskd,lBckgrndRowLens, \ lBckgrndClmnLens,mdlWprmsRows,mdlWprmsClmns,lIncldBckgrndRowPos=None, \ lIncldBckgrndClmnPos=None,mskRowClmnDflt=None,intrvlLgth=15, \ intvlJmp=5,aTrgtMetrcMskd=None,statstcTrgt=False,stdTrgt=False, \ lenTrgtRows=False,lenTrgtClms=False,outPltFl=False,numRndmztns=1000, \ maxRndmztns=100,seedAdd=False,statstc='mean',vrbse=True, \ aPosClmnsToGns=None,aPosRowsToGns=None,aBckgrndMirnMetrcMskd=None, \ aTrgtMirnStatstcMskd=None,mirnDtype='cnt',outMirnStstFl=None, \ aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. lBckgrndClmnLens is a list of lengths for the columns of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, lIncldBckgrndRowPos is the list of row positions to include from the background. lIncldBckgrndClmnPos is the list of column positions to include from the background. mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be included from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is a masked array (3D supermatrix) with an array of metric values for each column and row to be summarized using the value statstc. aBcrkngdMirnStatstc is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Both, rows and columns are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) lenClmns = len(lBckgrndClmnLens) assert (lenRows,lenClmns) == aBckgrndMetrcMskd.shape if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Include positions if lIncldBckgrndRowPos is not None: aBckgrndRowPosSlctd = array(lIncldBckgrndRowPos) lBckgrndRowLens = array(lBckgrndRowLens) \ [aBckgrndRowPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lIncldBckgrndClmnPos is not None: aBckgrndClmnPosSlctd = array(lIncldBckgrndClmnPos) lBckgrndClmnLens = array(lBckgrndClmnLens) \ [aBckgrndClmnPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) ovrAllogRun,p_val = cmptFullRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on columns ######################################################## def wrprClmRndmztn(aBckgrndMetrcMskd,lBckgrndClmnLens,mdlWprmsClmns, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtClms=False, \ outPltFl=False,numRndmztns=1000,maxRndmztns=100,seedAdd=False, \ statstc='mean',vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None,mirnDtype='cnt', \ outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndClmnLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, mskRowClmnDflt is an aditional maskfor aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only columns are going to be radomized. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenClmns = len(lBckgrndClmnLens) assert lenClmns == aBckgrndMetrcMskd.shape[1] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables lenTrgtRows = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Calculate probability for column and row positions aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) aBckgrndPosRows = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[0])]) ovrAllogRun,p_val = cmptClmRndmztn(aBckgrndMetrcMskd, \ aBckgrndPosRows,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on columns excluding positions from # background ######################################################## def wrprClmRndmztnExcldPos(aBckgrndMetrcMskd,lBckgrndClmnLens, \ mdlWprmsClmns,lExcldBckgrndRowPos=None,lExcldBckgrndClmnPos=None, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtClms=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None,mirnDtype='cnt', \ outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndClmnLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, lExcldBckgrndRowPos is the list of row positions to exclude from the background. lExcldBckgrndClmnPos is the list of column positions to exclude from the background. mskRowClmnDflt is an aditional maskfor aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. IfaPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only columns are going to be radomized. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenClmns = len(lBckgrndClmnLens) assert lenClmns == aBckgrndMetrcMskd.shape[1] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables lenTrgtRows = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Exclude positions if lExcldBckgrndRowPos is not None: sExcldBckgrndRowPos = set(lExcldBckgrndRowPos) aBckgrndRowPosSlctd = [] for pos in xrange(lenRows): if pos in sExcldBckgrndRowPos: sExcldBckgrndRowPos.remove(pos) else: aBckgrndRowPosSlctd.append(pos) aBckgrndRowPosSlctd = array(aBckgrndRowPosSlctd) aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lExcldBckgrndClmnPos is not None: sExcldBckgrndClmnPos = set(lExcldBckgrndClmnPos) aBckgrndClmnPosSlctd = [] for pos in xrange(lenClmns): if pos in sExcldBckgrndClmnPos: sExcldBckgrndClmnPos.remove(pos) else: aBckgrndClmnPosSlctd.append(pos) aBckgrndClmnPosSlctd = array(aBckgrndClmnPosSlctd) lBckgrndClmnLens = array(lBckgrndClmnLens) \ [aBckgrndClmnPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) aBckgrndPosRows = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[0])]) ovrAllogRun,p_val = cmptClmRndmztn(aBckgrndMetrcMskd, \ aBckgrndPosRows,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on columns including positions from # background ######################################################## def wrprClmRndmztnIncldPos(aBckgrndMetrcMskd,lBckgrndClmnLens, \ mdlWprmsClmns,lIncldBckgrndRowPos=None,lIncldBckgrndClmnPos=None, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtClms=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None, \ mirnDtype='cnt',outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndClmnLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsClmns is the frozen model with parameters to sample lengths in columns (==lBckgrndClmnLens). Optionally, lIncldBckgrndRowPos is the list of row positions to include from the background. lIncldBckgrndClmnPos is the list of column positions to include from the background. mskRowClmnDflt is an aditional maskfor aBckgrndMetrcMskd (i.e. for values that are going to be included from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. IfaPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only columns are going to be radomized. NOTE: lBckgrndClmnLens must have the same length as columns in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenClmns = len(lBckgrndClmnLens) assert lenClmns == aBckgrndMetrcMskd.shape[1] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape if aPosClmnsToGns is not None and aPosRowsToGns is not None: assert aBckgrndMetrcMskd.shape == (aPosRowsToGns,aPosClmnsToGns) #---------------------------- #Define variables lenTrgtRows = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Include positions if lIncldBckgrndRowPos is not None: aBckgrndRowPosSlctd = array(lIncldBckgrndRowPos) aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lIncldBckgrndClmnPos is not None: aBckgrndClmnPosSlctd = array(lIncldBckgrndClmnPos) lBckgrndClmnLens = array(lBckgrndClmnLens) \ [aBckgrndClmnPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndClmnPosProb = rtrndStrtEndCnt(lBckgrndClmnLens, \ mdlWprmsClmns,intrvlLgth,intvlJmp) aBckgrndPosRows = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[0])]) ovrAllogRun,p_val = cmptClmRndmztn(aBckgrndMetrcMskd, \ aBckgrndPosRows,aBckgrndClmnPosProb,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on rows ######################################################## def wrprRowRndmztn(aBckgrndMetrcMskd,lBckgrndRowLens,mdlWprmsRows, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtRows=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None, \ mirnDtype='cnt',outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). Optionally, mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns arenot None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only rows are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) assert lenRows == aBckgrndMetrcMskd.shape[0] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables lenTrgtClms = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndPosClmns = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[1])]) ovrAllogRun,p_val = cmptRowRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndPosClmns,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on rows excluding positions from background ######################################################## def wrprRowRndmztnExcldPos(aBckgrndMetrcMskd,lBckgrndRowLens, \ mdlWprmsRows,lExcldBckgrndRowPos=None,lExcldBckgrndClmnPos=None, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtRows=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None, \ mirnDtype='cnt',outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). lExcldBckgrndRowPos is the list of row positions to exclude from the background. lExcldBckgrndClmnPos is the list of column positions to exclude from the background. Optionally, mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be excluded from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. If aPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only rows are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) assert lenRows == aBckgrndMetrcMskd.shape[0] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape #---------------------------- #Define variables lenTrgtClms = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Exclude positions if lExcldBckgrndRowPos is not None: sExcldBckgrndRowPos = set(lExcldBckgrndRowPos) aBckgrndRowPosSlctd = [] for pos in xrange(lenRows): if pos in sExcldBckgrndRowPos: sExcldBckgrndRowPos.remove(pos) else: aBckgrndRowPosSlctd.append(pos) aBckgrndRowPosSlctd = array(aBckgrndRowPosSlctd) lBckgrndRowLens = array(lBckgrndRowLens) \ [aBckgrndRowPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lExcldBckgrndClmnPos is not None: sExcldBckgrndClmnPos = set(lExcldBckgrndClmnPos) aBckgrndClmnPosSlctd = [] for pos in xrange(lenClmns): if pos in sExcldBckgrndClmnPos: sExcldBckgrndClmnPos.remove(pos) else: aBckgrndClmnPosSlctd.append(pos) aBckgrndClmnPosSlctd = array(aBckgrndClmnPosSlctd) aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndPosClmns = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[1])]) ovrAllogRun,p_val = cmptRowRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndPosClmns,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val ######################################################## #~ Wrapper for randomization on rows including positions from background ######################################################## def wrprRowRndmztnIncldPos(aBckgrndMetrcMskd,lBckgrndRowLens, \ mdlWprmsRows,lIncldBckgrndRowPos=None,lIncldBckgrndClmnPos=None, \ mskRowClmnDflt=None,intrvlLgth=15,intvlJmp=5,aTrgtMetrcMskd=None, \ statstcTrgt=False,stdTrgt=False,lenTrgtRows=False,outPltFl=False, \ numRndmztns=1000,maxRndmztns=100,seedAdd=False,statstc='mean', \ vrbse=True,aPosClmnsToGns=None,aPosRowsToGns=None, \ aBckgrndMirnMetrcMskd=None,aTrgtMirnStatstcMskd=None, \ mirnDtype='cnt',outMirnStstFl=None,aMirnNms=None): """ Input: aBckgrndMetrcMskd is a masked array with background metric values to be randomly sampled. lBckgrndRowLens is a list of lengths for the rows of aBckgrndMetrcMskd. mdlWprmsRows is the frozen model with parameters to sample lengths in rows (==lBckgrndRowLens). lIncldBckgrndRowPos is the list of row positions to include from the background. lIncldBckgrndClmnPos is the list of column positions to include from the background. Optionally, mskRowClmnDflt is an aditional mask for aBckgrndMetrcMskd (i.e. for values that are going to be included from calculations). intrvlLgth is an interval size to bin the lengths from the samples. intvlJmp is an integer value to increase the size of the bins in case the porbability of one of them is inf. aTrgtMetrcMskd is a masked array with metric values of interest for the target. statstcTrgt is the statistic value of the target whose probability is going to be calculated from the randomized background using a z-score approach. stdTrgt is the standard deviation of the target data. lenTrgtRows is the number of rows to be sampled. lenTrgtClms is the number of columns to be sampled. outPltFl is a file to plot the randomization and significance of target statistic. numRndmztns is the number of randomizations to run in the background. maxRndmztns is the maximum number of iterations to enforce normality. seedAdd is the seed to run the randomizations. statstc is the statistic to sample from each randomization to build the normal distribution to test the significance of the target statistic. If vrbse all log messages are going to be printed. aPosClmnsToGns is an array of position of gene to which each column in aBckgrndMetrcMskd and aPosProbClmns is mapped. aPosRowsToGns is an array of position of gene to which each row in aBckgrndMetrcMskd and aPosProbRows is mapped. IfaPosRowsToGns and aPosClmnsToGns are not None calculations are going to be run by gene. aBckgrndMirnMetrcMskd is an array with the miRNA metrics summarized for the background. aTrgtMirnStatstcMskd is an array with the miRNA metrics for the target dataset. mirnDtype is the datatype of the miRNA metric: {'cnt' for counts and 'scr' for scores}. outMirnStstFl is the file to save the results of the miRNA probability calculation. aMirnNms is an array of miRNA names. Output: ovrAllogRun is the log message of the randomization runs. p_val is the one-side probability (following fnctn input) that the target statistic belongs to the normal distributed statistic obtained from the randomized background. NOTE: Only rows are going to be radomized. NOTE: lBckgrndRowLens must have the same length as rows in aBckgrndMetrcMskd. NOTE: mskRowClmnDflt mus have the same size as aBckgrndMetrcMskd. """ #---------------------------- #Test for inputs lenRows = len(lBckgrndRowLens) assert lenRows == aBckgrndMetrcMskd.shape[0] if mskRowClmnDflt is not None: assert aBckgrndMetrcMskd.shape == mskRowClmnDflt.shape if aPosClmnsToGns is not None and aPosRowsToGns is not None: assert aBckgrndMetrcMskd.shape == (aPosRowsToGns,aPosClmnsToGns) #---------------------------- #Define variables lenTrgtClms = False if mskRowClmnDflt is not None: mskRowClmn = ma.mask_or(mskRowClmnDflt,aBckgrndMetrcMskd.mask) aBckgrndMetrcMskd.mask = mskRowClmn #---------------------------- #Include positions if lIncldBckgrndRowPos is not None: aBckgrndRowPosSlctd = array(lIncldBckgrndRowPos) lBckgrndRowLens = array(lBckgrndRowLens) \ [aBckgrndRowPosSlctd].tolist() aBckgrndMetrcMskd = aBckgrndMetrcMskd[aBckgrndRowPosSlctd,:] if lIncldBckgrndClmnPos is not None: aBckgrndClmnPosSlctd = array(lIncldBckgrndClmnPos) aBckgrndMetrcMskd = aBckgrndMetrcMskd[:,aBckgrndClmnPosSlctd] #---------------------------- #Calculate probability for column and row positions aBckgrndRowsPosProb = rtrndStrtEndCnt(lBckgrndRowLens,mdlWprmsRows, \ intrvlLgth,intvlJmp) aBckgrndPosClmns = array([pos for pos in xrange(aBckgrndMetrcMskd. \ shape[1])]) ovrAllogRun,p_val = cmptRowRndmztn(aBckgrndMetrcMskd, \ aBckgrndRowsPosProb,aBckgrndPosClmns,aTrgtMetrcMskd,statstcTrgt, \ stdTrgt,lenTrgtRows,lenTrgtClms,outPltFl,numRndmztns,maxRndmztns, \ seedAdd,statstc,vrbse,aPosRowsToGns,aPosClmnsToGns, \ aBckgrndMirnMetrcMskd,aTrgtMirnStatstcMskd,mirnDtype,outMirnStstFl, \ aMirnNms) return ovrAllogRun,p_val
gpl-3.0
aflaxman/scikit-learn
sklearn/tests/test_grid_search.py
25
29670
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import warnings import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.linear_model import Ridge from sklearn.exceptions import FitFailedWarning with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler) from sklearn.cross_validation import KFold, StratifiedKFold from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] def transform(self, X): return X - self.foo_param def inverse_transform(self, X): return X + self.foo_param predict_proba = predict decision_function = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) def test_transform_inverse_transform_round_trip(): clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) grid_search.fit(X, y) X_round_trip = grid_search.inverse_transform(grid_search.transform(X)) assert_array_equal(X, X_round_trip) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # ChangedBehaviourWarning occurred previously (prior to #9005) score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_no_warnings(search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_no_warnings(search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_classes__property(): # Test that classes_ property matches best_esimator_.classes_ X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) Cs = [.1, 1, 10] grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) grid_search.fit(X, y) assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_) # Test that regressors do not have a classes_ attribute grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]}) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_'))
bsd-3-clause
ktnyt/chainer
examples/vae/train_vae.py
2
5546
#!/usr/bin/env python """Chainer example: train a VAE on MNIST """ import argparse import os import numpy as np import chainer from chainer import training from chainer.training import extensions import net def main(): parser = argparse.ArgumentParser(description='Chainer example: VAE') parser.add_argument('--initmodel', '-m', default='', help='Initialize the model from given file') parser.add_argument('--resume', '-r', default='', help='Resume the optimization from snapshot') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='results', help='Directory to output the result') parser.add_argument('--epoch', '-e', default=100, type=int, help='number of epochs to learn') parser.add_argument('--dim-z', '-z', default=20, type=int, help='dimention of encoded vector') parser.add_argument('--dim-h', default=500, type=int, help='dimention of hidden layer') parser.add_argument('--beta', default=1.0, type=float, help='Regularization coefficient for ' 'the second term of ELBO bound') parser.add_argument('--k', '-k', default=1, type=int, help='Number of Monte Carlo samples used in ' 'encoded vector') parser.add_argument('--binary', action='store_true', help='Use binarized MNIST') parser.add_argument('--batch-size', '-b', type=int, default=100, help='learning minibatch size') parser.add_argument('--test', action='store_true', help='Use tiny datasets for quick tests') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) print('# dim z: {}'.format(args.dim_z)) print('# Minibatch-size: {}'.format(args.batch_size)) print('# epoch: {}'.format(args.epoch)) print('') # Prepare VAE model, defined in net.py encoder = net.make_encoder(784, args.dim_z, args.dim_h) decoder = net.make_decoder(784, args.dim_z, args.dim_h, binary_check=args.binary) prior = net.make_prior(args.dim_z) avg_elbo_loss = net.AvgELBOLoss(encoder, decoder, prior, beta=args.beta, k=args.k) if args.gpu >= 0: avg_elbo_loss.to_gpu(args.gpu) # Setup an optimizer optimizer = chainer.optimizers.Adam() optimizer.setup(avg_elbo_loss) # Initialize if args.initmodel: chainer.serializers.load_npz(args.initmodel, avg_elbo_loss) # Load the MNIST dataset train, test = chainer.datasets.get_mnist(withlabel=False) if args.binary: # Binarize dataset train = (train >= 0.5).astype(np.float32) test = (test >= 0.5).astype(np.float32) if args.test: train, _ = chainer.datasets.split_dataset(train, 100) test, _ = chainer.datasets.split_dataset(test, 100) train_iter = chainer.iterators.SerialIterator(train, args.batch_size) test_iter = chainer.iterators.SerialIterator(test, args.batch_size, repeat=False, shuffle=False) # Set up an updater. StandardUpdater can explicitly specify a loss function # used in the training with 'loss_func' option updater = training.updaters.StandardUpdater( train_iter, optimizer, device=args.gpu, loss_func=avg_elbo_loss) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend(extensions.Evaluator( test_iter, avg_elbo_loss, device=args.gpu)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/reconstr', 'main/kl_penalty', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) if args.resume: chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run() # Visualize the results def save_images(x, filename): import matplotlib.pyplot as plt fig, ax = plt.subplots(3, 3, figsize=(9, 9), dpi=100) for ai, xi in zip(ax.flatten(), x): ai.imshow(xi.reshape(28, 28)) fig.savefig(filename) avg_elbo_loss.to_cpu() train_ind = [1, 3, 5, 10, 2, 0, 13, 15, 17] x = chainer.Variable(np.asarray(train[train_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'train')) save_images(x1.array, os.path.join(args.out, 'train_reconstructed')) test_ind = [3, 2, 1, 18, 4, 8, 11, 17, 61] x = chainer.Variable(np.asarray(test[test_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'test')) save_images(x1.array, os.path.join(args.out, 'test_reconstructed')) # draw images from randomly sampled z z = prior().sample(9) x = decoder(z, inference=True).mean save_images(x.array, os.path.join(args.out, 'sampled')) if __name__ == '__main__': main()
mit
RobertABT/heightmap
build/matplotlib/lib/mpl_toolkits/axes_grid1/axes_grid.py
4
30165
import matplotlib.cbook as cbook import matplotlib.pyplot as plt import matplotlib.axes as maxes #import matplotlib.colorbar as mcolorbar import colorbar as mcolorbar import matplotlib as mpl import matplotlib.patches as mpatches import matplotlib.lines as mlines import matplotlib.ticker as ticker from matplotlib.gridspec import SubplotSpec, GridSpec from axes_divider import Size, SubplotDivider, LocatableAxes, Divider #import numpy as np def _tick_only(ax, bottom_on, left_on): bottom_off = not bottom_on left_off = not left_on # [l.set_visible(bottom_off) for l in ax.get_xticklabels()] # [l.set_visible(left_off) for l in ax.get_yticklabels()] # ax.xaxis.label.set_visible(bottom_off) # ax.yaxis.label.set_visible(left_off) ax.axis["bottom"].toggle(ticklabels=bottom_off, label=bottom_off) ax.axis["left"].toggle(ticklabels=left_off, label=left_off) class Colorbar(mcolorbar.Colorbar): def _config_axes_deprecated(self, X, Y): ''' Make an axes patch and outline. ''' ax = self.ax ax.set_frame_on(False) ax.set_navigate(False) xy = self._outline(X, Y) ax.update_datalim(xy) ax.set_xlim(*ax.dataLim.intervalx) ax.set_ylim(*ax.dataLim.intervaly) self.outline = mlines.Line2D(xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth']) ax.add_artist(self.outline) self.outline.set_clip_box(None) self.outline.set_clip_path(None) c = mpl.rcParams['axes.facecolor'] self.patch = mpatches.Polygon(xy, edgecolor=c, facecolor=c, linewidth=0.01, zorder=-1) ax.add_artist(self.patch) ticks, ticklabels, offset_string = self._ticker() if self.orientation == 'vertical': ax.set_yticks(ticks) ax.set_yticklabels(ticklabels) ax.yaxis.get_major_formatter().set_offset_string(offset_string) else: ax.set_xticks(ticks) ax.set_xticklabels(ticklabels) ax.xaxis.get_major_formatter().set_offset_string(offset_string) class CbarAxesBase(object): def colorbar(self, mappable, **kwargs): locator=kwargs.pop("locator", None) if locator is None: if "ticks" not in kwargs: kwargs["ticks"] = ticker.MaxNLocator(5) if locator is not None: if "ticks" in kwargs: raise ValueError("Either *locator* or *ticks* need to be given, not both") else: kwargs["ticks"] = locator self.hold(True) if self.orientation in ["top", "bottom"]: orientation="horizontal" else: orientation="vertical" cb = Colorbar(self, mappable, orientation=orientation, **kwargs) self._config_axes() def on_changed(m): #print 'calling on changed', m.get_cmap().name cb.set_cmap(m.get_cmap()) cb.set_clim(m.get_clim()) cb.update_bruteforce(m) self.cbid = mappable.callbacksSM.connect('changed', on_changed) mappable.colorbar = cb self.locator = cb.cbar_axis.get_major_locator() return cb def _config_axes(self): ''' Make an axes patch and outline. ''' ax = self ax.set_navigate(False) ax.axis[:].toggle(all=False) b = self._default_label_on ax.axis[self.orientation].toggle(all=b) # for axis in ax.axis.values(): # axis.major_ticks.set_visible(False) # axis.minor_ticks.set_visible(False) # axis.major_ticklabels.set_visible(False) # axis.minor_ticklabels.set_visible(False) # axis.label.set_visible(False) # axis = ax.axis[self.orientation] # axis.major_ticks.set_visible(True) # axis.minor_ticks.set_visible(True) #axis.major_ticklabels.set_size(int(axis.major_ticklabels.get_size()*.9)) #axis.major_tick_pad = 3 # axis.major_ticklabels.set_visible(b) # axis.minor_ticklabels.set_visible(b) # axis.label.set_visible(b) def toggle_label(self, b): self._default_label_on = b axis = self.axis[self.orientation] axis.toggle(ticklabels=b, label=b) #axis.major_ticklabels.set_visible(b) #axis.minor_ticklabels.set_visible(b) #axis.label.set_visible(b) class CbarAxes(CbarAxesBase, LocatableAxes): def __init__(self, *kl, **kwargs): orientation=kwargs.pop("orientation", None) if orientation is None: raise ValueError("orientation must be specified") self.orientation = orientation self._default_label_on = True self.locator = None super(LocatableAxes, self).__init__(*kl, **kwargs) def cla(self): super(LocatableAxes, self).cla() self._config_axes() class Grid(object): """ A class that creates a grid of Axes. In matplotlib, the axes location (and size) is specified in the normalized figure coordinates. This may not be ideal for images that needs to be displayed with a given aspect ratio. For example, displaying images of a same size with some fixed padding between them cannot be easily done in matplotlib. AxesGrid is used in such case. """ _defaultLocatableAxesClass = LocatableAxes def __init__(self, fig, rect, nrows_ncols, ngrids = None, direction="row", axes_pad = 0.02, add_all=True, share_all=False, share_x=True, share_y=True, #aspect=True, label_mode="L", axes_class=None, ): """ Build an :class:`Grid` instance with a grid nrows*ncols :class:`~matplotlib.axes.Axes` in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* (in :class:`~matplotlib.figure.Figure` coordinates) or the subplot position code (e.g., "121"). Optional keyword arguments: ================ ======== ========================================= Keyword Default Description ================ ======== ========================================= direction "row" [ "row" | "column" ] axes_pad 0.02 float| pad between axes given in inches add_all True [ True | False ] share_all False [ True | False ] share_x True [ True | False ] share_y True [ True | False ] label_mode "L" [ "L" | "1" | "all" ] axes_class None a type object which must be a subclass of :class:`~matplotlib.axes.Axes` ================ ======== ========================================= """ self._nrows, self._ncols = nrows_ncols if ngrids is None: ngrids = self._nrows * self._ncols else: if (ngrids > self._nrows * self._ncols) or (ngrids <= 0): raise Exception("") self.ngrids = ngrids self._init_axes_pad(axes_pad) if direction not in ["column", "row"]: raise Exception("") self._direction = direction if axes_class is None: axes_class = self._defaultLocatableAxesClass axes_class_args = {} else: if (type(axes_class)) == type and \ issubclass(axes_class, self._defaultLocatableAxesClass.Axes): axes_class_args = {} else: axes_class, axes_class_args = axes_class self.axes_all = [] self.axes_column = [[] for i in range(self._ncols)] self.axes_row = [[] for i in range(self._nrows)] h = [] v = [] if cbook.is_string_like(rect) or cbook.is_numlike(rect): self._divider = SubplotDivider(fig, rect, horizontal=h, vertical=v, aspect=False) elif isinstance(rect, SubplotSpec): self._divider = SubplotDivider(fig, rect, horizontal=h, vertical=v, aspect=False) elif len(rect) == 3: kw = dict(horizontal=h, vertical=v, aspect=False) self._divider = SubplotDivider(fig, *rect, **kw) elif len(rect) == 4: self._divider = Divider(fig, rect, horizontal=h, vertical=v, aspect=False) else: raise Exception("") rect = self._divider.get_position() # reference axes self._column_refax = [None for i in range(self._ncols)] self._row_refax = [None for i in range(self._nrows)] self._refax = None for i in range(self.ngrids): col, row = self._get_col_row(i) if share_all: sharex = self._refax sharey = self._refax else: if share_x: sharex = self._column_refax[col] else: sharex = None if share_y: sharey = self._row_refax[row] else: sharey = None ax = axes_class(fig, rect, sharex=sharex, sharey=sharey, **axes_class_args) if share_all: if self._refax is None: self._refax = ax else: if sharex is None: self._column_refax[col] = ax if sharey is None: self._row_refax[row] = ax self.axes_all.append(ax) self.axes_column[col].append(ax) self.axes_row[row].append(ax) self.axes_llc = self.axes_column[0][-1] self._update_locators() if add_all: for ax in self.axes_all: fig.add_axes(ax) self.set_label_mode(label_mode) def _init_axes_pad(self, axes_pad): self._axes_pad = axes_pad self._horiz_pad_size = Size.Fixed(axes_pad) self._vert_pad_size = Size.Fixed(axes_pad) def _update_locators(self): h = [] h_ax_pos = [] h_cb_pos = [] for ax in self._column_refax: #if h: h.append(Size.Fixed(self._axes_pad)) if h: h.append(self._horiz_pad_size) h_ax_pos.append(len(h)) sz = Size.Scaled(1) h.append(sz) v = [] v_ax_pos = [] v_cb_pos = [] for ax in self._row_refax[::-1]: #if v: v.append(Size.Fixed(self._axes_pad)) if v: v.append(self._vert_pad_size) v_ax_pos.append(len(v)) sz = Size.Scaled(1) v.append(sz) for i in range(self.ngrids): col, row = self._get_col_row(i) locator = self._divider.new_locator(nx=h_ax_pos[col], ny=v_ax_pos[self._nrows -1 - row]) self.axes_all[i].set_axes_locator(locator) self._divider.set_horizontal(h) self._divider.set_vertical(v) def _get_col_row(self, n): if self._direction == "column": col, row = divmod(n, self._nrows) else: row, col = divmod(n, self._ncols) return col, row def __getitem__(self, i): return self.axes_all[i] def get_geometry(self): """ get geometry of the grid. Returns a tuple of two integer, representing number of rows and number of columns. """ return self._nrows, self._ncols def set_axes_pad(self, axes_pad): "set axes_pad" self._axes_pad = axes_pad self._horiz_pad_size.fixed_size = axes_pad self._vert_pad_size.fixed_size = axes_pad def get_axes_pad(self): "get axes_pad" return self._axes_pad def set_aspect(self, aspect): "set aspect" self._divider.set_aspect(aspect) def get_aspect(self): "get aspect" return self._divider.get_aspect() def set_label_mode(self, mode): "set label_mode" if mode == "all": for ax in self.axes_all: _tick_only(ax, False, False) elif mode == "L": # left-most axes for ax in self.axes_column[0][:-1]: _tick_only(ax, bottom_on=True, left_on=False) # lower-left axes ax = self.axes_column[0][-1] _tick_only(ax, bottom_on=False, left_on=False) for col in self.axes_column[1:]: # axes with no labels for ax in col[:-1]: _tick_only(ax, bottom_on=True, left_on=True) # bottom ax = col[-1] _tick_only(ax, bottom_on=False, left_on=True) elif mode == "1": for ax in self.axes_all: _tick_only(ax, bottom_on=True, left_on=True) ax = self.axes_llc _tick_only(ax, bottom_on=False, left_on=False) def get_divider(self): return self._divider def set_axes_locator(self, locator): self._divider.set_locator(locator) def get_axes_locator(self): return self._divider.get_locator() def get_vsize_hsize(self): return self._divider.get_vsize_hsize() # from axes_size import AddList # vsize = AddList(self._divider.get_vertical()) # hsize = AddList(self._divider.get_horizontal()) # return vsize, hsize class ImageGrid(Grid): """ A class that creates a grid of Axes. In matplotlib, the axes location (and size) is specified in the normalized figure coordinates. This may not be ideal for images that needs to be displayed with a given aspect ratio. For example, displaying images of a same size with some fixed padding between them cannot be easily done in matplotlib. ImageGrid is used in such case. """ _defaultCbarAxesClass = CbarAxes def __init__(self, fig, rect, nrows_ncols, ngrids = None, direction="row", axes_pad = 0.02, add_all=True, share_all=False, aspect=True, label_mode="L", cbar_mode=None, cbar_location="right", cbar_pad=None, cbar_size="5%", cbar_set_cax=True, axes_class=None, ): """ Build an :class:`ImageGrid` instance with a grid nrows*ncols :class:`~matplotlib.axes.Axes` in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* (in :class:`~matplotlib.figure.Figure` coordinates) or the subplot position code (e.g., "121"). Optional keyword arguments: ================ ======== ========================================= Keyword Default Description ================ ======== ========================================= direction "row" [ "row" | "column" ] axes_pad 0.02 float| pad between axes given in inches add_all True [ True | False ] share_all False [ True | False ] aspect True [ True | False ] label_mode "L" [ "L" | "1" | "all" ] cbar_mode None [ "each" | "single" | "edge" ] cbar_location "right" [ "left" | "right" | "bottom" | "top" ] cbar_pad None cbar_size "5%" cbar_set_cax True [ True | False ] axes_class None a type object which must be a subclass of :class:`~matplotlib.axes.Axes` ================ ======== ========================================= *cbar_set_cax* : if True, each axes in the grid has a cax attribute that is bind to associated cbar_axes. """ self._nrows, self._ncols = nrows_ncols if ngrids is None: ngrids = self._nrows * self._ncols else: if (ngrids > self._nrows * self._ncols) or (ngrids <= 0): raise Exception("") self.ngrids = ngrids self._axes_pad = axes_pad self._colorbar_mode = cbar_mode self._colorbar_location = cbar_location if cbar_pad is None: self._colorbar_pad = axes_pad else: self._colorbar_pad = cbar_pad self._colorbar_size = cbar_size self._init_axes_pad(axes_pad) if direction not in ["column", "row"]: raise Exception("") self._direction = direction if axes_class is None: axes_class = self._defaultLocatableAxesClass axes_class_args = {} else: if isinstance(axes_class, maxes.Axes): axes_class_args = {} else: axes_class, axes_class_args = axes_class self.axes_all = [] self.axes_column = [[] for i in range(self._ncols)] self.axes_row = [[] for i in range(self._nrows)] self.cbar_axes = [] h = [] v = [] if cbook.is_string_like(rect) or cbook.is_numlike(rect): self._divider = SubplotDivider(fig, rect, horizontal=h, vertical=v, aspect=aspect) elif isinstance(rect, SubplotSpec): self._divider = SubplotDivider(fig, rect, horizontal=h, vertical=v, aspect=aspect) elif len(rect) == 3: kw = dict(horizontal=h, vertical=v, aspect=aspect) self._divider = SubplotDivider(fig, *rect, **kw) elif len(rect) == 4: self._divider = Divider(fig, rect, horizontal=h, vertical=v, aspect=aspect) else: raise Exception("") rect = self._divider.get_position() # reference axes self._column_refax = [None for i in range(self._ncols)] self._row_refax = [None for i in range(self._nrows)] self._refax = None for i in range(self.ngrids): col, row = self._get_col_row(i) if share_all: sharex = self._refax sharey = self._refax else: sharex = self._column_refax[col] sharey = self._row_refax[row] ax = axes_class(fig, rect, sharex=sharex, sharey=sharey, **axes_class_args) if share_all: if self._refax is None: self._refax = ax else: if sharex is None: self._column_refax[col] = ax if sharey is None: self._row_refax[row] = ax self.axes_all.append(ax) self.axes_column[col].append(ax) self.axes_row[row].append(ax) cax = self._defaultCbarAxesClass(fig, rect, orientation=self._colorbar_location) self.cbar_axes.append(cax) self.axes_llc = self.axes_column[0][-1] self._update_locators() if add_all: for ax in self.axes_all+self.cbar_axes: fig.add_axes(ax) if cbar_set_cax: if self._colorbar_mode == "single": for ax in self.axes_all: ax.cax = self.cbar_axes[0] else: for ax, cax in zip(self.axes_all, self.cbar_axes): ax.cax = cax self.set_label_mode(label_mode) def _update_locators(self): h = [] v = [] h_ax_pos = [] h_cb_pos = [] if self._colorbar_mode == "single" and self._colorbar_location in ('left', 'bottom'): if self._colorbar_location == "left": #sz = Size.Fraction(Size.AxesX(self.axes_llc), self._nrows) sz = Size.Fraction(self._nrows, Size.AxesX(self.axes_llc)) h.append(Size.from_any(self._colorbar_size, sz)) h.append(Size.from_any(self._colorbar_pad, sz)) locator = self._divider.new_locator(nx=0, ny=0, ny1=-1) elif self._colorbar_location == "bottom": #sz = Size.Fraction(Size.AxesY(self.axes_llc), self._ncols) sz = Size.Fraction(self._ncols, Size.AxesY(self.axes_llc)) v.append(Size.from_any(self._colorbar_size, sz)) v.append(Size.from_any(self._colorbar_pad, sz)) locator = self._divider.new_locator(nx=0, nx1=-1, ny=0) for i in range(self.ngrids): self.cbar_axes[i].set_visible(False) self.cbar_axes[0].set_axes_locator(locator) self.cbar_axes[0].set_visible(True) for col,ax in enumerate(self._column_refax): if h: h.append(self._horiz_pad_size) #Size.Fixed(self._axes_pad)) if ax: sz = Size.AxesX(ax) else: sz = Size.AxesX(self.axes_llc) if (self._colorbar_mode == "each" or (self._colorbar_mode == 'edge' and col == 0)) and self._colorbar_location == "left": h_cb_pos.append(len(h)) h.append(Size.from_any(self._colorbar_size, sz)) h.append(Size.from_any(self._colorbar_pad, sz)) h_ax_pos.append(len(h)) h.append(sz) if (self._colorbar_mode == "each" or (self._colorbar_mode == 'edge' and col == self._ncols - 1)) and self._colorbar_location == "right": h.append(Size.from_any(self._colorbar_pad, sz)) h_cb_pos.append(len(h)) h.append(Size.from_any(self._colorbar_size, sz)) v_ax_pos = [] v_cb_pos = [] for row,ax in enumerate(self._row_refax[::-1]): if v: v.append(self._horiz_pad_size) #Size.Fixed(self._axes_pad)) if ax: sz = Size.AxesY(ax) else: sz = Size.AxesY(self.axes_llc) if (self._colorbar_mode == "each" or (self._colorbar_mode == 'edge' and row == 0)) and self._colorbar_location == "bottom": v_cb_pos.append(len(v)) v.append(Size.from_any(self._colorbar_size, sz)) v.append(Size.from_any(self._colorbar_pad, sz)) v_ax_pos.append(len(v)) v.append(sz) if (self._colorbar_mode == "each" or (self._colorbar_mode == 'edge' and row == self._nrows - 1)) and self._colorbar_location == "top": v.append(Size.from_any(self._colorbar_pad, sz)) v_cb_pos.append(len(v)) v.append(Size.from_any(self._colorbar_size, sz)) for i in range(self.ngrids): col, row = self._get_col_row(i) #locator = self._divider.new_locator(nx=4*col, ny=2*(self._nrows - row - 1)) locator = self._divider.new_locator(nx=h_ax_pos[col], ny=v_ax_pos[self._nrows -1 - row]) self.axes_all[i].set_axes_locator(locator) if self._colorbar_mode == "each": if self._colorbar_location in ("right", "left"): locator = self._divider.new_locator(nx=h_cb_pos[col], ny=v_ax_pos[self._nrows -1 - row]) elif self._colorbar_location in ("top", "bottom"): locator = self._divider.new_locator(nx=h_ax_pos[col], ny=v_cb_pos[self._nrows -1 - row]) self.cbar_axes[i].set_axes_locator(locator) elif self._colorbar_mode == 'edge': if ((self._colorbar_location == 'left' and col == 0) or (self._colorbar_location == 'right' and col == self._ncols-1)): locator = self._divider.new_locator(nx=h_cb_pos[0], ny=v_ax_pos[self._nrows -1 - row]) self.cbar_axes[row].set_axes_locator(locator) elif ((self._colorbar_location == 'bottom' and row == self._nrows - 1) or (self._colorbar_location == 'top' and row == 0)): locator = self._divider.new_locator(nx=h_ax_pos[col], ny=v_cb_pos[0]) self.cbar_axes[col].set_axes_locator(locator) if self._colorbar_mode == "single": if self._colorbar_location == "right": #sz = Size.Fraction(Size.AxesX(self.axes_llc), self._nrows) sz = Size.Fraction(self._nrows, Size.AxesX(self.axes_llc)) h.append(Size.from_any(self._colorbar_pad, sz)) h.append(Size.from_any(self._colorbar_size, sz)) locator = self._divider.new_locator(nx=-2, ny=0, ny1=-1) elif self._colorbar_location == "top": #sz = Size.Fraction(Size.AxesY(self.axes_llc), self._ncols) sz = Size.Fraction(self._ncols, Size.AxesY(self.axes_llc)) v.append(Size.from_any(self._colorbar_pad, sz)) v.append(Size.from_any(self._colorbar_size, sz)) locator = self._divider.new_locator(nx=0, nx1=-1, ny=-2) if self._colorbar_location in ("right", "top"): for i in range(self.ngrids): self.cbar_axes[i].set_visible(False) self.cbar_axes[0].set_axes_locator(locator) self.cbar_axes[0].set_visible(True) elif self._colorbar_mode == "each": for i in range(self.ngrids): self.cbar_axes[i].set_visible(True) elif self._colorbar_mode == "edge": if self._colorbar_location in ('right', 'left'): count = self._nrows else: count = self._ncols for i in range(count): self.cbar_axes[i].set_visible(True) for j in range(i + 1, self.ngrids): self.cbar_axes[j].set_visible(False) else: for i in range(self.ngrids): self.cbar_axes[i].set_visible(False) self.cbar_axes[i].set_position([1., 1., 0.001, 0.001], which="active") self._divider.set_horizontal(h) self._divider.set_vertical(v) AxesGrid = ImageGrid #if __name__ == "__main__": if 0: F = plt.figure(1, (7, 6)) F.clf() F.subplots_adjust(left=0.15, right=0.9) grid = Grid(F, 111, # similar to subplot(111) nrows_ncols = (2, 2), direction="row", axes_pad = 0.05, add_all=True, label_mode = "1", ) #if __name__ == "__main__": if 0: from axes_divider import get_demo_image F = plt.figure(1, (9, 3.5)) F.clf() F.subplots_adjust(left=0.05, right=0.98) grid = ImageGrid(F, 131, # similar to subplot(111) nrows_ncols = (2, 2), direction="row", axes_pad = 0.05, add_all=True, label_mode = "1", ) Z, extent = get_demo_image() plt.ioff() for i in range(4): im = grid[i].imshow(Z, extent=extent, interpolation="nearest") # This only affects axes in first column and second row as share_all = False. grid.axes_llc.set_xticks([-2, 0, 2]) grid.axes_llc.set_yticks([-2, 0, 2]) plt.ion() grid = ImageGrid(F, 132, # similar to subplot(111) nrows_ncols = (2, 2), direction="row", axes_pad = 0.0, add_all=True, share_all=True, label_mode = "1", cbar_mode="single", ) Z, extent = get_demo_image() plt.ioff() for i in range(4): im = grid[i].imshow(Z, extent=extent, interpolation="nearest") plt.colorbar(im, cax = grid.cbar_axes[0]) plt.setp(grid.cbar_axes[0].get_yticklabels(), visible=False) # This affects all axes as share_all = True. grid.axes_llc.set_xticks([-2, 0, 2]) grid.axes_llc.set_yticks([-2, 0, 2]) plt.ion() grid = ImageGrid(F, 133, # similar to subplot(122) nrows_ncols = (2, 2), direction="row", axes_pad = 0.1, add_all=True, label_mode = "1", share_all = True, cbar_location="top", cbar_mode="each", cbar_size="7%", cbar_pad="2%", ) plt.ioff() for i in range(4): im = grid[i].imshow(Z, extent=extent, interpolation="nearest") plt.colorbar(im, cax = grid.cbar_axes[i], orientation="horizontal") grid.cbar_axes[i].xaxis.set_ticks_position("top") plt.setp(grid.cbar_axes[i].get_xticklabels(), visible=False) # This affects all axes as share_all = True. grid.axes_llc.set_xticks([-2, 0, 2]) grid.axes_llc.set_yticks([-2, 0, 2]) plt.ion() plt.draw()
mit
piyueh/PetIBM
examples/ibpm/cylinder2dRe3000/scripts/plotVorticity.py
6
1402
""" Computes, plots, and saves the 2D vorticity field from a PetIBM simulation after 3000 time steps (3 non-dimensional time-units). """ import pathlib import h5py import numpy from matplotlib import pyplot simu_dir = pathlib.Path(__file__).absolute().parents[1] data_dir = simu_dir / 'output' # Read vorticity field and its grid from files. name = 'wz' filepath = data_dir / 'grid.h5' f = h5py.File(filepath, 'r') x, y = f[name]['x'][:], f[name]['y'][:] X, Y = numpy.meshgrid(x, y) timestep = 3000 filepath = data_dir / '{:0>7}.h5'.format(timestep) f = h5py.File(filepath, 'r') wz = f[name][:] # Read body coordinates from file. filepath = simu_dir / 'circle.body' with open(filepath, 'r') as infile: xb, yb = numpy.loadtxt(infile, dtype=numpy.float64, unpack=True, skiprows=1) pyplot.rc('font', family='serif', size=16) # Plot the filled contour of the vorticity. fig, ax = pyplot.subplots(figsize=(6.0, 6.0)) ax.grid() ax.set_xlabel('x') ax.set_ylabel('y') levels = numpy.linspace(-56.0, 56.0, 28) ax.contour(X, Y, wz, levels=levels, colors='black') ax.plot(xb, yb, color='red') ax.set_xlim(-0.6, 1.6) ax.set_ylim(-0.8, 0.8) ax.set_aspect('equal') fig.tight_layout() pyplot.show() # Save figure. fig_dir = simu_dir / 'figures' fig_dir.mkdir(parents=True, exist_ok=True) filepath = fig_dir / 'wz{:0>7}.png'.format(timestep) fig.savefig(str(filepath), dpi=300)
bsd-3-clause
jlegendary/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_fltkagg.py
69
20839
""" A backend for FLTK Copyright: Gregory Lielens, Free Field Technologies SA and John D. Hunter 2004 This code is released under the matplotlib license """ from __future__ import division import os, sys, math import fltk as Fltk from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib import rcParams, verbose from matplotlib.cbook import is_string_like from matplotlib.backend_bases import \ RendererBase, GraphicsContextBase, FigureManagerBase, FigureCanvasBase,\ NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import thread,time Fl_running=thread.allocate_lock() def Fltk_run_interactive(): global Fl_running if Fl_running.acquire(0): while True: Fltk.Fl.check() time.sleep(0.005) else: print "fl loop already running" # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord= { cursors.HAND: Fltk.FL_CURSOR_HAND, cursors.POINTER: Fltk.FL_CURSOR_ARROW, cursors.SELECT_REGION: Fltk.FL_CURSOR_CROSS, cursors.MOVE: Fltk.FL_CURSOR_MOVE } special_key={ Fltk.FL_Shift_R:'shift', Fltk.FL_Shift_L:'shift', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', 65515:'win', 65516:'win', } def error_msg_fltk(msg, parent=None): Fltk.fl_message(msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw() def ishow(): """ Show all the figures and enter the fltk mainloop in another thread This allows to keep hand in interractive python session Warning: does not work under windows This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() if show._needmain: thread.start_new_thread(Fltk_run_interactive,()) show._needmain = False def show(): """ Show all the figures and enter the fltk mainloop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() #mainloop, if an fltk program exist no need to call that #threaded (and interractive) version if show._needmain: Fltk.Fl.run() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Fltk.Fl_Double_Window(10,10,30,30) canvas = FigureCanvasFltkAgg(figure) window.end() window.show() window.make_current() figManager = FigureManagerFltkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FltkCanvas(Fltk.Fl_Widget): def __init__(self,x,y,w,h,l,source): Fltk.Fl_Widget.__init__(self, 0, 0, w, h, "canvas") self._source=source self._oldsize=(None,None) self._draw_overlay = False self._button = None self._key = None def draw(self): newsize=(self.w(),self.h()) if(self._oldsize !=newsize): self._oldsize =newsize self._source.resize(newsize) self._source.draw() t1,t2,w,h = self._source.figure.bbox.bounds Fltk.fl_draw_image(self._source.buffer_rgba(0,0),0,0,int(w),int(h),4,0) self.redraw() def blit(self,bbox=None): if bbox is None: t1,t2,w,h = self._source.figure.bbox.bounds else: t1o,t2o,wo,ho = self._source.figure.bbox.bounds t1,t2,w,h = bbox.bounds x,y=int(t1),int(t2) Fltk.fl_draw_image(self._source.buffer_rgba(x,y),x,y,int(w),int(h),4,int(wo)*4) #self.redraw() def handle(self, event): x=Fltk.Fl.event_x() y=Fltk.Fl.event_y() yf=self._source.figure.bbox.height() - y if event == Fltk.FL_FOCUS or event == Fltk.FL_UNFOCUS: return 1 elif event == Fltk.FL_KEYDOWN: ikey= Fltk.Fl.event_key() if(ikey<=255): self._key=chr(ikey) else: try: self._key=special_key[ikey] except: self._key=None FigureCanvasBase.key_press_event(self._source, self._key) return 1 elif event == Fltk.FL_KEYUP: FigureCanvasBase.key_release_event(self._source, self._key) self._key=None elif event == Fltk.FL_PUSH: self.window().make_current() if Fltk.Fl.event_button1(): self._button = 1 elif Fltk.Fl.event_button2(): self._button = 2 elif Fltk.Fl.event_button3(): self._button = 3 else: self._button = None if self._draw_overlay: self._oldx=x self._oldy=y if Fltk.Fl.event_clicks(): FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 else: FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 elif event == Fltk.FL_ENTER: self.take_focus() return 1 elif event == Fltk.FL_LEAVE: return 1 elif event == Fltk.FL_MOVE: FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_DRAG: self.window().make_current() if self._draw_overlay: self._dx=Fltk.Fl.event_x()-self._oldx self._dy=Fltk.Fl.event_y()-self._oldy Fltk.fl_overlay_rect(self._oldx,self._oldy,self._dx,self._dy) FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_RELEASE: self.window().make_current() if self._draw_overlay: Fltk.fl_overlay_clear() FigureCanvasBase.button_release_event(self._source, x, yf, self._button) self._button = None return 1 return 0 class FigureCanvasFltkAgg(FigureCanvasAgg): def __init__(self, figure): FigureCanvasAgg.__init__(self,figure) t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self.canvas=FltkCanvas(0, 0, w, h, "canvas",self) #self.draw() def resize(self,size): w, h = size # compute desired figure size in inches dpival = self.figure.dpi.get() winch = w/dpival hinch = h/dpival self.figure.set_size_inches(winch,hinch) def draw(self): FigureCanvasAgg.draw(self) self.canvas.redraw() def blit(self,bbox): self.canvas.blit(bbox) show = draw def widget(self): return self.canvas def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ def destroy_figure(ptr,figman): figman.window.hide() Gcf.destroy(figman._num) class FigureManagerFltkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The fltk.Toolbar window : The fltk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) #Fltk container window t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window = window self.window.size(w,h+30) self.window_title="Figure %d" % num self.window.label(self.window_title) self.window.size_range(350,200) self.window.callback(destroy_figure,self) self.canvas = canvas self._num = num if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2FltkAgg( canvas, self ) else: self.toolbar = None self.window.add_resizable(canvas.widget()) if self.toolbar: self.window.add(self.toolbar.widget()) self.toolbar.update() self.window.show() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): _focus = windowing.FocusManager() self.canvas.draw() self.window.redraw() def set_window_title(self, title): self.window_title=title self.window.label(title) class AxisMenu: def __init__(self, toolbar): self.toolbar=toolbar self._naxes = toolbar.naxes self._mbutton = Fltk.Fl_Menu_Button(0,0,50,10,"Axes") self._mbutton.add("Select All",0,select_all,self,0) self._mbutton.add("Invert All",0,invert_all,self,Fltk.FL_MENU_DIVIDER) self._axis_txt=[] self._axis_var=[] for i in range(self._naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes, naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): self._mbutton.remove(i+2) if(naxes): self._axis_var=self._axis_var[:naxes-1] self._axis_txt=self._axis_txt[:naxes-1] else: self._axis_var=[] self._axis_txt=[] self._naxes = naxes set_active(0,self) def widget(self): return self._mbutton def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].value()] return a def set_active(ptr,amenu): amenu.toolbar.set_active(amenu.get_indices()) def invert_all(ptr,amenu): for a in amenu._axis_var: if not a.value(): a.set() set_active(ptr,amenu) def select_all(ptr,amenu): for a in amenu._axis_var: a.set() set_active(ptr,amenu) class FLTKButton: def __init__(self, text, file, command,argument,type="classic"): file = os.path.join(rcParams['datapath'], 'images', file) self.im = Fltk.Fl_PNM_Image(file) size=26 if type=="repeat": self.b = Fltk.Fl_Repeat_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="classic": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="light": self.b = Fltk.Fl_Light_Button(0,0,size+20,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="pushed": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_UP_BOX) self.b.down_box(Fltk.FL_DOWN_BOX) self.b.type(Fltk.FL_TOGGLE_BUTTON) self.tooltiptext=text+" " self.b.tooltip(self.tooltiptext) self.b.callback(command,argument) self.b.image(self.im) self.b.deimage(self.im) self.type=type def widget(self): return self.b class NavigationToolbar: """ Public attriubutes canvas - the FigureCanvas (FigureCanvasFltkAgg = customised fltk.Widget) """ def __init__(self, canvas, figman): #xmin, xmax = canvas.figure.bbox.intervalx().get_bounds() #height, width = 50, xmax-xmin self.canvas = canvas self.figman = figman Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bLeft = FLTKButton( text="Left", file="stock_left.ppm", command=pan,argument=(self,1,'x'),type="repeat") self.bRight = FLTKButton( text="Right", file="stock_right.ppm", command=pan,argument=(self,-1,'x'),type="repeat") self.bZoomInX = FLTKButton( text="ZoomInX",file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'x'),type="repeat") self.bZoomOutX = FLTKButton( text="ZoomOutX", file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'x'),type="repeat") self.bUp = FLTKButton( text="Up", file="stock_up.ppm", command=pan,argument=(self,1,'y'),type="repeat") self.bDown = FLTKButton( text="Down", file="stock_down.ppm", command=pan,argument=(self,-1,'y'),type="repeat") self.bZoomInY = FLTKButton( text="ZoomInY", file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'y'),type="repeat") self.bZoomOutY = FLTKButton( text="ZoomOutY",file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'y'),type="repeat") self.bSave = FLTKButton( text="Save", file="stock_save_as.ppm", command=save_figure, argument=self) self._group.end() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) def pan(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.panx(direction) else: a.pany(direction) base.figman.show() def zoom(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.zoomx(direction) else: a.zoomy(direction) base.figman.show() def save_figure(ptr,base): filetypes = base.canvas.get_supported_filetypes() default_filetype = base.canvas.get_default_filetype() sorted_filetypes = filetypes.items() sorted_filetypes.sort() selected_filter = 0 filters = [] for i, (ext, name) in enumerate(sorted_filetypes): filter = '%s (*.%s)' % (name, ext) filters.append(filter) if ext == default_filetype: selected_filter = i filters = '\t'.join(filters) file_chooser=base._fc file_chooser.filter(filters) file_chooser.filter_value(selected_filter) file_chooser.show() while file_chooser.visible() : Fltk.Fl.wait() fname=None if(file_chooser.count() and file_chooser.value(0) != None): fname="" (status,fname)=Fltk.fl_filename_absolute(fname, 1024, file_chooser.value(0)) if fname is None: # Cancel return #start from last directory lastDir = os.path.dirname(fname) file_chooser.directory(lastDir) format = sorted_filetypes[file_chooser.filter_value()][0] try: base.canvas.print_figure(fname, format=format) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_fltk(msg) class NavigationToolbar2FltkAgg(NavigationToolbar2): """ Public attriubutes canvas - the FigureCanvas figman - the Figure manager """ def __init__(self, canvas, figman): self.canvas = canvas self.figman = figman NavigationToolbar2.__init__(self, canvas) self.pan_selected=False self.zoom_selected=False def set_cursor(self, cursor): Fltk.fl_cursor(cursord[cursor],Fltk.FL_BLACK,Fltk.FL_WHITE) def dynamic_update(self): self.canvas.draw() def pan(self,*args): self.pan_selected=not self.pan_selected self.zoom_selected = False self.canvas.canvas._draw_overlay= False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.pan(self,args) def zoom(self,*args): self.zoom_selected=not self.zoom_selected self.canvas.canvas._draw_overlay=self.zoom_selected self.pan_selected = False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.zoom(self,args) def configure_subplots(self,*args): window = Fltk.Fl_Double_Window(100,100,480,240) toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasFltkAgg(toolfig) window.end() toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) window.show() canvas.show() def _init_toolbar(self): Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = self.canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bHome = FLTKButton( text="Home", file="home.ppm", command=self.home,argument=self) self.bBack = FLTKButton( text="Back", file="back.ppm", command=self.back,argument=self) self.bForward = FLTKButton( text="Forward", file="forward.ppm", command=self.forward,argument=self) self.bPan = FLTKButton( text="Pan/Zoom",file="move.ppm", command=self.pan,argument=self,type="pushed") self.bZoom = FLTKButton( text="Zoom to rectangle",file="zoom_to_rect.ppm", command=self.zoom,argument=self,type="pushed") self.bsubplot = FLTKButton( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots,argument=self,type="pushed") self.bSave = FLTKButton( text="Save", file="filesave.ppm", command=save_figure, argument=self) self._group.end() self.message = Fltk.Fl_Output(0,0,w,8) self._group.add_resizable(self.message) self.update() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) NavigationToolbar2.update(self) def set_message(self, s): self.message.value(s) FigureManager = FigureManagerFltkAgg
gpl-3.0
mcleonard/seekwell
seekwell/export.py
1
1691
def to_ascii(rows, n=None): from terminaltables import AsciiTable if n is None: n = rows.max_display_rows table_data = [rows.headers] for each in rows.rows[:n]: table_data.append(each) if len(table_data) < len(rows): table_data.append(['...']*len(table_data[0])) asciitable = AsciiTable(table_data) asciitable.outer_border = False return asciitable.table def _html_table_row(row, header=False): tag = 'th' if header else 'td' row_items = ' '.join('<{tag}>{}</{tag}>'.format(each, tag=tag) for each in row) return '<tr>{}</tr>'.format(row_items) def to_html(rows, n=None): if n is None: n = rows.max_display_rows headers = rows.headers print_rows = rows.rows[:n] more = _html_table_row(['...']*len(headers)) if n < len(rows.rows) else '' html_rows = '\n'.join(_html_table_row(row) for row in print_rows) html_table = '\n'.join(['<table style="font-size:10pt; white-space:nowrap;">', _html_table_row(headers, header=True), html_rows, more, '</table>']) return html_table def to_pandas(rows): import pandas as pd return pd.DataFrame(rows.rows, columns=rows.headers) def to_csv(rows, file, **kwargs): """ For the keyword arguments that let you set the delimiter, etc. : https://docs.python.org/3/library/csv.html#csv-fmt-params """ import csv with open(file, 'w') as f: csv_writer = csv.writer(f, **kwargs) csv_writer.writerow(rows.headers) csv_writer.writerows(rows.rows)
mit
brightchen/h2o-3
h2o-py/tests/testdir_algos/kmeans/pyunit_iris_h2o_vs_sciKmeans.py
5
1208
import sys sys.path.insert(1, "../../../") import h2o, tests import numpy as np from sklearn.cluster import KMeans def iris_h2o_vs_sciKmeans(): # Connect to a pre-existing cluster # connect to localhost:54321 iris_h2o = h2o.import_file(path=h2o.locate("smalldata/iris/iris.csv")) iris_sci = np.genfromtxt(h2o.locate("smalldata/iris/iris.csv"), delimiter=',') iris_sci = iris_sci[:,0:4] s =[[4.9,3.0,1.4,0.2], [5.6,2.5,3.9,1.1], [6.5,3.0,5.2,2.0]] start = h2o.H2OFrame(s) h2o_km = h2o.kmeans(x=iris_h2o[0:4], k=3, user_points=start, standardize=False) sci_km = KMeans(n_clusters=3, init=np.asarray(s), n_init=1) sci_km.fit(iris_sci) # Log.info("Cluster centers from H2O:") print "Cluster centers from H2O:" h2o_centers = h2o_km.centers() print h2o_centers # Log.info("Cluster centers from scikit:") print "Cluster centers from scikit:" sci_centers = sci_km.cluster_centers_.tolist() print sci_centers for hcenter, scenter in zip(h2o_centers, sci_centers): for hpoint, spoint in zip(hcenter,scenter): assert (hpoint- spoint) < 1e-10, "expected centers to be the same" if __name__ == "__main__": tests.run_test(sys.argv, iris_h2o_vs_sciKmeans)
apache-2.0
frank-tancf/scikit-learn
examples/cluster/plot_segmentation_toy.py
91
3522
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 # We use a mask that limits to the foreground: the problem that we are # interested in here is not separating the objects from the background, # but separating them one from the other. mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
anetasie/sherpa
sherpa/astro/data.py
1
137542
# # Copyright (C) 2008, 2015, 2016, 2017, 2018, 2019, 2020 # Smithsonian Astrophysical Observatory # # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ Classes for storing, inspecting, and manipulating astronomical data sets """ import os.path import logging import warnings import numpy from sherpa.data import Data1DInt, Data2D, Data, Data2DInt, Data1D, IntegratedDataSpace2D from sherpa.models.regrid import EvaluationSpace1D from sherpa.utils.err import DataErr, ImportErr from sherpa.utils import SherpaFloat, pad_bounding_box, interpolate, \ create_expr, parse_expr, bool_cast, rebin, filter_bins from sherpa.utils import formatting # There are currently (Sep 2015) no tests that exercise the code that # uses the compile_energy_grid symbols. from sherpa.astro.utils import arf_fold, rmf_fold, filter_resp, \ compile_energy_grid, do_group, expand_grouped_mask info = logging.getLogger(__name__).info warning = logging.getLogger(__name__).warning regstatus = False try: from sherpa.astro.utils._region import Region regstatus = True except ImportError: warning('failed to import sherpa.astro.utils._region; Region routines ' + 'will not be available') groupstatus = False try: import group as pygroup groupstatus = True except ImportError: groupstatus = False warning('the group module (from the CIAO tools package) is not ' + 'installed.\nDynamic grouping functions will not be available.') __all__ = ('DataARF', 'DataRMF', 'DataPHA', 'DataIMG', 'DataIMGInt', 'DataRosatRMF') def _notice_resp(chans, arf, rmf): bin_mask = None if rmf is not None and arf is not None: bin_mask = rmf.notice(chans) if len(rmf.energ_lo) == len(arf.energ_lo): arf.notice(bin_mask) # If the response is mis-matched, determine which energy bins in the # RMF correspond to energy bins in the ARF and which are noticed. # Propogate the noticed RMF energy bins to the ARF energy bins. elif len(rmf.energ_lo) < len(arf.energ_lo): arf_mask = None if bin_mask is not None: arf_mask = numpy.zeros(len(arf.energ_lo), dtype=bool) for ii, val in enumerate(bin_mask): if val: los = (rmf.energ_lo[ii],) his = (rmf.energ_hi[ii],) grid = (arf.energ_lo, arf.energ_hi) idx = filter_bins(los, his, grid).nonzero()[0] arf_mask[idx] = True arf.notice(arf_mask) else: if rmf is not None: bin_mask = rmf.notice(chans) if arf is not None: arf.notice(bin_mask) def display_header(header, key): """Return the header value for display by _repr_html The value is not displayed if it doesn't exist, is None, is empty, or is the string 'NONE'. This is intended for PHA responses. Parameters ---------- header : dict-like key : str The key to display Returns ------- value : None or value The value to display, or None. Notes ----- It is not clear if the Meta class is intended to only store string values or not. Limited protection is provided in case the value stored is not a string. """ try: val = header[key] except KeyError: return None # Unclear if this can happen if val is None: return None # The metadata value is not guaranteed to be a string try: val = val.strip() if val in ['', 'NONE']: return None except AttributeError: pass return val def make_metadata(header, items): """Create the metadata table. Parameters ---------- header : dict-like The header. Expected to be a sherpa.astro.io.meta.Meta object but just needs to act like a dictionary. items : list of (str, str) The keys to display (in order), if set. The first element is the key name, and the second is the label in the header to display. Returns ------- meta : list of (str, str) or None The two-element table rows to display. If no rows matched return None. """ meta = [] for key, desc in items: val = display_header(header, key) if val is None: continue meta.append((desc, val)) if len(meta) == 0: return None return meta def _extract_fields(obj, stop, summary, open_block=True): """Extract the fields up until the stop field. Parameters ---------- obj : Data instance It has to have a _fields attribute stop : str The attribute at which to stop (and is not included). summary : str The label for the details tab. open_block : bool, optional Is the details tab open or closed? Returns ------- html : str The HTML for this section. """ meta = [] for f in obj._fields[1:]: if f == stop: break v = getattr(obj, f) if v is None: continue meta.append((f.upper(), v)) return formatting.html_section(meta, summary=summary, open_block=open_block) def html_pha(pha): """HTML representation: PHA""" from sherpa.astro.plot import DataPHAPlot, backend ls = [] plotter = DataPHAPlot() plotter.prepare(pha) try: out = backend.as_html_plot(plotter, 'PHA Plot') except AttributeError: out = None if out is None: out = _extract_fields(pha, 'grouped', 'PHA Data') ls.append(out) # Summary properties meta = [] if pha.name is not None and pha.name != '': meta.append(('Identifier', pha.name)) if pha.exposure is not None: meta.append(('Exposure', '{:g} s'.format(pha.exposure))) meta.append(('Number of bins', len(pha.channel))) meta.append(('Channel range', '{} - {}'.format(int(pha.channel[0]), int(pha.channel[-1])))) # Although assume the counts are integers, do not force this cmin = pha.counts.min() cmax = pha.counts.max() meta.append(('Count range', '{} - {}'.format(cmin, cmax))) if pha.background_ids != []: if pha.subtracted: msg = 'Subtracted' else: msg = 'Not subtracted' meta.append(('Background', msg)) # Make sure show all groups (not just those that are within # the filter applied to the object). # if pha.grouping is not None: if pha.grouped: ngrp = pha.apply_grouping(pha.counts).size msg = 'Applied ({} groups)'.format(ngrp) else: msg = 'Not applied' meta.append(('Grouping', msg)) # Should this only be displayed if a filter has been applied? # fexpr = pha.get_filter_expr() bintype = 'groups' if pha.grouped else 'channels' nbins = pha.get_dep(filter=True).size meta.append(('Using', '{} with {} {}'.format(fexpr, nbins, bintype))) ls.append(formatting.html_section(meta, summary='Summary', open_block=True)) # TODO: # correction factors # Display a subset of header values # - maybe don't display the FITLER if NONE # - how about RESPFILE / PHAFILE if pha.header is not None: meta = make_metadata(pha.header, [('TELESCOP', 'Mission or Satellite'), ('INSTRUME', 'Instrument or Detector'), ('FILTER', 'Instrument filter'), ('OBJECT', 'Object'), ('TITLE', 'Program description'), ('DATE-OBS', 'Observation date'), ('CREATOR', 'Program that created the PHA'), ('CHANTYPE', 'The channel type'), ('HDUCLAS2', 'Data stored'), ('HDUCLAS3', 'Data format'), ('HDUCLAS4', 'PHA format')]) if meta is not None: ls.append(formatting.html_section(meta, summary='Metadata')) return formatting.html_from_sections(pha, ls) def _calc_erange(elo, ehi): """Create the energy range information. Parameters ---------- elo, ehi - NumPy array The low and high energy bins, in keV. Returns ------- erange : str The string representation of the energy range """ # Have we guaranteed the ordering here or not? Assuming # NumPy arrays. e1 = elo[0] e2 = ehi[-1] emin, emax = (e1, e2) if e1 <= e2 else (e2, e1) erange = '{:g} - {:g} keV'.format(emin, emax) # Randomly pick 1% as the cut-off for a constant bin width # de = numpy.abs(ehi - elo) demin = de.min() demax = de.max() if demin > 0.0: dedelta = (demax - demin) / demin else: dedelta = 1 if dedelta <= 0.01: erange += ', bin size {:g} keV'.format(demax) else: erange += ', bin size {:g} - {:g} keV'.format(demin, demax) return erange def _calc_wrange(wlo, whi): """Create the wavelength range information. Parameters ---------- wlo, whi - NumPy array The low and high wavelength bins, in Angstroms. Returns ------- wrange : str The string representation of the wavelength range """ w1 = wlo[0] w2 = whi[-1] wmin, wmax = (w1, w2) if w1 <= w2 else (w2, w1) wrange = '{:g} - {:g} &#8491;'.format(wmin, wmax) # Randomly pick 1% as the cut-off for a constant bin width # dw = numpy.abs(whi - wlo) dwmin = dw.min() dwmax = dw.max() if dwmin > 0.0: dwdelta = (dwmax - dwmin) / dwmin else: dwdelta = 1 if dwdelta <= 0.01: wrange += ', bin size {:g} &#8491;'.format(dwmax) else: wrange += ', bin size {:g} - {:g} &#8491;'.format(dwmin, dwmax) return wrange def html_arf(arf): """HTML representation: ARF""" # Unlike the string representation, this provides extra # information (e.g. energy range covered). Should it include # any filters or masks? How about bin_lo/hi values? # # It also assumes the units are keV/cm^2 which is not # guaranteed. from sherpa.astro.plot import ARFPlot, backend ls = [] plotter = ARFPlot() plotter.prepare(arf) try: out = backend.as_html_plot(plotter, 'ARF Plot') except AttributeError: out = None if out is None: out = _extract_fields(arf, 'exposure', 'ARF Data') ls.append(out) # Summary properties meta = [] if arf.name is not None and arf.name != '': meta.append(('Identifier', arf.name)) if arf.exposure is not None: meta.append(('Exposure', '{:g} s'.format(arf.exposure))) meta.append(('Number of bins', len(arf.specresp))) erange = _calc_erange(arf.energ_lo, arf.energ_hi) meta.append(('Energy range', erange)) # repeat for wavelengths (without the energy threshold) # if arf.bin_lo is not None and arf.bin_hi is not None: wrange = _calc_wrange(arf.bin_lo, arf.bin_hi) meta.append(('Wavelength range', wrange)) a1 = numpy.min(arf.specresp) a2 = numpy.max(arf.specresp) meta.append(('Area range', '{:g} - {:g} cm<sup>2</sup>'.format(a1, a2))) ls.append(formatting.html_section(meta, summary='Summary', open_block=True)) # Display a subset of header values # - maybe don't display the FITLER if NONE # - how about RESPFILE / PHAFILE if arf.header is not None: meta = make_metadata(arf.header, [('TELESCOP', 'Mission or Satellite'), ('INSTRUME', 'Instrument or Detector'), ('FILTER', 'Instrument filter'), ('OBJECT', 'Object'), ('TITLE', 'Program description'), ('DATE-OBS', 'Observation date'), ('CREATOR', 'Program that created the ARF')]) if meta is not None: ls.append(formatting.html_section(meta, summary='Metadata')) return formatting.html_from_sections(arf, ls) def html_rmf(rmf): """HTML representation: RMF""" # See _html_arf for general comments ls = [] svg = simulate_rmf_plot(rmf) if svg is not None: out = formatting.html_svg(svg, 'RMF Plot') else: out = _extract_fields(rmf, 'ethresh', 'RMF Data') ls.append(out) # Summary properties meta = [] if rmf.name is not None and rmf.name != '': meta.append(('Identifier', rmf.name)) meta.append(('Number of channels', rmf.detchans)) meta.append(('Number of energies', len(rmf.energ_hi))) erange = _calc_erange(rmf.energ_lo, rmf.energ_hi) if rmf.ethresh is not None and rmf.energ_lo[0] <= rmf.ethresh: # Not entirely happy with the wording of this erange += ' (minimum threshold of {} was used)'.format(rmf.ethresh) meta.append(('Energy range', erange)) meta.append(('Channel range', '{} - {}'.format(int(rmf.offset), int(rmf.offset + rmf.detchans - 1)))) # Could show the energy range as given by e_min/e_max but # is this useful? ls.append(formatting.html_section(meta, summary='Summary', open_block=True)) # Display a subset of header values # - how about PHAFILE if rmf.header is not None: meta = make_metadata(rmf.header, [('TELESCOP', 'Mission or Satellite'), ('INSTRUME', 'Instrument or Detector'), ('FILTER', 'Instrument filter'), ('OBJECT', 'Object'), ('TITLE', 'Program description'), ('DATE-OBS', 'Observation date'), ('CREATOR', 'Program that created the RMF'), ('CHANTYPE', 'The channel type'), ('LO_THRES', 'The minimum probability threshold'), ('HDUCLAS3', 'Matrix contents')]) if meta is not None: ls.append(formatting.html_section(meta, summary='Metadata')) return formatting.html_from_sections(rmf, ls) def html_img(img): """HTML representation: IMG Special-case of the Data2D handling. It would be nice to re-use parts of the superclass behavior. """ ls = [] dtype = type(img).__name__ svg = img_plot(img) if svg is not None: out = formatting.html_svg(svg, '{} Plot'.format(dtype)) summary = '' else: # Only add prefix to summary if there's no plot summary = '{} '.format(dtype) # Summary properties # meta = [] if img.name is not None and img.name != '': meta.append(('Identifier', img.name)) # shape is better defined for DataIMG than Data2D meta.append(('Shape', ('{1} by {0} pixels'.format(*img.shape)))) meta.append(('Number of bins', len(img.y))) # Rely on the _fields ordering, ending at shape for f in img._fields[1:]: if f == 'shape': break meta.append((f.upper(), getattr(img, f))) if img.staterror is not None: meta.append(('Statistical error', img.staterror)) if img.syserror is not None: meta.append(('Systematic error', img.syserror)) out = formatting.html_section(meta, summary=summary + 'Data', open_block=True) ls.append(out) # Add coordinate-system information. The WCS structure in Sherpa # is not really sufficient to identify the transform. # if img.sky is not None: meta = [] meta.append(('Center pixel (logical)', img.sky.crpix)) meta.append(('Center pixel (physical)', img.sky.crval)) meta.append(('Pixel size', img.sky.cdelt)) ls.append(formatting.html_section(meta, summary='Coordinates: {}'.format(img.sky.name))) if img.eqpos is not None: meta = [] meta.append(('Center pixel (physical)', img.eqpos.crpix)) # could convert to RA/Dec meta.append(('Center pixel (world)', img.eqpos.crval)) meta.append(('Pixel size', img.eqpos.cdelt)) meta.append(('Rotation', img.eqpos.crota)) meta.append(('Epoch', img.eqpos.epoch)) meta.append(('Equinox', img.eqpos.equinox)) ls.append(formatting.html_section(meta, summary='Coordinates: {}'.format(img.eqpos.name))) if img.header is not None: meta = make_metadata(img.header, [('TELESCOP', 'Mission or Satellite'), ('INSTRUME', 'Instrument or Detector'), ('FILTER', 'Instrument filter'), ('OBJECT', 'Object'), ('TITLE', 'Program description'), ('OBSERVER', 'Observer'), ('EXPOSURE', 'Exposure time'), ('DATE-OBS', 'Observation date'), ('CREATOR', 'Program that created the image')]) if meta is not None: ls.append(formatting.html_section(meta, summary='Metadata')) return formatting.html_from_sections(img, ls) def simulate_rmf_plot(rmf): """Create a plot which shows the response to monochromatic energies. The SVG of the plot is returned if matplotlib is selected as the backend. The choice of energies used to create the response to monochromatic energies is based on the data range (using log scaling). """ from sherpa.models.basic import Delta1D from sherpa.plot import backend try: from matplotlib import pyplot as plt except ImportError: return None # X access # if rmf.e_min is None: x = numpy.arange(rmf.offset, rmf.detchans + rmf.offset) xlabel = 'Channel' else: x = 0.5 * (rmf.e_min + rmf.e_max) xlabel = 'Energy (keV)' # How many monochromatic lines to use # nlines = 5 # for now let's just create log-spaced energies # elo, ehi = rmf.energ_lo, rmf.energ_hi l1 = numpy.log10(elo[0]) l2 = numpy.log10(ehi[-1]) dl = (l2 - l1) / (nlines + 1) lines = l1 + dl * numpy.arange(1, nlines + 1) energies = numpy.power(10, lines) mdl = Delta1D() def plotfunc(): fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.2) for energy in energies: mdl.pos = energy y = rmf.apply_rmf(mdl(elo, ehi)) ax.plot(x, y, label='{:.2g} keV'.format(energy)) # Try to get the legend centered nicely below the plot fig.legend(loc='center', ncol=nlines, bbox_to_anchor=(0.0, 0, 1, 0.1)) ax.set_xlabel(xlabel) ax.set_title(rmf.name) ax.set_xscale('log') ax.set_yscale('log') return fig try: return backend.as_svg(plotfunc) except AttributeError: return None def img_plot(img): """Display the image. The SVG of the plot is returned if matplotlib is selected as the backend. The eqpos/wcs coordinate system is not used; it uses physical instead. This greatly simplifies the plot (no need to handle WCS). """ from sherpa.plot import backend try: from matplotlib import pyplot as plt except ImportError: return None # Apply filter and coordinate system # y = img.get_img() # extent is left, right, bottom, top and describes the # outer-edge of the pixels. # ny, nx = img.shape coord = img.coord if coord in ['physical', 'world']: x0, y0 = img._logical_to_physical(0.5, 0.5) x1, y1 = img._logical_to_physical(nx + 0.5, ny + 0.5) extent = (x0, x1, y0, y1) lbl = 'physical' cdelt = img.sky.cdelt aspect = 'equal' if cdelt[1] == cdelt[0] else 'auto' else: extent = (0.5, nx + 0.5, 0.5, ny + 0.5) aspect = 'equal' lbl = 'logical' # What is the filtered dataset? # if img.get_filter_expr() != '': x0, x1 = img.get_indep(filter=True) x0min, x0max = numpy.min(x0), numpy.max(x0) x1min, x1max = numpy.min(x1), numpy.max(x1) # Should add in half cdelt to padd these, but # it looks like it isn't necessary. filtered = (x0min, x1min, x0max, x1max) else: filtered = None def plotfunc(): fig, ax = plt.subplots() im = ax.imshow(y, origin='lower', extent=extent, aspect=aspect) fig.colorbar(im, ax=ax) if filtered != None: ax.set_xlim(filtered[0], filtered[2]) ax.set_ylim(filtered[1], filtered[3]) ax.set_xlabel('X ({})'.format(lbl)) ax.set_ylabel('Y ({})'.format(lbl)) if img.name is not None and img.name != '': ax.set_title(img.name) return fig try: return backend.as_svg(plotfunc) except AttributeError: return None class DataOgipResponse(Data1DInt): """ Parent class for OGIP responses, in particular ARF and RMF. This class implements some common validation code that inheriting classes can call in their initializers. Inheriting classes should override the protected class field `_ui_name` to provide a more specific label for user messages. """ _ui_name = "OGIP Response" # FIXME For a future time when we'll review this code in a deeper way: we # could have better separation of concerns if the initializers of `DataARF` # and `DataRMF` did not rely on the `Data` initializer, and if the # class hierarchy was better organized (e.g. it looks like children must # not call their super's initializer. Also, I'd expect validation to # happen in individual methods rather than in a large one, and nested ifs # should be avoided if possible. # # The shift to creating a warning message instead of raising an # error has made this messier. # def _validate_energy_ranges(self, label, elo, ehi, ethresh): """Check the lo/hi values are > 0, handling common error case. Several checks are made, to make sure the parameters follow the OGIP standard. At present a failed check can result in either a warning message being logged, or an error raised. It was felt that raising an error in all cases would not be helpful to a user, who can't (easily) change the response files. Parameters ---------- label : str The response file identifier. elo, ehi : numpy.ndarray The input ENERG_LO and ENERG_HI arrays. They are assumed to be one-dimensional and have the same number of elements. ethresh : None or float, optional If None, then elo must be greater than 0. When set, the start bin can have a low-energy edge of 0; it is replaced by ethresh. If set, ethresh must be greater than 0. An error is raised if ethresh is larger than the upper-edge of the first bin (only if the lower edge has been replaced). Returns ------- elo, ehi : numpy arrays The validated energy limits. These can be the input arrays or a copy of them. At present the ehi array is the same as the input array, but this may change in the future. Notes ----- Only some of the constraints provided by the OGIP standard are checked here, since there are issues involving numerical effects (e.g. when checking that two bins do not overlap), as well as uncertainty over what possible behavior is seen in released data products for missions. The current set of checks are: - ehi > elo for each bin - elo is monotonic (ascending or descending) - when emin is set, the lowest value in elo is >= 0, otherwise it is > 0. - ethresh (if set) is less than the minimum value in ENERG_HI """ rtype = self._ui_name if elo.size != ehi.size: raise ValueError("The energy arrays must have the same size, not {} and {}" .format(elo.size, ehi.size)) if ethresh is not None and ethresh <= 0.0: raise ValueError("ethresh is None or > 0") if (elo >= ehi).any(): # raise DataErr('ogip-error', rtype, label, # 'has at least one bin with ENERG_HI < ENERG_LO') wmsg = "The {} '{}' ".format(rtype, label) + \ 'has at least one bin with ENERG_HI < ENERG_LO' warnings.warn(wmsg) # if elo is monotonically increasing, all elements will be True # decreasing, False # # so the sum will be number of elements or 0 # increasing = numpy.diff(elo, n=1) > 0.0 nincreasing = increasing.sum() if nincreasing > 0 and nincreasing != len(increasing): # raise DataErr('ogip-error', rtype, label, # 'has a non-monotonic ENERG_LO array') wmsg = "The {} '{}' ".format(rtype, label) + \ 'has a non-monotonic ENERG_LO array' warnings.warn(wmsg) if nincreasing == 0: startidx = -1 else: startidx = 0 e0 = elo[startidx] if ethresh is None: if e0 <= 0.0: raise DataErr('ogip-error', rtype, label, 'has an ENERG_LO value <= 0') else: # TODO: should this equality be replaced by an approximation test? if e0 == 0.0: if ehi[startidx] <= ethresh: raise DataErr('ogip-error', rtype, label, 'has an ENERG_HI value <= the replacement ' + 'value of {}'.format(ethresh)) elo = elo.copy() elo[startidx] = ethresh wmsg = "The minimum ENERG_LO in the " + \ "{} '{}' was 0 and has been ".format(rtype, label) + \ "replaced by {}".format(ethresh) warnings.warn(wmsg) elif e0 < 0.0: # raise DataErr('ogip-error', rtype, label, # 'has an ENERG_LO value < 0') wmsg = "The {} '{}' ".format(rtype, label) + \ 'has an ENERG_LO value < 0' warnings.warn(wmsg) return elo, ehi def _get_data_space(self, filter=False): return EvaluationSpace1D(self._lo, self._hi) class DataARF(DataOgipResponse): """ARF data set. The ARF format is described in OGIP documents [1]_ and [2]_. Parameters ---------- name : str The name of the data set; often set to the name of the file containing the data. energ_lo, energ_hi, specresp : numpy.ndarray The values of the ENERG_LO, ENERG_HI, and SPECRESP columns for the ARF. The ENERG_HI values must be greater than the ENERG_LO values for each bin, and the energy arrays must be in increasing or decreasing order. bin_lo, bin_hi : array or None, optional exposure : number or None, optional The exposure time for the ARF, in seconds. header : dict or None, optional ethresh : number or None, optional If set it must be greater than 0 and is the replacement value to use if the lowest-energy value is 0.0. Raises ------ sherpa.utils.err.DataErr This is raised if the energy arrays do not follow some of the OGIP standards. Notes ----- There is limited checking that the ARF matches the OGIP standard, but as there are cases of released data products that do not follow the standard, these checks can not cover all cases. References ---------- .. [1] "The Calibration Requirements for Spectral Analysis (Definition of RMF and ARF file formats)", https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html .. [2] "The Calibration Requirements for Spectral Analysis Addendum: Changes log", https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002a/cal_gen_92_002a.html """ _ui_name = "ARF" _fields = ("name", "energ_lo", "energ_hi", "specresp", "bin_lo", "bin_hi", "exposure", "ethresh") def _get_specresp(self): return self._specresp def _set_specresp(self, val): self._specresp = val self._rsp = val specresp = property(_get_specresp, _set_specresp) def __init__(self, name, energ_lo, energ_hi, specresp, bin_lo=None, bin_hi=None, exposure=None, header=None, ethresh=None): self.specresp = specresp self.bin_lo = bin_lo self.bin_hi = bin_hi self.exposure = exposure self.header = header self.ethresh = ethresh energ_lo, energ_hi = self._validate_energy_ranges(name, energ_lo, energ_hi, ethresh) self._lo, self._hi = energ_lo, energ_hi self.energ_lo = energ_lo self.energ_hi = energ_hi Data1DInt.__init__(self, name, energ_lo, energ_hi, specresp) def __str__(self): # Print the metadata first try: ss = Data.__str__(self) except: ss = self._fields return ss def _repr_html_(self): """Return a HTML (string) representation of the ARF """ return html_arf(self) def __setstate__(self, state): if 'header' not in state: self.header = None self.__dict__.update(state) if '_specresp' not in state: self.__dict__['_specresp'] = state.get('specresp', None) self.__dict__['_rsp'] = state.get('specresp', None) def apply_arf(self, src, *args, **kwargs): "Fold the source array src through the ARF and return the result" # an external function must be called so all ARFs go through # a single entry point in order for caching to 'work' model = arf_fold(src, self._rsp) # Rebin the high-res source model folded through ARF down to the size # the PHA or RMF expects. if args != (): (arf, rmf) = args if rmf != () and len(arf[0]) > len(rmf[0]): model = rebin(model, arf[0], arf[1], rmf[0], rmf[1]) return model def notice(self, bin_mask=None): self._rsp = self.specresp self._lo = self.energ_lo self._hi = self.energ_hi if bin_mask is not None: self._rsp = self.specresp[bin_mask] self._lo = self.energ_lo[bin_mask] self._hi = self.energ_hi[bin_mask] def get_indep(self, filter=False): return (self._lo, self._hi) def get_dep(self, filter=False): return self._rsp def get_xlabel(self): return 'Energy (keV)' def get_ylabel(self): from sherpa.plot import backend return 'cm' + backend.get_latex_for_string('^2') class DataRMF(DataOgipResponse): """RMF data set. The RMF format is described in OGIP documents [1]_ and [2]_. Parameters ---------- name : str The name of the data set; often set to the name of the file containing the data. detchans : int energ_lo, energ_hi : array The values of the ENERG_LO, ENERG_HI, and SPECRESP columns for the ARF. The ENERG_HI values must be greater than the ENERG_LO values for each bin, and the energy arrays must be in increasing or decreasing order. n_grp, f_chan, n_chan, matrix : array-like offset : int, optional e_min, e_max : array-like or None, optional header : dict or None, optional ethresh : number or None, optional If set it must be greater than 0 and is the replacement value to use if the lowest-energy value is 0.0. Notes ----- There is limited checking that the RMF matches the OGIP standard, but as there are cases of released data products that do not follow the standard, these checks can not cover all cases. If a check fails then a warning message is logged. References ---------- .. [1] "The Calibration Requirements for Spectral Analysis (Definition of RMF and ARF file formats)", https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html .. [2] "The Calibration Requirements for Spectral Analysis Addendum: Changes log", https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002a/cal_gen_92_002a.html """ _ui_name = "RMF" _fields = ("name", "detchans", "energ_lo", "energ_hi", "n_grp", "f_chan", "n_chan", "matrix", "offset", "e_min", "e_max", "ethresh") def __init__(self, name, detchans, energ_lo, energ_hi, n_grp, f_chan, n_chan, matrix, offset=1, e_min=None, e_max=None, header=None, ethresh=None): energ_lo, energ_hi = self._validate(name, energ_lo, energ_hi, ethresh) if offset < 0: raise ValueError("offset must be >=0, not {}".format(offset)) self.energ_lo = energ_lo self.energ_hi = energ_hi self.offset = offset self.detchans = detchans self.e_min = e_min self.e_max = e_max self.header = header self.n_grp = n_grp self.f_chan = f_chan self.n_chan = n_chan self.matrix = matrix self.ethresh = ethresh self._fch = f_chan self._nch = n_chan self._grp = n_grp self._rsp = matrix self._lo = energ_lo self._hi = energ_hi Data1DInt.__init__(self, name, energ_lo, energ_hi, matrix) def __str__(self): # Print the metadata first old = self._fields ss = old try: self._fields = tuple(filter((lambda x: x != 'header'), self._fields)) ss = Data.__str__(self) finally: self._fields = old return ss def _repr_html_(self): """Return a HTML (string) representation of the RMF """ return html_rmf(self) def __setstate__(self, state): if 'header' not in state: self.header = None self.__dict__.update(state) def _validate(self, name, energy_lo, energy_hi, ethresh): """ Validate energy ranges and, if necessary, make adjustments. Subclasses may override this method to perform different validations or skip validation altogether. Parameters ---------- name : str The name/label of the current file energy_lo, energ_hi : NumPy array The lower bounds of the energy bins. The arrays must have the same size ethresh : float The lowest energy value Returns ------- energy_lo, energ_hi : NumPy array The energy values to use for the bin boundaries """ return self._validate_energy_ranges(name, energy_lo, energy_hi, ethresh) def apply_rmf(self, src, *args, **kwargs): "Fold the source array src through the RMF and return the result" # Rebin the high-res source model from the PHA down to the size # the RMF expects. if args != (): (rmf, pha) = args if pha != () and len(pha[0]) > len(rmf[0]): src = rebin(src, pha[0], pha[1], rmf[0], rmf[1]) if len(src) != len(self._lo): raise TypeError("Mismatched filter between ARF and RMF " + "or PHA and RMF") return rmf_fold(src, self._grp, self._fch, self._nch, self._rsp, self.detchans, self.offset) def notice(self, noticed_chans=None): bin_mask = None self._fch = self.f_chan self._nch = self.n_chan self._grp = self.n_grp self._rsp = self.matrix self._lo = self.energ_lo self._hi = self.energ_hi if noticed_chans is not None: (self._grp, self._fch, self._nch, self._rsp, bin_mask) = filter_resp(noticed_chans, self.n_grp, self.f_chan, self.n_chan, self.matrix, self.offset) self._lo = self.energ_lo[bin_mask] self._hi = self.energ_hi[bin_mask] return bin_mask def get_indep(self, filter=False): return (self._lo, self._hi) def get_dep(self, filter=False): return self.apply_rmf(numpy.ones(self.energ_lo.shape, SherpaFloat)) def get_xlabel(self): if (self.e_min is not None) and (self.e_max is not None): return 'Energy (keV)' return 'Channel' def get_ylabel(self): return 'Counts' # FIXME There are places in the code that explicitly check if an object is an instance of sherpa.astro.data.DataRMF. # So it's safer to make DataRosatRMF a subclass of the default class, although in principle they should be siblings # and subclasses of the same superclass. class DataRosatRMF(DataRMF): ui_name = "ROSAT RMF" def _validate(self, name, energy_lo, energy_hi, ethresh): return energy_lo, energy_hi class DataPHA(Data1D): """PHA data set, including any associated instrument and background data. The PHA format is described in an OGIP document [1]_. Parameters ---------- name : str The name of the data set; often set to the name of the file containing the data. channel, counts : array of int The PHA data. staterror, syserror : scalar or array or None, optional The statistical and systematic errors for the data, if defined. bin_lo, bin_hi : array or None, optional grouping : array of int or None, optional quality : array of int or None, optional exposure : number or None, optional The exposure time for the PHA data set, in seconds. backscal : scalar or array or None, optional areascal : scalar or array or None, optional header : dict or None, optional Attributes ---------- name : str Used to store the file name, for data read from a file. channel counts staterror syserror bin_lo bin_hi grouping quality exposure backscal areascal Notes ----- The original data is stored in the attributes - e.g. `counts` - and the data-access methods, such as `get_dep` and `get_staterror`, provide any necessary data manipulation to handle cases such as: background subtraction, filtering, and grouping. The handling of the AREASCAl value - whether it is a scalar or array - is currently in flux. It is a value that is stored with the PHA file, and the OGIP PHA standard ([1]_) describes the observed counts being divided by the area scaling before comparison to the model. However, this is not valid for Poisson-based statistics, and is also not how XSPEC handles AREASCAL ([2]_); the AREASCAL values are used to scale the exposure times instead. The aim is to add this logic to the instrument models in `sherpa.astro.instrument`, such as `sherpa.astro.instrument.RMFModelPHA`. The area scaling still has to be applied when calculating the background contribution to a spectrum, as well as when calculating the data and model values used for plots (following XSPEC so as to avoid sharp discontinuities where the area-scaling factor changes strongly). References ---------- .. [1] "The OGIP Spectral File Format", https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/ogip_92_007.html .. [2] Private communication with Keith Arnaud """ _fields = ("name", "channel", "counts", "bin_lo", "bin_hi", "grouping", "quality", "exposure", "backscal", "areascal") def _get_grouped(self): return self._grouped def _set_grouped(self, val): val = bool(val) if val and self.grouping is None: raise DataErr('nogrouping', self.name) if self._grouped == val: return # As the grouping status is being changed, we need to reset the mask # to be correct size, while still noticing groups within the filter # if numpy.iterable(self.mask): old_filter = self.get_filter(group=val) self._grouped = val self.ignore() for vals in parse_expr(old_filter): self.notice(*vals) self._grouped = val grouped = property(_get_grouped, _set_grouped, doc='Are the data grouped?') def _get_subtracted(self): return self._subtracted def _set_subtracted(self, val): val = bool(val) if len(self._backgrounds) == 0: raise DataErr('nobkg', self.name) self._subtracted = val subtracted = property(_get_subtracted, _set_subtracted, doc='Are the background data subtracted?') def _get_units(self): return self._units def _set_units(self, val): units = str(val).strip().lower() if units == 'bin': units = 'channel' if units.startswith('chan'): # Note: the names of these routines appear confusing because of the # way group values are used self._to_channel = self._channel_to_group self._from_channel = self._group_to_channel units = 'channel' elif units.startswith('ener'): self._to_channel = self._energy_to_channel self._from_channel = self._channel_to_energy units = 'energy' elif units.startswith('wave'): self._to_channel = self._wavelength_to_channel self._from_channel = self._channel_to_wavelength units = 'wavelength' else: raise DataErr('bad', 'quantity', val) for id in self.background_ids: bkg = self.get_background(id) if bkg.get_response() != (None, None) or \ (bkg.bin_lo is not None and bkg.bin_hi is not None): bkg.units = units self._units = units units = property(_get_units, _set_units, doc='Units of the independent axis') def _get_rate(self): return self._rate def _set_rate(self, val): self._rate = bool_cast(val) for id in self.background_ids: # TODO: shouldn't this store bool_cast(val) instead? self.get_background(id).rate = val rate = property(_get_rate, _set_rate, doc='Quantity of y-axis: counts or counts/sec') def _get_plot_fac(self): return self._plot_fac def _set_plot_fac(self, val): self._plot_fac = int(val) for id in self.background_ids: self.get_background(id).plot_fac = val plot_fac = property(_get_plot_fac, _set_plot_fac, doc='Number of times to multiply the y-axis ' + 'quantity by x-axis bin size') def _get_response_ids(self): return self._response_ids def _set_response_ids(self, ids): if not numpy.iterable(ids): raise DataErr('idsnotarray', 'response', str(ids)) keys = self._responses.keys() for id in ids: if id not in keys: raise DataErr('badids', str(id), 'response', str(keys)) ids = list(ids) self._response_ids = ids response_ids = property(_get_response_ids, _set_response_ids, doc=('IDs of defined instrument responses ' + '(ARF/RMF pairs)')) def _get_background_ids(self): return self._background_ids def _set_background_ids(self, ids): if not numpy.iterable(ids): raise DataErr('idsnotarray', 'background', str(ids)) keys = self._backgrounds.keys() for id in ids: if id not in keys: raise DataErr('badids', str(id), 'background', str(keys)) ids = list(ids) self._background_ids = ids background_ids = property(_get_background_ids, _set_background_ids, doc='IDs of defined background data sets') _fields = ('name', 'channel', 'counts', 'staterror', 'syserror', 'bin_lo', 'bin_hi', 'grouping', 'quality', 'exposure', 'backscal', 'areascal', 'grouped', 'subtracted', 'units', 'rate', 'plot_fac', 'response_ids', 'background_ids') def __init__(self, name, channel, counts, staterror=None, syserror=None, bin_lo=None, bin_hi=None, grouping=None, quality=None, exposure=None, backscal=None, areascal=None, header=None): self.channel = channel self.counts = counts self.bin_lo = bin_lo self.bin_hi = bin_hi self.quality = quality self.grouping = grouping self.exposure = exposure self.backscal = backscal self.areascal = areascal self.header = header self._grouped = (grouping is not None) self._original_groups = True self._subtracted = False self._response_ids = [] self._background_ids = [] self._responses = {} self._backgrounds = {} self._rate = True self._plot_fac = 0 self.units = 'channel' self.quality_filter = None Data1D.__init__(self, name, channel, counts, staterror, syserror) def __str__(self): # Print the metadata first old = self._fields ss = old try: self._fields = tuple(filter((lambda x: x != 'header'), self._fields)) ss = Data.__str__(self) finally: self._fields = old return ss def _repr_html_(self): """Return a HTML (string) representation of the PHA """ return html_pha(self) def __getstate__(self): state = self.__dict__.copy() del state['_to_channel'] del state['_from_channel'] return state def __setstate__(self, state): self._background_ids = state['_background_ids'] self._backgrounds = state['_backgrounds'] self._set_units(state['_units']) if 'header' not in state: self.header = None self.__dict__.update(state) primary_response_id = 1 """The identifier for the response component when not set.""" def set_analysis(self, quantity, type='rate', factor=0): """Return the units used when fitting spectral data. Parameters ---------- quantity : {'channel', 'energy', 'wavelength'} The analysis setting. type : {'rate', 'counts'}, optional Do plots display a rate or show counts? factor : int, optional The Y axis of plots is multiplied by Energy^factor or Wavelength^factor before display. The default is 0. Raises ------ sherpa.utils.err.DatatErr If the type argument is invalid, the RMF or ARF has the wrong size, or there in no response. See Also -------- get_analysis Examples -------- >>> pha.set_analysis('energy') >>> pha.set_analysis('wave', type='counts' factor=1) """ self.plot_fac = factor type = str(type).strip().lower() if not (type.startswith('counts') or type.startswith('rate')): raise DataErr("plottype", type, "'rate' or 'counts'") self.rate = (type == 'rate') arf, rmf = self.get_response() if rmf is not None and rmf.detchans != len(self.channel): raise DataErr("incompatibleresp", rmf.name, self.name) if (rmf is None and arf is None) and \ (self.bin_lo is None and self.bin_hi is None) and \ quantity != 'channel': raise DataErr('norsp', self.name) if rmf is None and arf is not None and quantity != 'channel' and \ len(arf.energ_lo) != len(self.channel): raise DataErr("incompleteresp", self.name) self.units = quantity def get_analysis(self): """Return the units used when fitting spectral data. Returns ------- setting : { 'channel', 'energy', 'wavelength' } The analysis setting. Raises ------ sherpa.utils.err.ArgumentErr If the data set does not contain PHA data. sherpa.utils.err.IdentifierErr If the `id` argument is not recognized. See Also -------- set_analysis Examples -------- >>> is_wave = pha.get_analysis() == 'wavelength' """ return self.units def _fix_response_id(self, id): if id is None: id = self.primary_response_id return id def get_response(self, id=None): """Return the response component. Parameters ---------- id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. Returns ------- arf, rmf: sherpa.astro.data.DataARF,sherpa.astro.data.DataRMF instances or None The response, as an ARF and RMF. Either, or both, components can be None. See Also -------- delete_response, get_arf, get_rmf, set_response """ id = self._fix_response_id(id) return self._responses.get(id, (None, None)) def set_response(self, arf=None, rmf=None, id=None): """Add or replace a response component. To remove a response use delete_response(), as setting arf and rmf to None here does nothing. Parameters ---------- arf : sherpa.astro.data.DataARF instance or None, optional The ARF to add if any. rmf : sherpa.astro.data.DataRMF instance or None, optional The RMF to add, if any. id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. See Also -------- delete_response, get_response, set_arf, set_rmf """ if (arf is None) and (rmf is None): return id = self._fix_response_id(id) self._responses[id] = (arf, rmf) ids = self.response_ids[:] if id not in ids: ids.append(id) self.response_ids = ids def delete_response(self, id=None): """Remove the response component. If the response component does not exist then the method does nothing. Parameters ---------- id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. See Also -------- set_response """ id = self._fix_response_id(id) self._responses.pop(id, None) ids = self.response_ids[:] ids.remove(id) self.response_ids = ids def get_arf(self, id=None): """Return the ARF from the response. Parameters ---------- id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. Returns ------- arf: sherpa.astro.data.DataARF instance or None The ARF, if set. See Also -------- get_response, get_rmf """ return self.get_response(id)[0] def get_rmf(self, id=None): """Return the RMF from the response. Parameters ---------- id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. Returns ------- rmf: sherpa.astro.data.DataRMF instance or None The RMF, if set. See Also -------- get_arf, get_response """ return self.get_response(id)[1] def set_arf(self, arf, id=None): """Add or replace the ARF in a response component. This replaces the existing ARF of the response, keeping the previous RMF (if set). Use the delete_response method to remove the response, rather than setting arf to None. Parameters ---------- arf : sherpa.astro.data.DataARF instance The ARF to add. id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. See Also -------- delete_response, set_response, set_rmf """ self.set_response(arf, self.get_rmf(id), id) def set_rmf(self, rmf, id=None): """Add or replace the RMF in a response component. This replaces the existing RMF of the response, keeping the previous ARF (if set). Use the delete_response method to remove the response, rather than setting rmf to None. Parameters ---------- rmf : sherpa.astro.data.DataRMF instance The RMF to add. id : int or str, optional The identifier of the response component. If it is None then the default response identifier is used. See Also -------- delete_response, set_response, set_arf """ self.set_response(self.get_arf(id), rmf, id) def get_specresp(self, filter=False): """Return the effective area values for the data set. Parameters ---------- filter : bool, optional Should the filter attached to the data set be applied to the ARF or not. The default is `False`. Returns ------- arf : array The effective area values for the data set (or background component). """ filter = bool_cast(filter) self.notice_response(False) arf, rmf = self.get_response() newarf = None if arf is not None and rmf is not None: specresp = arf.get_dep() elo, ehi = arf.get_indep() lo, hi = self._get_ebins(group=False) newarf = interpolate(lo, elo, specresp) newarf[newarf <= 0] = 1. if filter: newarf = self.apply_filter(newarf, self._middle) return newarf # The energy bins can be grouped or ungrouped. By default, # they should be grouped if the data are grouped. There are # certain contexts (e.g., plotting) where we will retrieve the # energy bins, and later filter the data; but filtering # is automatically followed by grouping. Grouping the data # twice is an error. def _get_ebins(self, response_id=None, group=True): group = bool_cast(group) arf, rmf = self.get_response(response_id) if (self.bin_lo is not None) and (self.bin_hi is not None): elo = self.bin_lo ehi = self.bin_hi if (elo[0] > elo[-1]) and (ehi[0] > ehi[-1]): elo = self._hc / self.bin_hi ehi = self._hc / self.bin_lo elif rmf is not None: if (rmf.e_min is None) or (rmf.e_max is None): raise DataErr('noenergybins', 'RMF') elo = rmf.e_min ehi = rmf.e_max elif arf is not None: elo = arf.energ_lo ehi = arf.energ_hi else: elo = self.channel - 0.5 ehi = self.channel + 0.5 if self.units == 'channel': elo = self.channel - 0.5 ehi = self.channel + 0.5 # If the data are grouped, then we should group up # the energy bins as well. E.g., if group 1 is # channels 1-5, then the energy boundaries for the # *group* should be elo[0], ehi[4]. if self.grouped and group: elo = self.apply_grouping(elo, self._min) ehi = self.apply_grouping(ehi, self._max) return (elo, ehi) def get_indep(self, filter=True): if filter: return (self.get_noticed_channels(),) return (self.channel,) def _get_indep(self, filter=False): if (self.bin_lo is not None) and (self.bin_hi is not None): elo = self.bin_lo ehi = self.bin_hi if (elo[0] > elo[-1]) and (ehi[0] > ehi[-1]): if self.units == 'wavelength': return (elo, ehi) elo = self._hc / self.bin_hi ehi = self._hc / self.bin_lo else: energylist = [] for id in self.response_ids: arf, rmf = self.get_response(id) lo = None hi = None if rmf is not None: lo = rmf.energ_lo hi = rmf.energ_hi if filter: lo, hi = rmf.get_indep() elif arf is not None: lo = arf.energ_lo hi = arf.energ_hi if filter: lo, hi = arf.get_indep() energylist.append((lo, hi)) if len(energylist) > 1: elo, ehi, lookuptable = compile_energy_grid(energylist) elif (not energylist or (len(energylist) == 1 and numpy.equal(energylist[0], None).any())): raise DataErr('noenergybins', 'Response') else: elo, ehi = energylist[0] lo, hi = elo, ehi if self.units == 'wavelength': lo = self._hc / ehi hi = self._hc / elo return (lo, hi) def _channel_to_group(self, val): """Convert channel number to group number. For ungrouped data channel and group numbering are the same. """ if not self.grouped: return val # The edge channels of each group. # lo = self.apply_grouping(self.channel, self._min) hi = self.apply_grouping(self.channel, self._max) val = numpy.asarray(val).astype(numpy.int_) res = [] for v in val.flat: # could follow _energy_to_channel but for now go # with something simple if v < self.channel[0]: ans = self.channel[0] elif v > self.channel[-1]: ans = self.channel[-1] else: idx, = numpy.where((v >= lo) & (v <= hi)) ans = idx[0] + 1 res.append(ans) res = numpy.asarray(res, SherpaFloat) if val.shape == (): return res[0] return res def _group_to_channel(self, val, group=True, response_id=None): """Convert group number to channel number. For ungrouped data channel and group numbering are the same. The mid-point of each group is used (rounded down if not an integer). """ if not self.grouped or not group: return val # The middle channel of each group. # mid = self.apply_grouping(self.channel, self._middle) # Convert to an integer (this keeps the channel within # the group). # mid = numpy.floor(mid) val = numpy.asarray(val).astype(numpy.int_) - 1 try: return mid[val] except IndexError: raise DataErr('invalid group number: {}'.format(val)) def _channel_to_energy(self, val, group=True, response_id=None): elo, ehi = self._get_ebins(response_id=response_id, group=group) val = numpy.asarray(val).astype(numpy.int_) - 1 try: return (elo[val] + ehi[val]) / 2.0 except IndexError: raise DataErr('invalidchannel', val) def _energy_to_channel(self, val): elo, ehi = self._get_ebins() # special case handling no noticed data (e.g. ignore_bad # removes all bins); assume if elo is empty then so is ehi. # if len(elo) == 0: raise DataErr('notmask') val = numpy.asarray(val) res = [] for v in val.flat: if tuple(numpy.flatnonzero(elo <= v)) == (): if elo[0] > elo[-1] and ehi[0] > ehi[-1]: res.append(SherpaFloat(len(elo))) else: res.append(SherpaFloat(1)) elif tuple(numpy.flatnonzero(ehi > v)) == (): if elo[0] > elo[-1] and ehi[0] > ehi[-1]: res.append(SherpaFloat(1)) else: res.append(SherpaFloat(len(ehi))) elif tuple(numpy.flatnonzero((elo <= v) & (ehi > v)) + 1) != (): res.append(SherpaFloat( numpy.flatnonzero((elo <= v) & (ehi > v)) + 1)) elif (elo <= v).argmin() == (ehi > v).argmax(): res.append(SherpaFloat((elo <= v).argmin())) else: raise DataErr("energytochannel", v) if val.shape == (): return res[0] return numpy.asarray(res, SherpaFloat) _hc = 12.39841874 # nist.gov in [keV-Angstrom] def _channel_to_wavelength(self, val, group=True, response_id=None): tiny = numpy.finfo(numpy.float32).tiny vals = numpy.asarray(self._channel_to_energy(val, group, response_id)) if vals.shape == (): if vals == 0.0: vals = tiny else: vals[vals == 0.0] = tiny vals = self._hc / vals return vals def _wavelength_to_channel(self, val): tiny = numpy.finfo(numpy.float32).tiny vals = numpy.asarray(val) if vals.shape == (): if vals == 0.0: vals = tiny else: vals[vals == 0.0] = tiny vals = self._hc / vals return self._energy_to_channel(vals) default_background_id = 1 """The identifier for the background component when not set.""" def _fix_background_id(self, id): if id is None: id = self.default_background_id return id def get_background(self, id=None): """Return the background component. Parameters ---------- id : int or str, optional The identifier of the background component. If it is None then the default background identifier is used. Returns ------- bkg : sherpa.astro.data.DataPHA instance or None The background dataset. If there is no component then None is returned. See Also -------- delete_background, set_background """ id = self._fix_background_id(id) return self._backgrounds.get(id) def set_background(self, bkg, id=None): """Add or replace a background component. If the background has no grouping of quality arrays then they are copied from the source region. If the background has no response information (ARF or RMF) then the response is copied from the source region. Parameters ---------- bkg : sherpa.astro.data.DataPHA instance The background dataset to add. This object may be changed by this method. id : int or str, optional The identifier of the background component. If it is None then the default background identifier is used. See Also -------- delete_background, get_background """ id = self._fix_background_id(id) self._backgrounds[id] = bkg ids = self.background_ids[:] if id not in ids: ids.append(id) self.background_ids = ids # Copy over data from the source to the background # if its not present in the background: # - background and grouping # - response information (ONLY THE FIRST TERM) # # The units (only when a response is present), rate, and # plot_fac values are always copied. # if bkg.grouping is None: bkg.grouping = self.grouping bkg.grouped = bkg.grouping is not None if bkg.quality is None: bkg.quality = self.quality if bkg.get_response() == (None, None): bkg.set_response(*self.get_response()) if bkg.get_response() != (None, None): bkg.units = self.units bkg.rate = self.rate bkg.plot_fac = self.plot_fac def delete_background(self, id=None): """Remove the background component. If the background component does not exist then the method does nothing. Parameters ---------- id : int or str, optional The identifier of the background component. If it is None then the default background identifier is used. See Also -------- set_background Notes ----- If this call removes the last of the background components then the subtracted flag is cleared (if set). """ id = self._fix_background_id(id) self._backgrounds.pop(id, None) if len(self._backgrounds) == 0: self._subtracted = False ids = self.background_ids[:] if id in ids: ids.remove(id) self.background_ids = ids def get_background_scale(self, bkg_id=1, units='counts', group=True, filter=False): """Return the correction factor for the background dataset. .. versionchanged:: 4.12.2 The bkg_id, units, group, and filter parameters have been added and the routine no-longer calculates the average scaling for all the background components but just for the given component. Parameters ---------- bkg_id : int or str, optional The background component to use (the default is 1). units : {'counts', 'rate'}, optional The correction is applied to a model defined as counts, the default, or a rate. The latter should be used when calculating the correction factor for adding the background data to the source aperture. group : bool, optional Should the values be grouped to match the data? filter : bool, optional Should the values be filtered to match the data? Returns ------- scale : None, number, or NumPy array The scaling factor to correct the background data onto the source data set. If bkg_id is not valid then None is returned. Notes ----- The correction factor when units is 'counts' is:: scale_exposure * scale_backscal * scale_areascal / nbkg where nbkg is the number of background components and scale_x is the source value divided by the background value for the field x. When units is 'rate' the correction is: scale_backscal / nbkg and it is currently uncertain whether it should include the AREASCAL scaling. """ if units not in ['counts', 'rate']: raise ValueError("Invalid units argument: {}".format(units)) if bkg_id not in self.background_ids: return None nbkg = len(self.background_ids) def correct(obj): """Correction factor for the object""" ans = 1.0 # Should we set 0 values to 1 at this stage? # if obj.backscal is not None: ans *= self._check_scale(obj.backscal, group=False) if obj.areascal is not None and units == 'counts': ans *= self._check_scale(obj.areascal, group=False) if obj.exposure is not None and units == 'counts': ans *= self._check_scale(obj.exposure, group=False) return ans src = correct(self) bkg = correct(self.get_background(bkg_id)) scale = src / bkg / nbkg return self._check_scale(scale, group=group, filter=filter) def _check_scale(self, scale, group=True, filter=False): """Ensure the scale value is positive and filtered/grouped. Parameters ---------- scale : number or numpy array The scale factor. group : bool, optional Is any grouping applied to the data? This is only relevant for an array. filter : bool, optional Is any filter applied? This is only checked if group is True. Returns ------- scale : number or numpy array Negative values are replaced by 1.0. """ if numpy.isscalar(scale) and scale <= 0.0: scale = 1.0 elif numpy.iterable(scale): scale = numpy.asarray(scale, dtype=SherpaFloat) if group: if filter: scale = self.apply_filter(scale, self._middle) else: scale = self.apply_grouping(scale, self._middle) scale[scale <= 0.0] = 1.0 return scale def get_backscal(self, group=True, filter=False): """Return the background scaling of the PHA data set. Return the BACKSCAL setting [BSCAL]_ for the PHA data set. Parameters ---------- group : bool, optional Should the values be grouped to match the data? filter : bool, optional Should the values be filtered to match the data? Returns ------- backscal : number or ndarray The BACKSCAL value, which can be a scalar or a 1D array. See Also -------- get_areascal, get_background_scale Notes ----- The BACKSCAL value can be defined as the ratio of the area of the source (or background) extraction region in image pixels to the total number of image pixels. The fact that there is no ironclad definition for this quantity does not matter so long as the value for a source dataset and its associated background dataset are defined in the same manner, because only the ratio of source and background BACKSCAL values is used. It can be a scalar or an array. References ---------- .. [BSCAL] "The OGIP Spectral File Format", Arnaud, K. & George, I. http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/ogip_92_007.html Examples -------- >>> pha.get_backscal() 7.8504301607718007e-06 """ backscal = self.backscal if backscal is not None: backscal = self._check_scale(backscal, group, filter) return backscal def get_areascal(self, group=True, filter=False): """Return the fractional area factor of the PHA data set. Return the AREASCAL setting [ASCAL]_ for the PHA data set. Parameters ---------- group : bool, optional Should the values be grouped to match the data? filter : bool, optional Should the values be filtered to match the data? Returns ------- areascal : number or ndarray The AREASCAL value, which can be a scalar or a 1D array. See Also -------- get_backscal, get_background_scale Notes ----- The fractional area scale is normally set to 1, with the ARF used to scale the model. References ---------- .. [ASCAL] "The OGIP Spectral File Format", Arnaud, K. & George, I. http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007/ogip_92_007.html Examples -------- >>> pha.get_areascal() 1.0 """ areascal = self.areascal if areascal is not None: areascal = self._check_scale(areascal, group, filter) return areascal def apply_filter(self, data, groupfunc=numpy.sum): """ Filter the array data, first passing it through apply_grouping() (using groupfunc) and then applying the general filters """ if data is None: return data if len(data) != len(self.counts): counts = numpy.zeros(len(self.counts), dtype=SherpaFloat) mask = self.get_mask() if mask is not None: counts[mask] = numpy.asarray(data, dtype=SherpaFloat) data = counts # else: # raise DataErr('mismatch', "filter", "data array") return super().apply_filter(self.apply_grouping(data, groupfunc)) def apply_grouping(self, data, groupfunc=numpy.sum): """ Apply the data set's grouping scheme to the array data, combining the grouped data points with groupfunc, and return the grouped array. If the data set has no associated grouping scheme or the data are ungrouped, data is returned unaltered. """ if data is None or not self.grouped: return data groups = self.grouping filter = self.quality_filter if filter is None: return do_group(data, groups, groupfunc.__name__) if len(data) != len(filter) or len(groups) != len(filter): raise DataErr('mismatch', "quality filter", "data array") filtered_data = numpy.asarray(data)[filter] groups = numpy.asarray(groups)[filter] grouped_data = do_group(filtered_data, groups, groupfunc.__name__) if data is self.channel and groupfunc is self._make_groups: return numpy.arange(1, len(grouped_data) + 1, dtype=int) return grouped_data def ignore_bad(self): """Exclude channels marked as bad. Ignore any bin in the PHA data set which has a quality value that is larger than zero. Raises ------ sherpa.utils.err.DataErr If the data set has no quality array. See Also -------- ignore : Exclude data from the fit. notice : Include data in the fit. Notes ----- Bins with a non-zero quality setting are not automatically excluded when a data set is created. If the data set has been grouped, then calling `ignore_bad` will remove any filter applied to the data set. If this happens a warning message will be displayed. """ if self.quality is None: raise DataErr("noquality", self.name) qual_flags = ~numpy.asarray(self.quality, bool) if self.grouped and (self.mask is not True): self.notice() warning('filtering grouped data with quality flags,' + ' previous filters deleted') elif not self.grouped: # if ungrouped, create/combine with self.mask if self.mask is not True: self.mask = self.mask & qual_flags return else: self.mask = qual_flags return # self.quality_filter used for pre-grouping filter self.quality_filter = qual_flags def _dynamic_group(self, group_func, *args, **kwargs): keys = list(kwargs.keys())[:] for key in keys: if kwargs[key] is None: kwargs.pop(key) old_filter = self.get_filter(group=False) do_notice = numpy.iterable(self.mask) self.grouping, self.quality = group_func(*args, **kwargs) self.group() self._original_groups = False if do_notice: # self.group() above has cleared the filter if applicable # No, that just sets a flag. So manually clear filter # here self.ignore() for vals in parse_expr(old_filter): self.notice(*vals) # warning('grouping flags have changed, noticing all bins') # Have to move this check here; as formerly written, reference # to pygroup functions happened *before* checking groupstatus, # in _dynamic_group. So we did not return the intended error # message; rather, a NameError was raised stating that pygroup # did not exist in global scope (not too clear to the user). # # The groupstatus check thus has to be done in *each* of the following # group functions. # # Dynamic grouping functions now automatically impose the # # same grouping conditions on *all* associated background data sets. # # CIAO 4.5 bug fix, 05/01/2012 def group_bins(self, num, tabStops=None): """Group into a fixed number of bins. Combine the data so that there `num` equal-width bins (or groups). The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. Parameters ---------- num : int The number of bins in the grouped data set. Each bin will contain the same number of channels. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). See Also -------- group_adapt : Adaptively group to a minimum number of counts. group_adapt_snr : Adaptively group to a minimum signal-to-noise ratio. group_counts : Group into a minimum number of counts per bin. group_snr : Group into a minimum signal-to-noise ratio. group_width : Group into a fixed bin width. Notes ----- Since the bin width is an integer number of channels, it is likely that some channels will be "left over". This is even more likely when the `tabStops` parameter is set. If this happens, a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpNumBins, len(self.channel), num, tabStops=tabStops) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_bins(num, tabStops=tabStops) def group_width(self, val, tabStops=None): """Group into a fixed bin width. Combine the data so that each bin contains `num` channels. The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. Parameters ---------- val : int The number of channels to combine into a group. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). See Also -------- group_adapt : Adaptively group to a minimum number of counts. group_adapt_snr : Adaptively group to a minimum signal-to-noise ratio. group_bins : Group into a fixed number of bins. group_counts : Group into a minimum number of counts per bin. group_snr : Group into a minimum signal-to-noise ratio. Notes ----- Unless the requested bin width is a factor of the number of channels (and no `tabStops` parameter is given), then some channels will be "left over". If this happens, a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpBinWidth, len(self.channel), val, tabStops=tabStops) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_width(val, tabStops=tabStops) def group_counts(self, num, maxLength=None, tabStops=None): """Group into a minimum number of counts per bin. Combine the data so that each bin contains `num` or more counts. The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. The background is *not* included in this calculation; the calculation is done on the raw data even if `subtract` has been called on this data set. Parameters ---------- num : int The number of channels to combine into a group. maxLength : int, optional The maximum number of channels that can be combined into a single group. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). See Also -------- group_adapt : Adaptively group to a minimum number of counts. group_adapt_snr : Adaptively group to a minimum signal-to-noise ratio. group_bins : Group into a fixed number of bins. group_snr : Group into a minimum signal-to-noise ratio. group_width : Group into a fixed bin width. Notes ----- If channels can not be placed into a "valid" group, then a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpNumCounts, self.counts, num, maxLength=maxLength, tabStops=tabStops) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_counts(num, maxLength=maxLength, tabStops=tabStops) # DOC-TODO: see discussion in astro.ui.utils regarding errorCol def group_snr(self, snr, maxLength=None, tabStops=None, errorCol=None): """Group into a minimum signal-to-noise ratio. Combine the data so that each bin has a signal-to-noise ratio which exceeds `snr`. The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. The background is *not* included in this calculation; the calculation is done on the raw data even if `subtract` has been called on this data set. Parameters ---------- snr : number The minimum signal-to-noise ratio that must be exceeded to form a group of channels. maxLength : int, optional The maximum number of channels that can be combined into a single group. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). errorCol : array of num, optional If set, the error to use for each channel when calculating the signal-to-noise ratio. If not given then Poisson statistics is assumed. A warning is displayed for each zero-valued error estimate. See Also -------- group_adapt : Adaptively group to a minimum number of counts. group_adapt_snr : Adaptively group to a minimum signal-to-noise ratio. group_bins : Group into a fixed number of bins. group_counts : Group into a minimum number of counts per bin. group_width : Group into a fixed bin width. Notes ----- If channels can not be placed into a "valid" group, then a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpSnr, self.counts, snr, maxLength=maxLength, tabStops=tabStops, errorCol=errorCol) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_snr(snr, maxLength=maxLength, tabStops=tabStops, errorCol=errorCol) def group_adapt(self, minimum, maxLength=None, tabStops=None): """Adaptively group to a minimum number of counts. Combine the data so that each bin contains `num` or more counts. The difference to `group_counts` is that this algorithm starts with the bins with the largest signal, in order to avoid over-grouping bright features, rather than at the first channel of the data. The adaptive nature means that low-count regions between bright features may not end up in groups with the minimum number of counts. The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. Parameters ---------- minimum : int The number of channels to combine into a group. maxLength : int, optional The maximum number of channels that can be combined into a single group. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). See Also -------- group_adapt_snr : Adaptively group to a minimum signal-to-noise ratio. group_bins : Group into a fixed number of bins. group_counts : Group into a minimum number of counts per bin. group_snr : Group into a minimum signal-to-noise ratio. group_width : Group into a fixed bin width. Notes ----- If channels can not be placed into a "valid" group, then a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpAdaptive, self.counts, minimum, maxLength=maxLength, tabStops=tabStops) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_adapt(minimum, maxLength=maxLength, tabStops=tabStops) # DOC-TODO: see discussion in astro.ui.utils regarding errorCol def group_adapt_snr(self, minimum, maxLength=None, tabStops=None, errorCol=None): """Adaptively group to a minimum signal-to-noise ratio. Combine the data so that each bin has a signal-to-noise ratio which exceeds `minimum`. The difference to `group_snr` is that this algorithm starts with the bins with the largest signal, in order to avoid over-grouping bright features, rather than at the first channel of the data. The adaptive nature means that low-count regions between bright features may not end up in groups with the minimum number of counts. The binning scheme is applied to all the channels, but any existing filter - created by the `ignore` or `notice` set of functions - is re-applied after the data has been grouped. Parameters ---------- minimum : number The minimum signal-to-noise ratio that must be exceeded to form a group of channels. maxLength : int, optional The maximum number of channels that can be combined into a single group. tabStops : array of int or bool, optional If set, indicate one or more ranges of channels that should not be included in the grouped output. The array should match the number of channels in the data set and non-zero or `True` means that the channel should be ignored from the grouping (use 0 or `False` otherwise). errorCol : array of num, optional If set, the error to use for each channel when calculating the signal-to-noise ratio. If not given then Poisson statistics is assumed. A warning is displayed for each zero-valued error estimate. See Also -------- group_adapt : Adaptively group to a minimum number of counts. group_bins : Group into a fixed number of bins. group_counts : Group into a minimum number of counts per bin. group_snr : Group into a minimum signal-to-noise ratio. group_width : Group into a fixed bin width. Notes ----- If channels can not be placed into a "valid" group, then a warning message will be displayed to the screen and the quality value for these channels will be set to 2. """ if not groupstatus: raise ImportErr('importfailed', 'group', 'dynamic grouping') self._dynamic_group(pygroup.grpAdaptiveSnr, self.counts, minimum, maxLength=maxLength, tabStops=tabStops, errorCol=errorCol) for bkg_id in self.background_ids: bkg = self.get_background(bkg_id) bkg.group_adapt_snr(minimum, maxLength=maxLength, tabStops=tabStops, errorCol=errorCol) def eval_model(self, modelfunc): return modelfunc(*self.get_indep(filter=False)) def eval_model_to_fit(self, modelfunc): return self.apply_filter(modelfunc(*self.get_indep(filter=True))) def sum_background_data(self, get_bdata_func=(lambda key, bkg: bkg.counts)): """Sum up data, applying the background correction value. Parameters ---------- get_bdata_func : function, optional What data should be used for each background dataset. The function takes the background identifier and background DataPHA object and returns the data to use. The default is to use the counts array of the background dataset. Returns ------- value : scalar or NumPy array The sum of the data, including any area, background, and exposure-time corrections. Notes ----- For each associated background, the data is retrieved (via the get_bdata_func parameter), and then - divided by its BACKSCAL value (if set) - divided by its AREASCAL value (if set) - divided by its exposure time (if set) The individual background components are then summed together, and then multiplied by the source BACKSCAL (if set), multiplied by the source AREASCAL (if set), and multiplied by the source exposure time (if set). The final step is to divide by the number of background files used. Example ------- Calculate the background counts, per channel, scaled to match the source: >>> bcounts = src.sum_background_data() Calculate the scaling factor that you need to multiply the background data to match the source data. In this case the background data has been replaced by the value 1 (rather than the per-channel values used with the default argument): >>> bscale = src.sum_background_data(lambda k, d: 1) """ bdata_list = [] for key in self.background_ids: bkg = self.get_background(key) bdata = get_bdata_func(key, bkg) backscal = bkg.backscal if backscal is not None: backscal = self._check_scale(backscal, group=False) bdata = bdata / backscal areascal = bkg.get_areascal(group=False) if areascal is not None: bdata = bdata / areascal if bkg.exposure is not None: bdata = bdata / bkg.exposure bdata_list.append(bdata) nbkg = len(bdata_list) if nbkg == 0: # do not have a good id to use for the error message raise DataErr('nobkg', self.name) if nbkg == 1: bkgsum = bdata_list[0] else: bkgsum = sum(bdata_list) backscal = self.backscal if backscal is not None: backscal = self._check_scale(backscal, group=False) bkgsum = backscal * bkgsum areascal = self.areascal if areascal is not None: areascal = self._check_scale(areascal, group=False) bkgsum = areascal * bkgsum if self.exposure is not None: bkgsum = self.exposure * bkgsum return bkgsum / SherpaFloat(nbkg) def get_dep(self, filter=False): # FIXME: Aneta says we need to group *before* subtracting, but that # won't work (I think) when backscal is an array # if not self.subtracted: # return self.counts # return self.counts - self.sum_background_data() dep = self.counts filter = bool_cast(filter) # The area scaling is not applied to the data, since it # should be being applied to the model via the *PHA # instrument model. Note however that the background # contribution does include the source AREASCAL value # (in the same way that the source BACKSCAL value # is used). # if self.subtracted: bkg = self.sum_background_data() if len(dep) != len(bkg): raise DataErr("subtractlength") dep = dep - bkg if filter: dep = self.apply_filter(dep) return dep def set_dep(self, val): # QUS: should this "invert" the areascaling to val # to get the stored values? # # Otherwise, when areascal /= 1 # y1 = d.get_dep() # d.set_dep(y1) # y2 = d.get_dep() # y1 != y2 # # Or perhaps it removes the areascal value in this case? # We already have this split in the API when background data # is available and is subtracted. # if numpy.iterable(val): dep = numpy.asarray(val, SherpaFloat) else: val = SherpaFloat(val) dep = numpy.array([val] * len(self.get_indep()[0])) setattr(self, 'counts', dep) def get_staterror(self, filter=False, staterrfunc=None): """Return the statistical error. The staterror column is used if defined, otherwise the function provided by the staterrfunc argument is used to calculate the values. Parameters ---------- filter : bool, optional Should the channel filter be applied to the return values? staterrfunc : function reference, optional The function to use to calculate the errors if the staterror field is None. The function takes one argument, the counts (after grouping and filtering), and returns an array of values which represents the one-sigma error for each element of the input array. This argument is designed to work with implementations of the sherpa.stats.Stat.calc_staterror method. Returns ------- staterror : array or None The statistical error. It will be grouped and, if filter=True, filtered. The contribution from any associated background components will be included if the background-subtraction flag is set. Notes ----- There is no scaling by the AREASCAL setting, but background values are scaled by their AREASCAL settings. It is not at all obvious that the current code is doing the right thing, or that this is the right approach. Examples -------- >>> dy = dset.get_staterror() Ensure that there is no pre-defined statistical-error column and then use the Chi2DataVar statistic to calculate the errors: >>> stat = sherpa.stats.Chi2DataVar() >>> dset.set_staterror(None) >>> dy = dset.get_staterror(staterrfunc=stat.calc_staterror) """ staterr = self.staterror filter = bool_cast(filter) if filter: staterr = self.apply_filter(staterr, self._sum_sq) else: staterr = self.apply_grouping(staterr, self._sum_sq) # The source AREASCAL is not applied here, but the # background term is. # if (staterr is None) and (staterrfunc is not None): cnts = self.counts if filter: cnts = self.apply_filter(cnts) else: cnts = self.apply_grouping(cnts) staterr = staterrfunc(cnts) # Need to apply the area scaling to the calculated # errors. Grouping and filtering complicate this; is # _middle the best choice here? # """ area = self.areascal if staterr is not None and area is not None: if numpy.isscalar(area): area = numpy.zeros(self.channel.size) + area # TODO: replace with _check_scale? if filter: area = self.apply_filter(area, self._middle) else: area = self.apply_grouping(area, self._middle) staterr = staterr / area """ if (staterr is not None) and self.subtracted: bkg_staterr_list = [] # for bkg in self._backgrounds.values(): for key in self.background_ids: bkg = self.get_background(key) berr = bkg.staterror if filter: berr = self.apply_filter(berr, self._sum_sq) else: berr = self.apply_grouping(berr, self._sum_sq) if (berr is None) and (staterrfunc is not None): bkg_cnts = bkg.counts if filter: bkg_cnts = self.apply_filter(bkg_cnts) else: bkg_cnts = self.apply_grouping(bkg_cnts) # TODO: shouldn't the following logic be somewhere # else more general? if hasattr(staterrfunc, '__name__') and \ staterrfunc.__name__ == 'calc_chi2datavar_errors' and \ 0.0 in bkg_cnts: mask = (numpy.asarray(bkg_cnts) != 0.0) berr = numpy.zeros(len(bkg_cnts)) berr[mask] = staterrfunc(bkg_cnts[mask]) else: berr = staterrfunc(bkg_cnts) # FIXME: handle this # assert (berr is not None) # This case appears when the source dataset has an error # column and at least one of the background(s) do not. # Because the staterr is not None and staterrfunc is, I think # we should return None. This way the user knows to call with # staterrfunc next time. if berr is None: return None bksl = bkg.backscal if bksl is not None: bksl = self._check_scale(bksl, filter=filter) berr = berr / bksl # Need to apply filter/grouping of the source dataset # to the background areascal, so can not just say # area = bkg.get_areascal(filter=filter) # area = bkg.areascal if area is not None: area = self._check_scale(area, filter=filter) berr = berr / area if bkg.exposure is not None: berr = berr / bkg.exposure berr = berr * berr bkg_staterr_list.append(berr) nbkg = len(bkg_staterr_list) assert (nbkg > 0) if nbkg == 1: bkgsum = bkg_staterr_list[0] else: bkgsum = sum(bkg_staterr_list) bscal = self.backscal if bscal is not None: bscal = self._check_scale(bscal, filter=filter) bkgsum = (bscal * bscal) * bkgsum # Correct the background counts by the source AREASCAL # setting. Is this correct? ascal = self.areascal if ascal is not None: ascal = self._check_scale(ascal, filter=filter) bkgsum = (ascal * ascal) * bkgsum if self.exposure is not None: bkgsum = (self.exposure * self.exposure) * bkgsum nbkg = SherpaFloat(nbkg) if staterr is not None: staterr = staterr * staterr + bkgsum / (nbkg * nbkg) staterr = numpy.sqrt(staterr) return staterr def get_syserror(self, filter=False): """Return any systematic error. Parameters ---------- filter : bool, optional Should the channel filter be applied to the return values? Returns ------- syserror : array or None The systematic error, if set. It will be grouped and, if filter=True, filtered. Notes ----- There is no scaling by the AREASCAL setting. """ syserr = self.syserror filter = bool_cast(filter) if filter: syserr = self.apply_filter(syserr, self._sum_sq) else: syserr = self.apply_grouping(syserr, self._sum_sq) return syserr def get_x(self, filter=False, response_id=None): # We want the full channel grid with no grouping. # return self._from_channel(self.channel, group=False, response_id=response_id) def get_xlabel(self): xlabel = self.units.capitalize() if self.units == 'energy': xlabel += ' (keV)' elif self.units == 'wavelength': xlabel += ' (Angstrom)' # elif self.units == 'channel' and self.grouped: # xlabel = 'Group Number' return xlabel def _set_initial_quantity(self): arf, rmf = self.get_response() # Change analysis if ARFs equal or of higher resolution to # allow for high-res model evaluation. if arf is not None and rmf is None: if len(arf.energ_lo) == len(self.channel): self.units = 'energy' # Only change analysis if RMF matches the parent PHA dataset. if rmf is not None: if len(self.channel) != len(rmf.e_min): raise DataErr("incompatibleresp", rmf.name, self.name) self.units = 'energy' def _fix_y_units(self, val, filter=False, response_id=None): """Rescale the data to match the 'y' axis.""" if val is None: return val filter = bool_cast(filter) # make a copy of data for units manipulation val = numpy.array(val, dtype=SherpaFloat) if self.rate and self.exposure is not None: val /= self.exposure # TODO: It is not clear if the areascal should always be applied, # or only if self.rate is set (since it is being considered # a "correction" to the exposure time, but don't we want # to apply it in plots even if the Y axis is in counts?) # if self.areascal is not None: areascal = self._check_scale(self.areascal, filter=filter) val /= areascal if self.grouped or self.rate: if self.units != 'channel': elo, ehi = self._get_ebins(response_id, group=False) else: elo, ehi = (self.channel, self.channel + 1.) if filter: # If we apply a filter, make sure that # ebins are ungrouped before applying # the filter. elo = self.apply_filter(elo, self._min) ehi = self.apply_filter(ehi, self._max) elif self.grouped: elo = self.apply_grouping(elo, self._min) ehi = self.apply_grouping(ehi, self._max) if self.units == 'energy': ebin = ehi - elo elif self.units == 'wavelength': ebin = self._hc / elo - self._hc / ehi elif self.units == 'channel': ebin = ehi - elo else: raise DataErr("bad", "quantity", self.units) val /= numpy.abs(ebin) # The final step is to multiply by the X axis self.plot_fac # times. if self.plot_fac <= 0: return val scale = self.apply_filter(self.get_x(response_id=response_id), self._middle) for ii in range(self.plot_fac): val *= scale return val def get_y(self, filter=False, yfunc=None, response_id=None, use_evaluation_space=False): vallist = Data.get_y(self, yfunc=yfunc) filter = bool_cast(filter) if not isinstance(vallist, tuple): vallist = (vallist,) newvallist = [] for val in vallist: if filter: val = self.apply_filter(val) else: val = self.apply_grouping(val) val = self._fix_y_units(val, filter, response_id) newvallist.append(val) if len(vallist) == 1: vallist = newvallist[0] else: vallist = tuple(newvallist) return vallist def get_yerr(self, filter=False, staterrfunc=None, response_id=None): filter = bool_cast(filter) err = self.get_error(filter, staterrfunc) return self._fix_y_units(err, filter, response_id) def get_xerr(self, filter=False, response_id=None): elo, ehi = self._get_ebins(response_id=response_id) filter = bool_cast(filter) if filter: # If we apply a filter, make sure that # ebins are ungrouped before applying # the filter. elo, ehi = self._get_ebins(response_id, group=False) elo = self.apply_filter(elo, self._min) ehi = self.apply_filter(ehi, self._max) return ehi - elo def get_ylabel(self): ylabel = 'Counts' if self.rate and self.exposure: ylabel += '/sec' if self.rate or self.grouped: if self.units == 'energy': ylabel += '/keV' elif self.units == 'wavelength': ylabel += '/Angstrom' elif self.units == 'channel': ylabel += '/channel' if self.plot_fac: from sherpa.plot import backend latex = backend.get_latex_for_string( '^{}'.format(self.plot_fac)) ylabel += ' X {}{}'.format(self.units.capitalize(), latex) return ylabel @staticmethod # Dummy function to tell apply_grouping to construct # an array of groups. def _make_groups(array): pass @staticmethod def _middle(array): array = numpy.asarray(array) return (array.min() + array.max()) / 2.0 @staticmethod def _min(array): array = numpy.asarray(array) return array.min() @staticmethod def _max(array): array = numpy.asarray(array) return array.max() @staticmethod def _sum_sq(array): return numpy.sqrt(numpy.sum(array * array)) def get_noticed_channels(self): """Return the noticed channels. Returns ------- channels : ndarray The noticed channels (this is independent of the analysis setting). """ chans = self.channel mask = self.get_mask() if mask is None: return chans # This is added to address issue #361 # # If there is a quality filter then the mask may be # smaller than the chans array. It is not clear if this # is the best location for this. If it is, then are there # other locations where this logic is needed? # if self.quality_filter is not None and \ self.quality_filter.size != mask.size: chans = chans[self.quality_filter] return chans[mask] def get_mask(self): """Returns the (ungrouped) mask. Returns ------- mask : ndarray or None The mask, in channels, or None. """ groups = self.grouping if self.mask is False: return None if self.mask is True or not self.grouped: if self.quality_filter is not None: return self.quality_filter elif numpy.iterable(self.mask): return self.mask return None if self.quality_filter is not None: groups = groups[self.quality_filter] return expand_grouped_mask(self.mask, groups) def get_noticed_expr(self): chans = self.get_noticed_channels() if self.mask is False or len(chans) == 0: return 'No noticed channels' return create_expr(chans, format='%i') def get_filter(self, group=True, format='%.12f', delim=':'): """Return the data filter as a string. For grouped data, or when the analysis setting is not channel, filter values refer to the center of the channel or group. Parameters ---------- group : bool, optional Should the filter reflect the grouped data? format : str, optional The formatting of the numeric values (this is ignored for channel units, as a format of "%i" is used). delim : str, optional The string used to mark the low-to-high range. Examples -------- For a Chandra non-grating dataset which has been grouped: >>> pha.set_analysis('energy') >>> pha.notice(0.5, 7) >>> pha.get_filter(format=%.4f') ''0.5183:8.2198'' >>> pha.set_analysis('channel') >>> pha.get_filter() '36:563' The default is to show the data range for the grouped dataset, which uses the center of each group. If the grouping is turned off then the center of the start and ending channel of each group is used (and so show a larger data range): >>> pha.get_filter(format=%.4f') '0.5183:8.2198' >>> pha.get_filter(group=False, format=%.4f') '0.4745:9.8623' """ if self.mask is False: return 'No noticed bins' if numpy.iterable(self.mask): mask = self.mask else: mask = None if group: # grouped noticed channels # x = self.apply_filter(self.channel, self._make_groups) else: # ungrouped noticed channels x = self.get_noticed_channels() # We need the "ungrouped" mask array. Need to check # issue #361 since get_noticed_channels notes an # issue that may be relevant here (so far this # doesn't seem to be the case). # mask = self.get_mask() # Safety check for users. Warn, but continue. # if mask is not None and mask.sum() != x.size: warning("There is a mis-match in the ungrouped mask " + "and data ({} vs {})".format(mask.sum(), x.size)) # Convert channels to appropriate quantity if necessary x = self._from_channel(x, group=group) if mask is None: mask = numpy.ones(len(x), dtype=bool) # Ensure the data is in ascending order for create_expr. # if self.units == 'wavelength': x = x[::-1] mask = mask[::-1] if self.units == 'channel': format = '%i' return create_expr(x, mask=mask, format=format, delim=delim) def get_filter_expr(self): return (self.get_filter(format='%.4f', delim='-') + ' ' + self.get_xlabel()) def notice_response(self, notice_resp=True, noticed_chans=None): notice_resp = bool_cast(notice_resp) if notice_resp and noticed_chans is None: noticed_chans = self.get_noticed_channels() for id in self.response_ids: arf, rmf = self.get_response(id) _notice_resp(noticed_chans, arf, rmf) def notice(self, lo=None, hi=None, ignore=False, bkg_id=None): # If any background IDs are actually given, then impose # the filter on those backgrounds *only*, and return. Do # *not* impose filter on data itself. (Revision possibly # this should be done in high-level UI?) SMD 10/25/12 filter_background_only = False if bkg_id is not None: if not numpy.iterable(bkg_id): bkg_id = [bkg_id] filter_background_only = True else: bkg_id = self.background_ids # Automatically impose data's filter on background data sets. # Units must agree for this to be meaningful, so temporarily # make data and background units match. SMD 10/25/12 for bid in bkg_id: bkg = self.get_background(bid) old_bkg_units = bkg.units try: bkg.units = self.units # If the background is all ignored then bkg.notice will # do nothing (other than display an INFO message). # bkg.notice(lo, hi, ignore) finally: bkg.units = old_bkg_units # If we're only supposed to filter backgrounds, return if filter_background_only: return # Go on if we are also supposed to filter the source data ignore = bool_cast(ignore) if lo is None and hi is None: self.quality_filter = None self.notice_response(False) # We do not want a "all data are masked out" error to cause # this to fail; it should just do nothing (as trying to set # a noticed range to include masked-out ranges would also # be ignored). # # Convert to "group number" (which, for ungrouped data, # is just channel number). # if lo is not None and type(lo) != str: try: lo = self._to_channel(lo) except DataErr as de: info("Skipping dataset {}: {}".format(self.name, de)) return if hi is not None and type(hi) != str: try: hi = self._to_channel(hi) except DataErr as de: info("Skipping dataset {}: {}".format(self.name, de)) return elo, ehi = self._get_ebins() if ((self.units == "wavelength" and elo[0] < elo[-1] and ehi[0] < ehi[-1]) or (self.units == "energy" and elo[0] > elo[-1] and ehi[0] > ehi[-1])): lo, hi = hi, lo # Don't use the middle of the channel anymore as the # grouping function. That was just plain dumb. # So just get back an array of groups 1-N, if grouped # DATA-NOTE: need to clean this up. # groups = self.apply_grouping(self.channel, self._make_groups) self._data_space.filter.notice((lo,), (hi,), (groups,), ignore) def to_guess(self): elo, ehi = self._get_ebins(group=False) elo = self.apply_filter(elo, self._min) ehi = self.apply_filter(ehi, self._max) if self.units == "wavelength": lo = self._hc / ehi hi = self._hc / elo elo = lo ehi = hi cnt = self.get_dep(True) arf = self.get_specresp(filter=True) y = cnt / (ehi - elo) if self.exposure is not None: y /= self.exposure # photons/keV/sec or photons/Ang/sec # y = cnt/arf/self.exposure if arf is not None: y /= arf # photons/keV/cm^2/sec or photons/Ang/cm^2/sec return (y, elo, ehi) def to_fit(self, staterrfunc=None): return (self.get_dep(True), self.get_staterror(True, staterrfunc), self.get_syserror(True)) def to_plot(self, yfunc=None, staterrfunc=None, response_id=None): return (self.apply_filter(self.get_x(response_id=response_id), self._middle), self.get_y(True, yfunc, response_id=response_id), self.get_yerr(True, staterrfunc, response_id=response_id), self.get_xerr(True, response_id=response_id), self.get_xlabel(), self.get_ylabel()) def group(self): "Group the data according to the data set's grouping scheme" self.grouped = True def ungroup(self): "Ungroup the data" self.grouped = False def subtract(self): "Subtract the background data" self.subtracted = True def unsubtract(self): "Remove background subtraction" self.subtracted = False class DataIMG(Data2D): "Image data set, including functions for coordinate transformations" _fields = Data2D._fields + ("sky", "eqpos", "coord", "header") def _get_coord(self): return self._coord def _set_coord(self, val): coord = str(val).strip().lower() if coord in ('logical', 'image'): coord = 'logical' elif coord in ('physical',): self._check_physical_transform() coord = 'physical' elif coord in ('world', 'wcs'): self._check_world_transform() coord = 'world' else: raise DataErr('bad', 'coordinates', val) self._coord = coord # You should use set_coord rather than changing coord directly, # otherwise constraints set in set_coord are not run. This is # probably an error in set_coord (i.e. this logic should be # moved into _set_coord). # coord = property(_get_coord, _set_coord, doc='Coordinate system of independent axes') def __init__(self, name, x0, x1, y, shape=None, staterror=None, syserror=None, sky=None, eqpos=None, coord='logical', header=None): self.sky = sky self.eqpos = eqpos self.coord = coord self.header = header self._region = None Data2D.__init__(self, name, x0, x1, y, shape, staterror, syserror) def __str__(self): # Print the metadata first old = self._fields ss = old try: self._fields = tuple(filter((lambda x: x != 'header'), self._fields)) ss = Data.__str__(self) finally: self._fields = old return ss def _repr_html_(self): """Return a HTML (string) representation of the data """ return html_img(self) def __getstate__(self): state = self.__dict__.copy() # Function pointers to methods of the class # (of type 'instancemethod') are NOT picklable # remove them and restore later with a coord init # del state['_get_logical'] # del state['_get_physical'] # del state['_get_world'] # PyRegion objects (of type 'extension') are NOT picklable, yet. # preserve the region string and restore later with constructor state['_region'] = state['_region'].__str__() return state def __setstate__(self, state): # Populate the function pointers we deleted at pickle time with # no-ops. # self.__dict__['_get_logical']=(lambda : None) # self.__dict__['_get_physical']=(lambda : None) # self.__dict__['_get_world']=(lambda : None) if 'header' not in state: self.header = None self.__dict__.update(state) # _set_coord will correctly define the _get_* WCS function pointers. self._set_coord(state['_coord']) if regstatus: self._region = Region(self._region) else: # An ImportErr could be raised rather than display a # warnng, but that would make it harder for the user # to extract useful data (e.g. in the case of triggering # this when loading a pickled file). # if self._region is not None and self._region != '': warning("Unable to restore region={} as region module is not avaialable.".format(self._region)) self._region = None def _check_physical_transform(self): if self.sky is None: raise DataErr('nocoord', self.name, 'physical') def _check_world_transform(self): if self.eqpos is None: raise DataErr('nocoord', self.name, 'world') def _logical_to_physical(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_physical_transform() # logical -> physical x0, x1 = self.sky.apply(x0, x1) return (x0, x1) def _logical_to_world(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_world_transform() # logical -> physical if self.sky is not None: x0, x1 = self.sky.apply(x0, x1) # physical -> world x0, x1 = self.eqpos.apply(x0, x1) return (x0, x1) def _physical_to_logical(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_physical_transform() # physical -> logical x0, x1 = self.sky.invert(x0, x1) return (x0, x1) def _physical_to_world(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_world_transform() # physical -> world x0, x1 = self.eqpos.apply(x0, x1) return (x0, x1) def _world_to_logical(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_world_transform() # world -> physical x0, x1 = self.eqpos.invert(x0, x1) # physical -> logical if self.sky is not None: x0, x1 = self.sky.invert(x0, x1) return (x0, x1) def _world_to_physical(self, x0=None, x1=None): if x0 is None or x1 is None: x0, x1 = self.get_indep() self._check_shape() self._check_world_transform() # world -> physical x0, x1 = self.eqpos.invert(x0, x1) return (x0, x1) def get_logical(self): coord = self.coord x0, x1 = self.get_indep() if coord != 'logical': x0 = x0.copy() x1 = x1.copy() x0, x1 = getattr(self, '_' + coord + '_to_logical')(x0, x1) return (x0, x1) def get_physical(self): coord = self.coord x0, x1 = self.get_indep() if coord != 'physical': x0 = x0.copy() x1 = x1.copy() x0, x1 = getattr(self, '_' + coord + '_to_physical')(x0, x1) return (x0, x1) def get_world(self): coord = self.coord x0, x1 = self.get_indep() if coord != 'world': x0 = x0.copy() x1 = x1.copy() x0, x1 = getattr(self, '_' + coord + '_to_world')(x0, x1) return (x0, x1) # For compatibility with old Sherpa keywords get_image = get_logical get_wcs = get_world def set_coord(self, coord): coord = str(coord).strip().lower() # Destroys original data to conserve memory for big imgs good = ('logical', 'image', 'physical', 'world', 'wcs') if coord not in good: raise DataErr('badchoices', 'coordinates', coord, ", ".join(good)) if coord.startswith('wcs'): coord = 'world' elif coord.startswith('image'): coord = 'logical' func = getattr(self, 'get_' + coord) self.indep = func() self._set_coord(coord) def get_filter_expr(self): if self._region is not None: return str(self._region) return '' get_filter = get_filter_expr def notice2d(self, val=None, ignore=False): """Apply a 2D filter. Parameters ---------- val : str or None, optional The filter to apply. It can be a region string or a filename. ignore : bool, optional If set then the filter should be ignored, not noticed. """ ignore = bool_cast(ignore) # This was originally a bit-more complex, but it has been # simplified. # if val is None: self.mask = not ignore self._region = None return if not regstatus: raise ImportErr('importfailed', 'region', 'notice2d') # Crete the new region # val = str(val).strip() isfile = os.path.isfile(val) reg = Region(val, isfile) # Calculate the mask for this region as an "included" # region. # mask = reg.mask(self.get_x0(), self.get_x1()) mask = mask.astype(numpy.bool) # Apply the new mask to the existing mask. # if not ignore: if self.mask is True: self.mask = mask else: self.mask |= mask else: # Invert the response from region_mask mask = ~mask if self.mask is False: self.mask = mask else: self.mask &= mask # Create the new region shape. # if self._region is None: if ignore: reg.invert() self._region = reg else: self._region = self._region.combine(reg, ignore) def get_bounding_mask(self): mask = self.mask shape = None if numpy.iterable(self.mask): # create bounding box around noticed image regions mask = numpy.array(self.mask).reshape(*self.shape) # TODO: should replace 'mask == True' with mask but # not sure we have a good set of tests x0_i, x1_i = numpy.where(mask == True) x0_lo = x0_i.min() x0_hi = x0_i.max() x1_lo = x1_i.min() x1_hi = x1_i.max() # TODO: subset mask and then ask its shape shape = mask[x0_lo:x0_hi + 1, x1_lo:x1_hi + 1].shape mask = mask[x0_lo:x0_hi + 1, x1_lo:x1_hi + 1] mask = mask.ravel() return mask, shape def get_img(self, yfunc=None): # FIXME add support for coords to image class -> DS9 self._check_shape() y_img = self.filter_region(self.get_dep(False)) if yfunc is not None: m = self.eval_model_to_fit(yfunc) if numpy.iterable(self.mask): # if filtered, the calculated model must be padded up # to the data size to preserve img shape and WCS coord m = pad_bounding_box(m, self.mask) y_img = (y_img, self.filter_region(m)) if yfunc is not None: y_img = (y_img[0].reshape(*self.shape), y_img[1].reshape(*self.shape)) else: y_img = y_img.reshape(*self.shape) return y_img def get_axes(self): # FIXME: how to filter an axis when self.mask is size of self.y? self._check_shape() # dummy placeholders needed b/c img shape may not be square! axis0 = numpy.arange(self.shape[1], dtype=float) + 1. axis1 = numpy.arange(self.shape[0], dtype=float) + 1. dummy0 = numpy.ones(axis0.size, dtype=float) dummy1 = numpy.ones(axis1.size, dtype=float) if self.coord == 'physical': axis0, dummy = self._logical_to_physical(axis0, dummy0) dummy, axis1 = self._logical_to_physical(dummy1, axis1) elif self.coord == 'world': axis0, dummy = self._logical_to_world(axis0, dummy0) dummy, axis1 = self._logical_to_world(dummy1, axis1) return (axis0, axis1) def get_x0label(self): "Return label for first dimension in 2-D view of independent axis/axes" if self.coord in ('logical', 'image'): return 'x0' elif self.coord in ('physical',): return 'x0 (pixels)' elif self.coord in ('world', 'wcs'): return 'RA (deg)' else: return 'x0' def get_x1label(self): """ Return label for second dimension in 2-D view of independent axis/axes """ if self.coord in ('logical', 'image'): return 'x1' elif self.coord in ('physical',): return 'x1 (pixels)' elif self.coord in ('world', 'wcs'): return 'DEC (deg)' else: return 'x1' def to_contour(self, yfunc=None): y = self.filter_region(self.get_dep(False)) if yfunc is not None: m = self.eval_model_to_fit(yfunc) if numpy.iterable(self.mask): # if filtered, the calculated model must be padded up # to the data size to preserve img shape and WCS coord m = self.filter_region(pad_bounding_box(m, self.mask)) y = (y, m) return (self.get_x0(), self.get_x1(), y, self.get_x0label(), self.get_x1label()) def filter_region(self, data): if data is not None and numpy.iterable(self.mask): filter = numpy.ones(len(self.mask), dtype=SherpaFloat) filter[~self.mask] = numpy.nan return data * filter return data class DataIMGInt(DataIMG): _fields = Data2DInt._fields + ("sky", "eqpos", "coord") def __init__(self, name, x0lo, x1lo, x0hi, x1hi, y, shape=None, staterror=None, syserror=None, sky=None, eqpos=None, coord='logical', header=None): self._region = None self.sky = sky self.eqpos = eqpos self.coord = coord self.header = header self.shape = shape Data.__init__(self, name, (x0lo, x1lo, x0hi, x1hi), y, staterror, syserror) def _init_data_space(self, filter, *data): return IntegratedDataSpace2D(filter, *data) def get_logical(self): coord = self.coord x0lo, x1lo, x0hi, x1hi = self.get_indep() if coord != 'logical': x0lo = x0lo.copy() x1lo = x1lo.copy() convert = getattr(self, '_' + coord + '_to_logical') x0lo, x1lo = convert(x0lo, x1lo) x0hi = x0hi.copy() x1hi = x1hi.copy() x0hi, x1hi = convert(x0hi, x1hi) return (x0lo, x1lo, x0hi, x1hi) def get_physical(self): coord = self.coord x0lo, x1lo, x0hi, x1hi = self.get_indep() if coord != 'physical': x0lo = x0lo.copy() x1lo = x1lo.copy() convert = getattr(self, '_' + coord + '_to_physical') x0lo, x1lo = convert(x0lo, x1lo) x0hi = x0hi.copy() x1hi = x1hi.copy() x0hi, x1hi = convert(x0hi, x1hi) return (x0lo, x1lo, x0hi, x1hi) def get_world(self): coord = self.coord x0lo, x1lo, x0hi, x1hi = self.get_indep() if coord != 'world': x0lo = x0lo.copy() x1lo = x1lo.copy() convert = getattr(self, '_' + coord + '_to_world') x0lo, x1lo = convert(x0lo, x1lo) x0hi = x0hi.copy() x1hi = x1hi.copy() x0hi, x1hi = convert(x0hi, x1hi) return (x0lo, x1lo, x0hi, x1hi) def get_axes(self): # FIXME: how to filter an axis when self.mask is size of self.y? self._check_shape() # dummy placeholders needed b/c img shape may not be square! axis0lo = numpy.arange(self.shape[1], dtype=float) - 0.5 axis1lo = numpy.arange(self.shape[0], dtype=float) - 0.5 axis0hi = numpy.arange(self.shape[1], dtype=float) + 0.5 axis1hi = numpy.arange(self.shape[0], dtype=float) + 0.5 dummy0 = numpy.ones(axis0lo.size, dtype=float) dummy1 = numpy.ones(axis1lo.size, dtype=float) if self.coord == 'physical': axis0lo, dummy = self._logical_to_physical(axis0lo, dummy0) axis0hi, dummy = self._logical_to_physical(axis0hi, dummy0) dummy, axis1lo = self._logical_to_physical(dummy1, axis1lo) dummy, axis1hi = self._logical_to_physical(dummy1, axis1hi) elif self.coord == 'world': axis0lo, dummy = self._logical_to_world(axis0lo, dummy0) axis0hi, dummy = self._logical_to_world(axis0hi, dummy0) dummy, axis1lo = self._logical_to_world(dummy1, axis1lo) dummy, axis1hi = self._logical_to_world(dummy1, axis1hi) return (axis0lo, axis1lo, axis0hi, axis1hi)
gpl-3.0
lancezlin/ml_template_py
lib/python2.7/site-packages/matplotlib/testing/jpl_units/StrConverter.py
8
5340
#=========================================================================== # # StrConverter # #=========================================================================== """StrConverter module containing class StrConverter.""" #=========================================================================== # Place all imports after here. # from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange import matplotlib.units as units from matplotlib.cbook import iterable # Place all imports before here. #=========================================================================== __all__ = [ 'StrConverter' ] #=========================================================================== class StrConverter( units.ConversionInterface ): """: A matplotlib converter class. Provides matplotlib conversion functionality for string data values. Valid units for string are: - 'indexed' : Values are indexed as they are specified for plotting. - 'sorted' : Values are sorted alphanumerically. - 'inverted' : Values are inverted so that the first value is on top. - 'sorted-inverted' : A combination of 'sorted' and 'inverted' """ #------------------------------------------------------------------------ @staticmethod def axisinfo( unit, axis ): """: Returns information on how to handle an axis that has string data. = INPUT VARIABLES - axis The axis using this converter. - unit The units to use for a axis with string data. = RETURN VALUE - Returns a matplotlib AxisInfo data structure that contains minor/major formatters, major/minor locators, and default label information. """ return None #------------------------------------------------------------------------ @staticmethod def convert( value, unit, axis ): """: Convert value using unit to a float. If value is a sequence, return the converted sequence. = INPUT VARIABLES - axis The axis using this converter. - value The value or list of values that need to be converted. - unit The units to use for a axis with Epoch data. = RETURN VALUE - Returns the value parameter converted to floats. """ if ( units.ConversionInterface.is_numlike( value ) ): return value if ( value == [] ): return [] # we delay loading to make matplotlib happy ax = axis.axes if axis is ax.get_xaxis(): isXAxis = True else: isXAxis = False axis.get_major_ticks() ticks = axis.get_ticklocs() labels = axis.get_ticklabels() labels = [ l.get_text() for l in labels if l.get_text() ] if ( not labels ): ticks = [] labels = [] if ( not iterable( value ) ): value = [ value ] newValues = [] for v in value: if ( (v not in labels) and (v not in newValues) ): newValues.append( v ) for v in newValues: if ( labels ): labels.append( v ) else: labels = [ v ] #DISABLED: This is disabled because matplotlib bar plots do not #DISABLED: recalculate the unit conversion of the data values #DISABLED: this is due to design and is not really a bug. #DISABLED: If this gets changed, then we can activate the following #DISABLED: block of code. Note that this works for line plots. #DISABLED if ( unit ): #DISABLED if ( unit.find( "sorted" ) > -1 ): #DISABLED labels.sort() #DISABLED if ( unit.find( "inverted" ) > -1 ): #DISABLED labels = labels[ ::-1 ] # add padding (so they do not appear on the axes themselves) labels = [ '' ] + labels + [ '' ] ticks = list(xrange( len(labels) )) ticks[0] = 0.5 ticks[-1] = ticks[-1] - 0.5 axis.set_ticks( ticks ) axis.set_ticklabels( labels ) # we have to do the following lines to make ax.autoscale_view work loc = axis.get_major_locator() loc.set_bounds( ticks[0], ticks[-1] ) if ( isXAxis ): ax.set_xlim( ticks[0], ticks[-1] ) else: ax.set_ylim( ticks[0], ticks[-1] ) result = [] for v in value: # If v is not in labels then something went wrong with adding new # labels to the list of old labels. errmsg = "This is due to a logic error in the StrConverter class. " errmsg += "Please report this error and its message in bugzilla." assert ( v in labels ), errmsg result.append( ticks[ labels.index(v) ] ) ax.viewLim.ignore(-1) return result #------------------------------------------------------------------------ @staticmethod def default_units( value, axis ): """: Return the default unit for value, or None. = INPUT VARIABLES - axis The axis using this converter. - value The value or list of values that need units. = RETURN VALUE - Returns the default units to use for value. Return the default unit for value, or None. """ # The default behavior for string indexing. return "indexed"
mit
mcanthony/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qt.py
69
16846
from __future__ import division import math import os import sys import matplotlib from matplotlib import verbose from matplotlib.cbook import is_string_like, onetrue from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib._pylab_helpers import Gcf from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.widgets import SubplotTool try: import qt except ImportError: raise ImportError("Qt backend requires pyqt to be installed.") backend_version = "0.9.1" def fn_name(): return sys._getframe(1).f_code.co_name DEBUG = False cursord = { cursors.MOVE : qt.Qt.PointingHandCursor, cursors.HAND : qt.Qt.WaitCursor, cursors.POINTER : qt.Qt.ArrowCursor, cursors.SELECT_REGION : qt.Qt.CrossCursor, } def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager != None: figManager.canvas.draw() def _create_qApp(): """ Only one qApp can exist at a time, so check before creating one """ if qt.QApplication.startingUp(): if DEBUG: print "Starting up QApplication" global qApp qApp = qt.QApplication( [" "] ) qt.QObject.connect( qApp, qt.SIGNAL( "lastWindowClosed()" ), qApp, qt.SLOT( "quit()" ) ) #remember that matplotlib created the qApp - will be used by show() _create_qApp.qAppCreatedHere = True _create_qApp.qAppCreatedHere = False def show(): """ Show all the figures and enter the qt main loop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.window.show() if DEBUG: print 'Inside show' figManager = Gcf.get_active() if figManager != None: figManager.canvas.draw() if _create_qApp.qAppCreatedHere: qt.qApp.exec_loop() def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQT( thisFig ) manager = FigureManagerQT( canvas, num ) return manager class FigureCanvasQT( qt.QWidget, FigureCanvasBase ): keyvald = { qt.Qt.Key_Control : 'control', qt.Qt.Key_Shift : 'shift', qt.Qt.Key_Alt : 'alt', } # left 1, middle 2, right 3 buttond = {1:1, 2:3, 4:2} def __init__( self, figure ): if DEBUG: print 'FigureCanvasQt: ', figure _create_qApp() qt.QWidget.__init__( self, None, "QWidget figure" ) FigureCanvasBase.__init__( self, figure ) self.figure = figure self.setMouseTracking( True ) w,h = self.get_width_height() self.resize( w, h ) def enterEvent(self, event): FigureCanvasBase.enter_notify_event(self, event) def leaveEvent(self, event): FigureCanvasBase.leave_notify_event(self, event) def mousePressEvent( self, event ): x = event.pos().x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.pos().y() button = self.buttond[event.button()] FigureCanvasBase.button_press_event( self, x, y, button ) if DEBUG: print 'button pressed:', event.button() def mouseMoveEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() FigureCanvasBase.motion_notify_event( self, x, y ) if DEBUG: print 'mouse move' def mouseReleaseEvent( self, event ): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() button = self.buttond[event.button()] FigureCanvasBase.button_release_event( self, x, y, button ) if DEBUG: print 'button released' def keyPressEvent( self, event ): key = self._get_key( event ) FigureCanvasBase.key_press_event( self, key ) if DEBUG: print 'key press', key def keyReleaseEvent( self, event ): key = self._get_key(event) FigureCanvasBase.key_release_event( self, key ) if DEBUG: print 'key release', key def resizeEvent( self, event ): if DEBUG: print 'resize (%d x %d)' % (event.size().width(), event.size().height()) qt.QWidget.resizeEvent( self, event ) w = event.size().width() h = event.size().height() if DEBUG: print "FigureCanvasQt.resizeEvent(", w, ",", h, ")" dpival = self.figure.dpi winch = w/dpival hinch = h/dpival self.figure.set_size_inches( winch, hinch ) self.draw() def resize( self, w, h ): # Pass through to Qt to resize the widget. qt.QWidget.resize( self, w, h ) # Resize the figure by converting pixels to inches. pixelPerInch = self.figure.dpi wInch = w / pixelPerInch hInch = h / pixelPerInch self.figure.set_size_inches( wInch, hInch ) # Redraw everything. self.draw() def sizeHint( self ): w, h = self.get_width_height() return qt.QSize( w, h ) def minumumSizeHint( self ): return qt.QSize( 10, 10 ) def _get_key( self, event ): if event.key() < 256: key = event.text().latin1() elif event.key() in self.keyvald.has_key: key = self.keyvald[ event.key() ] else: key = None return key def flush_events(self): qt.qApp.processEvents() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerQT( FigureManagerBase ): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The qt.QToolBar window : The qt.QMainWindow """ def __init__( self, canvas, num ): if DEBUG: print 'FigureManagerQT.%s' % fn_name() FigureManagerBase.__init__( self, canvas, num ) self.canvas = canvas self.window = qt.QMainWindow( None, None, qt.Qt.WDestructiveClose ) self.window.closeEvent = self._widgetCloseEvent centralWidget = qt.QWidget( self.window ) self.canvas.reparent( centralWidget, qt.QPoint( 0, 0 ) ) # Give the keyboard focus to the figure instead of the manager self.canvas.setFocusPolicy( qt.QWidget.ClickFocus ) self.canvas.setFocus() self.window.setCaption( "Figure %d" % num ) self.window._destroying = False self.toolbar = self._get_toolbar(self.canvas, centralWidget) # Use a vertical layout for the plot and the toolbar. Set the # stretch to all be in the plot so the toolbar doesn't resize. self.layout = qt.QVBoxLayout( centralWidget ) self.layout.addWidget( self.canvas, 1 ) if self.toolbar: self.layout.addWidget( self.toolbar, 0 ) self.window.setCentralWidget( centralWidget ) # Reset the window height so the canvas will be the right # size. This ALMOST works right. The first issue is that the # height w/ a toolbar seems to be off by just a little bit (so # we add 4 pixels). The second is that the total width/height # is slightly smaller that we actually want. It seems like # the border of the window is being included in the size but # AFAIK there is no way to get that size. w = self.canvas.width() h = self.canvas.height() if self.toolbar: h += self.toolbar.height() + 4 self.window.resize( w, h ) if matplotlib.is_interactive(): self.window.show() # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.window.show() def notify_axes_change( fig ): # This will be called whenever the current axes is changed if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver( notify_axes_change ) def _widgetclosed( self ): if self.window._destroying: return self.window._destroying = True Gcf.destroy(self.num) def _widgetCloseEvent( self, event ): self._widgetclosed() qt.QWidget.closeEvent( self.window, event ) def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'classic': print "Classic toolbar is not yet supported" elif matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2QT(canvas, parent) else: toolbar = None return toolbar def resize(self, width, height): 'set the canvas size in pixels' self.window.resize(width, height) def destroy( self, *args ): if self.window._destroying: return self.window._destroying = True if self.toolbar: self.toolbar.destroy() if DEBUG: print "destroy figure manager" self.window.close(True) def set_window_title(self, title): self.window.setCaption(title) class NavigationToolbar2QT( NavigationToolbar2, qt.QWidget ): # list of toolitems to add to the toolbar, format is: # text, tooltip_text, image_file, callback(str) toolitems = ( ('Home', 'Reset original view', 'home.ppm', 'home'), ('Back', 'Back to previous view','back.ppm', 'back'), ('Forward', 'Forward to next view','forward.ppm', 'forward'), (None, None, None, None), ('Pan', 'Pan axes with left mouse, zoom with right', 'move.ppm', 'pan'), ('Zoom', 'Zoom to rectangle','zoom_to_rect.ppm', 'zoom'), (None, None, None, None), ('Subplots', 'Configure subplots','subplots.png', 'configure_subplots'), ('Save', 'Save the figure','filesave.ppm', 'save_figure'), ) def __init__( self, canvas, parent ): self.canvas = canvas self.buttons = {} qt.QWidget.__init__( self, parent ) # Layout toolbar buttons horizontally. self.layout = qt.QHBoxLayout( self ) self.layout.setMargin( 2 ) NavigationToolbar2.__init__( self, canvas ) def _init_toolbar( self ): basedir = os.path.join(matplotlib.rcParams[ 'datapath' ],'images') for text, tooltip_text, image_file, callback in self.toolitems: if text == None: self.layout.addSpacing( 8 ) continue fname = os.path.join( basedir, image_file ) image = qt.QPixmap() image.load( fname ) button = qt.QPushButton( qt.QIconSet( image ), "", self ) qt.QToolTip.add( button, tooltip_text ) self.buttons[ text ] = button # The automatic layout doesn't look that good - it's too close # to the images so add a margin around it. margin = 4 button.setFixedSize( image.width()+margin, image.height()+margin ) qt.QObject.connect( button, qt.SIGNAL( 'clicked()' ), getattr( self, callback ) ) self.layout.addWidget( button ) self.buttons[ 'Pan' ].setToggleButton( True ) self.buttons[ 'Zoom' ].setToggleButton( True ) # Add the x,y location widget at the right side of the toolbar # The stretch factor is 1 which means any resizing of the toolbar # will resize this label instead of the buttons. self.locLabel = qt.QLabel( "", self ) self.locLabel.setAlignment( qt.Qt.AlignRight | qt.Qt.AlignVCenter ) self.locLabel.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Ignored, qt.QSizePolicy.Ignored)) self.layout.addWidget( self.locLabel, 1 ) # reference holder for subplots_adjust window self.adj_window = None def destroy( self ): for text, tooltip_text, image_file, callback in self.toolitems: if text is not None: qt.QObject.disconnect( self.buttons[ text ], qt.SIGNAL( 'clicked()' ), getattr( self, callback ) ) def pan( self, *args ): self.buttons[ 'Zoom' ].setOn( False ) NavigationToolbar2.pan( self, *args ) def zoom( self, *args ): self.buttons[ 'Pan' ].setOn( False ) NavigationToolbar2.zoom( self, *args ) def dynamic_update( self ): self.canvas.draw() def set_message( self, s ): self.locLabel.setText( s ) def set_cursor( self, cursor ): if DEBUG: print 'Set cursor' , cursor qt.QApplication.restoreOverrideCursor() qt.QApplication.setOverrideCursor( qt.QCursor( cursord[cursor] ) ) def draw_rubberband( self, event, x0, y0, x1, y1 ): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [ int(val)for val in min(x0,x1), min(y0, y1), w, h ] self.canvas.drawRectangle( rect ) def configure_subplots(self): self.adj_window = qt.QMainWindow(None, None, qt.Qt.WDestructiveClose) win = self.adj_window win.setCaption("Subplot Configuration Tool") toolfig = Figure(figsize=(6,3)) toolfig.subplots_adjust(top=0.9) w = int (toolfig.bbox.width) h = int (toolfig.bbox.height) canvas = self._get_canvas(toolfig) tool = SubplotTool(self.canvas.figure, toolfig) centralWidget = qt.QWidget(win) canvas.reparent(centralWidget, qt.QPoint(0, 0)) win.setCentralWidget(centralWidget) layout = qt.QVBoxLayout(centralWidget) layout.addWidget(canvas, 1) win.resize(w, h) canvas.setFocus() win.show() def _get_canvas(self, fig): return FigureCanvasQT(fig) def save_figure( self ): filetypes = self.canvas.get_supported_filetypes_grouped() sorted_filetypes = filetypes.items() sorted_filetypes.sort() default_filetype = self.canvas.get_default_filetype() start = "image." + default_filetype filters = [] selectedFilter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selectedFilter = filter filters.append(filter) filters = ';;'.join(filters) fname = qt.QFileDialog.getSaveFileName( start, filters, self, "Save image", "Choose a filename to save to", selectedFilter) if fname: try: self.canvas.print_figure( unicode(fname) ) except Exception, e: qt.QMessageBox.critical( self, "Error saving file", str(e), qt.QMessageBox.Ok, qt.QMessageBox.NoButton) def set_history_buttons( self ): canBackward = ( self._views._pos > 0 ) canForward = ( self._views._pos < len( self._views._elements ) - 1 ) self.buttons[ 'Back' ].setEnabled( canBackward ) self.buttons[ 'Forward' ].setEnabled( canForward ) # set icon used when windows are minimized try: # TODO: This is badly broken qt.window_set_default_icon_from_file ( os.path.join( matplotlib.rcParams['datapath'], 'images', 'matplotlib.svg' ) ) except: verbose.report( 'Could not load matplotlib icon: %s' % sys.exc_info()[1] ) def error_msg_qt( msg, parent=None ): if not is_string_like( msg ): msg = ','.join( map( str,msg ) ) qt.QMessageBox.warning( None, "Matplotlib", msg, qt.QMessageBox.Ok ) def exception_handler( type, value, tb ): """Handle uncaught exceptions It does not catch SystemExit """ msg = '' # get the filename attribute if available (for IOError) if hasattr(value, 'filename') and value.filename != None: msg = value.filename + ': ' if hasattr(value, 'strerror') and value.strerror != None: msg += value.strerror else: msg += str(value) if len( msg ) : error_msg_qt( msg ) FigureManager = FigureManagerQT
agpl-3.0
FlorianGraef/adv-lane-lines-vehicle-detection
vehicle_inference.py
1
1024
from keras.models import load_model import numpy as np import matplotlib as plt import cv2 from keras import backend as K smooth = 1 def IOU_calc(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return 2*(intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def IOU_calc_loss(y_true, y_pred): return -IOU_calc(y_true, y_pred) class VehicleInference(): def __init__(self, model_path, nn_input_dim): self.model = load_model(model_path, custom_objects={'IOU_calc_loss': IOU_calc_loss, 'IOU_calc':IOU_calc}) #self.model.load_weights('sem_seg_unet30e_w.h5') self.nn_input_dims = nn_input_dim def get_mask(self, img): batch_wrapped = np.empty([1, self.nn_input_dims[1], self.nn_input_dims[0], 3]) batch_wrapped[0] = cv2.resize(img, self.nn_input_dims) pred_mask = (self.model.predict(batch_wrapped))[0] return pred_mask
mit
meduz/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
jiangxb1987/spark
python/pyspark/sql/context.py
5
18889
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings if sys.version >= '3': basestring = unicode = str from pyspark import since, _NoValue from pyspark.rdd import ignore_unicode_prefix from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import IntegerType, Row, StringType from pyspark.sql.udf import UDFRegistration from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. :param sparkContext: The :class:`SparkContext` backing this SQLContext. :param sparkSession: The :class:`SparkSession` around which this SQLContext wraps. :param jsqlContext: An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. """ _instantiatedContext = None @ignore_unicode_prefix def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): """Creates a new SQLContext. >>> from datetime import datetime >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession.builder.getOrCreate() if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if SQLContext._instantiatedContext is None: SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @property def _conf(self): """Accessor for the JVM SQL-specific configurations""" return self.sparkSession._jsparkSession.sessionState().conf() @classmethod @since(1.6) def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext @since(1.6) def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self.sparkSession.newSession()) @since(1.3) def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value) @ignore_unicode_prefix @since(1.3) def getConf(self, key, defaultValue=_NoValue): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is set, return defaultValue. If the key is not set and defaultValue is not set, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue) @property @since("1.3.1") def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ return self.sparkSession.udf @since(1.4) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) @since(1.2) def registerFunction(self, name, f, returnType=None): """An alias for :func:`spark.udf.register`. See :meth:`pyspark.sql.UDFRegistration.register`. .. note:: Deprecated in 2.3.0. Use :func:`spark.udf.register` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.register instead.", DeprecationWarning) return self.sparkSession.udf.register(name, f, returnType) @since(2.1) def registerJavaFunction(self, name, javaClassName, returnType=None): """An alias for :func:`spark.udf.registerJavaFunction`. See :meth:`pyspark.sql.UDFRegistration.registerJavaFunction`. .. note:: Deprecated in 2.3.0. Use :func:`spark.udf.registerJavaFunction` instead. """ warnings.warn( "Deprecated in 2.3.0. Use spark.udf.registerJavaFunction instead.", DeprecationWarning) return self.sparkSession.udf.registerJavaFunction(name, javaClassName, returnType) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) @since(1.3) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. :class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a datatype string after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. .. versionchanged:: 2.1 Added verifySchema. >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) @since(1.3) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) @since(1.6) def dropTempTable(self, tableName): """ Remove the temporary table from catalog. >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) @ignore_unicode_prefix @since(1.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return self.sparkSession.sql(sqlQuery) @since(1.0) def table(self, tableName): """Returns the specified table or view as a :class:`DataFrame`. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) @ignore_unicode_prefix @since(1.3) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). :param dbName: string, name of the database to use. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(database=u'', tableName=u'table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) @since(1.3) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property @since(1.4) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", "field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
hamid-omid/search_relevance
data_selection.py
1
2491
''' Detecting the best features among ~600 new features. INPUT FILES: Train(i).csv (The new features of train set; made by Arman) Test(j).csv (the new features of test set; made by Arman) OUTPUTS: newFeatTrain.csv (a file that only has the most relevant features) newFeatTest.csv (a file that only has the most relevant features) __Authors__: Ali Narimani, Hamid Omid __Veresion__: 1.0 ''' import numpy as np import pandas as pd ### Reading input data: df_ts1 = pd.read_csv('../../homedepotdata/Test1.csv') df_ts2 = pd.read_csv('../../homedepotdata/Test2.csv') df_ts3 = pd.read_csv('../../homedepotdata/Test3.csv') df_ts4 = pd.read_csv('../../homedepotdata/Test4.csv') df_tr1 = pd.read_csv('../../homedepotdata/Train1.csv') df_tr2 = pd.read_csv('../../homedepotdata/Train2.csv') ### concat train and test: frames = [df_ts1,df_ts2,df_ts3,df_ts4] TEST = pd.concat(frames, axis=0, ignore_index=True) frames = [df_tr1,df_tr2] TRAIN = pd.concat(frames, axis=0, ignore_index=True) ### Drop columns with less than `espislon` variation: names = list(TEST.columns) columns2drop = [] stdTr = {} stdTs = {} epsilon = 10**(-3) # this is a subjective choice, but we have no time for column in names: sd = np.std(TEST[column]) stdTs[column] = sd sd = np.std(TRAIN[column]) stdTr[column] = sd if sd < epsilon: columns2drop.append(column) TRAIN.drop(columns2drop,axis=1,inplace=True) TEST.drop(columns2drop,axis=1,inplace=True) ### Drop columns that are correlated more than (1-eta): names = TEST.columns corrDrop = [] eta = 0.2 # this is a subjective choice, but we have no time for c1 in range(len(names)): col1 = names[c1] for c2 in range(c1+1,len(names)): col2 = names[c2] buff = abs(np.corrcoef(TRAIN[col1],TRAIN[col2])[0,1]) if buff > (1-eta) : corrDrop.append(col2) TRAIN.drop(corrDrop,axis=1,inplace=True) TEST.drop(corrDrop,axis=1,inplace=True) ### Detect columns with a higher than `delta` correlation with relevance: names = TEST.columns corrRelev = {} goodCol = [] delta = 0.05 # this is a subjective choice, but we have no time for c1 in range(len(names)): col = names[c1] buff = abs(np.corrcoef(TRAIN[col],TRAIN.relevance)[0,1]) corrRelev[col] = buff if buff > delta: goodCol.append(col) ### writing data files trainNew = TRAIN[goodCol] testNew = TEST[goodCol] trainNew.to_csv('newFeatTrain.csv',index=False) testNew.to_csv('newFeatTest.csv',index=False) # End of Code
mit
Jimmy-Morzaria/scikit-learn
sklearn/neighbors/unsupervised.py
22
4396
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
public-ink/public-ink
server/appengine/lib/mpl_toolkits/axisartist/grid_helper_curvelinear.py
18
26105
""" An experimental support for curvilinear grid. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip from itertools import chain from .grid_finder import GridFinder from .axislines import AxisArtistHelper, GridHelperBase from .axis_artist import AxisArtist from matplotlib.transforms import Affine2D, IdentityTransform import numpy as np from matplotlib.path import Path class FixedAxisArtistHelper(AxisArtistHelper.Fixed): """ Helper class for a fixed axis. """ def __init__(self, grid_helper, side, nth_coord_ticks=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FixedAxisArtistHelper, self).__init__( \ loc=side, ) self.grid_helper = grid_helper if nth_coord_ticks is None: nth_coord_ticks = self.nth_coord self.nth_coord_ticks = nth_coord_ticks self.side = side self._limits_inverted = False def update_lim(self, axes): self.grid_helper.update_lim(axes) if self.nth_coord == 0: xy1, xy2 = axes.get_ylim() else: xy1, xy2 = axes.get_xlim() if xy1 > xy2: self._limits_inverted = True else: self._limits_inverted = False def change_tick_coord(self, coord_number=None): if coord_number is None: self.nth_coord_ticks = 1 - self.nth_coord_ticks elif coord_number in [0, 1]: self.nth_coord_ticks = coord_number else: raise Exception("wrong coord number") def get_tick_transform(self, axes): return axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" g = self.grid_helper if self._limits_inverted: side = {"left":"right","right":"left", "top":"bottom", "bottom":"top"}[self.side] else: side = self.side ti1 = g.get_tick_iterator(self.nth_coord_ticks, side) ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, side, minor=True) #ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True) return chain(ti1, ti2), iter([]) class FloatingAxisArtistHelper(AxisArtistHelper.Floating): def __init__(self, grid_helper, nth_coord, value, axis_direction=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FloatingAxisArtistHelper, self).__init__(nth_coord, value, ) self.value = value self.grid_helper = grid_helper self._extremes = None, None self._get_line_path = None # a method that returns a Path. self._line_num_points = 100 # number of points to create a line def set_extremes(self, e1, e2): self._extremes = e1, e2 def update_lim(self, axes): self.grid_helper.update_lim(axes) x1, x2 = axes.get_xlim() y1, y2 = axes.get_ylim() grid_finder = self.grid_helper.grid_finder extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy, x1, y1, x2, y2) extremes = list(extremes) e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: if e1 is not None: extremes[2] = max(e1, extremes[2]) if e2 is not None: extremes[3] = min(e2, extremes[3]) elif self.nth_coord == 1: if e1 is not None: extremes[0] = max(e1, extremes[0]) if e2 is not None: extremes[1] = min(e2, extremes[1]) grid_info = dict() lon_min, lon_max, lat_min, lat_max = extremes lon_levs, lon_n, lon_factor = \ grid_finder.grid_locator1(lon_min, lon_max) lat_levs, lat_n, lat_factor = \ grid_finder.grid_locator2(lat_min, lat_max) grid_info["extremes"] = extremes grid_info["lon_info"] = lon_levs, lon_n, lon_factor grid_info["lat_info"] = lat_levs, lat_n, lat_factor grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom", lon_factor, lon_levs) grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom", lat_factor, lat_levs) grid_finder = self.grid_helper.grid_finder #e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: xx0 = np.linspace(self.value, self.value, self._line_num_points) yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) elif self.nth_coord == 1: xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points) yy0 = np.linspace(self.value, self.value, self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) grid_info["line_xy"] = xx, yy self.grid_info = grid_info def get_axislabel_transform(self, axes): return Affine2D() #axes.transData def get_axislabel_pos_angle(self, axes): extremes = self.grid_info["extremes"] if self.nth_coord == 0: xx0 = self.value yy0 = (extremes[2]+extremes[3])/2. dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000. elif self.nth_coord == 1: xx0 = (extremes[0]+extremes[1])/2. yy0 = self.value dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0. grid_finder = self.grid_helper.grid_finder xx1, yy1 = grid_finder.transform_xy([xx0], [yy0]) trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]]) if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.): xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]]) xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy]) xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]]) return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180. else: return None, None def get_tick_transform(self, axes): return IdentityTransform() #axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label, (optionally) tick_label""" grid_finder = self.grid_helper.grid_finder lat_levs, lat_n, lat_factor = self.grid_info["lat_info"] lat_levs = np.asarray(lat_levs) if lat_factor is not None: yy0 = lat_levs / lat_factor dy = 0.01 / lat_factor else: yy0 = lat_levs dy = 0.01 lon_levs, lon_n, lon_factor = self.grid_info["lon_info"] lon_levs = np.asarray(lon_levs) if lon_factor is not None: xx0 = lon_levs / lon_factor dx = 0.01 / lon_factor else: xx0 = lon_levs dx = 0.01 if None in self._extremes: e0, e1 = self._extremes else: e0, e1 = sorted(self._extremes) if e0 is None: e0 = -np.inf if e1 is None: e1 = np.inf if self.nth_coord == 0: mask = (e0 <= yy0) & (yy0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] yy0 = yy0[mask] elif self.nth_coord == 1: mask = (e0 <= xx0) & (xx0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] xx0 = xx0[mask] def transform_xy(x, y): x1, y1 = grid_finder.transform_xy(x, y) x2y2 = axes.transData.transform(np.array([x1, y1]).transpose()) x2, y2 = x2y2.transpose() return x2, y2 # find angles if self.nth_coord == 0: xx0 = np.empty_like(yy0) xx0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx1a, yy1a = transform_xy(xx00, yy0) xx1b, yy1b = transform_xy(xx00+dx, yy0) xx2a, yy2a = transform_xy(xx0, yy0) xx2b, yy2b = transform_xy(xx0, yy0+dy) labels = self.grid_info["lat_labels"] labels = [l for l, m in zip(labels, mask) if m] elif self.nth_coord == 1: yy0 = np.empty_like(xx0) yy0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx1a, yy1a = transform_xy(xx0, yy0) xx1b, yy1b = transform_xy(xx0, yy0+dy) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx2a, yy2a = transform_xy(xx00, yy0) xx2b, yy2b = transform_xy(xx00+dx, yy0) labels = self.grid_info["lon_labels"] labels = [l for l, m in zip(labels, mask) if m] def f1(): dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined dd[mm] = dd2[mm]+3.14159/2. #dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal #dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent #mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined #dd[mm] = dd2[mm]+3.14159/2. #dd += 3.14159 #dd = np.arctan2(xx2-xx1, angle_tangent-yy1) trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels): c2 = tr2ax.transform_point((x, y)) delta=0.00001 if (0. -delta<= c2[0] <= 1.+delta) and \ (0. -delta<= c2[1] <= 1.+delta): d1 = d/3.14159*180. d2 = d2/3.14159*180. yield [x, y], d1, d2, lab return f1(), iter([]) def get_line_transform(self, axes): return axes.transData def get_line(self, axes): self.update_lim(axes) x, y = self.grid_info["line_xy"] if self._get_line_path is None: return Path(list(zip(x, y))) else: return self._get_line_path(axes, x, y) class GridHelperCurveLinear(GridHelperBase): def __init__(self, aux_trans, extreme_finder=None, grid_locator1=None, grid_locator2=None, tick_formatter1=None, tick_formatter2=None): """ aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects which defines the transform and its inverse. The callables need take two arguments of array of source coordinates and should return two target coordinates: e.g., x2, y2 = trans(x1, y1) """ super(GridHelperCurveLinear, self).__init__() self.grid_info = None self._old_values = None #self._grid_params = dict() self._aux_trans = aux_trans self.grid_finder = GridFinder(aux_trans, extreme_finder, grid_locator1, grid_locator2, tick_formatter1, tick_formatter2) def update_grid_finder(self, aux_trans=None, **kw): if aux_trans is not None: self.grid_finder.update_transform(aux_trans) self.grid_finder.update(**kw) self.invalidate() def _update(self, x1, x2, y1, y2): "bbox in 0-based image coordinates" # update wcsgrid if self.valid() and self._old_values == (x1, x2, y1, y2): return self._update_grid(x1, y1, x2, y2) self._old_values = (x1, x2, y1, y2) self._force_update = False def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None): if axes is None: axes = self.axes if axis_direction is None: axis_direction = loc _helper = FixedAxisArtistHelper(self, loc, #nth_coord, nth_coord_ticks=nth_coord, ) axisline = AxisArtist(axes, _helper, axis_direction=axis_direction) return axisline def new_floating_axis(self, nth_coord, value, axes=None, axis_direction="bottom" ): if axes is None: axes = self.axes _helper = FloatingAxisArtistHelper( \ self, nth_coord, value, axis_direction) axisline = AxisArtist(axes, _helper) #_helper = FloatingAxisArtistHelper(self, nth_coord, # value, # label_direction=label_direction, # ) #axisline = AxisArtistFloating(axes, _helper, # axis_direction=axis_direction) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) #axisline.major_ticklabels.set_visible(True) #axisline.minor_ticklabels.set_visible(False) #axisline.major_ticklabels.set_rotate_along_line(True) #axisline.set_rotate_label_along_line(True) return axisline def _update_grid(self, x1, y1, x2, y2): self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2) def get_gridlines(self, which="major", axis="both"): grid_lines = [] if axis in ["both", "x"]: for gl in self.grid_info["lon"]["lines"]: grid_lines.extend(gl) if axis in ["both", "y"]: for gl in self.grid_info["lat"]["lines"]: grid_lines.extend(gl) return grid_lines def get_tick_iterator(self, nth_coord, axis_side, minor=False): #axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side] angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side] #angle = [0, 90, 180, 270][axisnr] lon_or_lat = ["lon", "lat"][nth_coord] if not minor: # major ticks def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, l else: def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, "" #for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]: # yield xy, a, "" return f() def test3(): import numpy as np from matplotlib.transforms import Transform from matplotlib.path import Path class MyTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y-x), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MyTransformInv(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class MyTransformInv(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y+x), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MyTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() tr = MyTransform(1) grid_helper = GridHelperCurveLinear(tr) from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory from .axislines import Axes SubplotHost = host_subplot_class_factory(Axes) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) fig.add_subplot(ax1) ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") ax1.parasites.append(ax2) ax2.plot([3, 6], [5.0, 10.]) ax1.set_aspect(1.) ax1.set_xlim(0, 10) ax1.set_ylim(0, 10) ax1.grid(True) plt.draw() def curvelinear_test2(fig): """ polar projection, but in a rectangular box. """ global ax1 import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost, \ ParasiteAxesAuxTrans import matplotlib.cbook as cbook # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(5) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) # make ticklabels of right and top axis visible. ax1.axis["right"].major_ticklabels.set_visible(True) ax1.axis["top"].major_ticklabels.set_visible(True) # let right axis shows ticklabels for 1st coordinate (angle) ax1.axis["right"].get_helper().nth_coord_ticks=0 # let bottom axis shows ticklabels for 2nd coordinate (radius) ax1.axis["bottom"].get_helper().nth_coord_ticks=1 fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 60, axes=ax1) axis.label.set_text("Test") axis.label.set_visible(True) #axis._extremes = 2, 10 #axis.label.set_text("Test") #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.get_helper()._extremes=2, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1) #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.label.set_text("Test 2") axis.get_helper()._extremes=-180, 90 # A parasite axes with given transform ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # note that ax2.transData == tr + ax1.transData # Anthing you draw in ax2 will match the ticks and grids of ax1. ax1.parasites.append(ax2) intp = cbook.simple_linear_interpolation ax2.plot(intp(np.array([0, 30]), 50), intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) def curvelinear_test3(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np from . import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(12) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) for axis in list(six.itervalues(ax1.axis)): axis.set_visible(False) fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(0, 130, axes=ax1, axis_direction="left" ) axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 grid_helper = ax1.get_grid_helper() ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(0, 50, axes=ax1, axis_direction="right") axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 10, axes=ax1, axis_direction="bottom") axis.label.set_text("Test 2") axis.get_helper()._extremes= 50, 130 axis.major_ticklabels.set_axis_direction("top") axis.label.set_axis_direction("top") grid_helper.grid_finder.grid_locator1.den = 5 grid_helper.grid_finder.grid_locator2._nbins = 5 # # A parasite axes with given transform # ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # # note that ax2.transData == tr + ax1.transData # # Anthing you draw in ax2 will match the ticks and grids of ax1. # ax1.parasites.append(ax2) # intp = cbook.simple_linear_interpolation # ax2.plot(intp(np.array([0, 30]), 50), # intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, figsize=(5, 5)) fig.clf() #test3() #curvelinear_test2(fig) curvelinear_test3(fig) #plt.draw() plt.show()
gpl-3.0
flaviovdf/pyksc
src/scripts/tags_io.py
1
2958
# -*- coding: utf8 '''This module contains the code used for data conversion''' from __future__ import division, print_function from collections import defaultdict from sklearn.base import BaseEstimator from sklearn.feature_extraction.text import Vectorizer import nltk class NoopAnalyzer(BaseEstimator): ''' Since we use NLTK to preprocess (more control) this class is used to bypass sklearns preprocessing ''' def analyze(self, text_document): '''Does nothing''' return text_document def __tokenize_and_stem(fpath): ''' Tokenizes and stems the file, converting each line to an array of words. Arguments --------- fpath: a path to a file Each line is a song, tags are separated by space ''' tokenizer = nltk.RegexpTokenizer(r'\w+') stopwords = set(nltk.corpus.stopwords.words('english')) stemmer = nltk.stem.PorterStemmer() docs = [] term_pops = defaultdict(int) with open(fpath) as tags_file: for line in tags_file: as_doc = [] for term in tokenizer.tokenize(line)[1:]: term = term.lower().strip() if term not in stopwords and term != '': stemmed = stemmer.stem(term) as_doc.append(stemmed) term_pops[stemmed] += 1 docs.append(as_doc) return docs, term_pops def clean_up(fpath, bottom_filter=0.01): ''' Converts a YouTube tag file to a series of tokens. This code stems the tags, removes stopwords and filters infrequent tags (whose probability is bellow `bottom_filter`). Arguments --------- fpath: a path to a file Each line is a song, tags are separated by space bottom_filter: float (defaults to 0.01, one percent) Minimum probability for tags to be considered useful ''' docs, term_pops = __tokenize_and_stem(fpath) for doc in docs: to_yield = [] for term in doc: prob_term = term_pops[term] / len(term_pops) if prob_term > bottom_filter: to_yield.append(term) yield to_yield def vectorize_videos(fpath, use_idf=False): ''' Converts a YouTube tag file to a sparse matrix pondered. We can assign weights based on IDF if specified. Arguments --------- fpath: a path to a file Each line is a song, tags are separated by space use_idf: bool (optinal, defaults to True) Indicates whether to use IDF. bottom_filter: float (defaults to 0.005, half of one percent) Minimum probability for tags to be considered useful ''' #Vectorizes to TF-IDF vectorizer = Vectorizer(analyzer=NoopAnalyzer(), use_idf = use_idf) sparse_matrix = vectorizer.fit_transform(clean_up(fpath, bottom_filter=0)) vocabulary = vectorizer.vocabulary return sparse_matrix, vocabulary
bsd-3-clause
etkirsch/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
jpmpentwater/traversing_knowledge_graphs
code/accuracy_evaluate.py
1
1366
# coding: utf-8 # In[ ]: import scriptinit import util from data import * from optimize import * import diagnostics as dns from os.path import join from composition import * import numpy as np import matplotlib.pyplot as plt from collections import Counter import argparse from os.path import join import cPickle # In[ ]: parser = argparse.ArgumentParser() parser.add_argument('dataset') parser.add_argument('model') parser.add_argument('params') if util.in_ipython(): args = parser.parse_args(['freebase_socher', 'bilinear', 'compositional_wvec_bilinear_freebase_socher_0xe7d4cf_params.cpkl']) else: args = parser.parse_args() util.metadata('dataset', args.dataset) util.metadata('model', args.model) util.metadata('params', args.params) util.metadata('split', 'test') model = CompositionalModel(None, path_model=args.model, objective='margin') params = load_params(args.params, args.model) dev = dns.load_socher_test(join(args.dataset, 'dev')) test = dns.load_socher_test(join(args.dataset, 'test')) def score(samples): for ex in samples: try: ex.score = model.predict(params, ex).ravel()[0] except KeyError: print 'out of vocab' ex.score = float('inf') score(dev) score(test) thresholds = dns.compute_best_thresholds(dev) util.metadata('accuracy', dns.accuracy(thresholds, test))
mit
UltronAI/Deep-Learning
CS231n/assignment1/cs231n/classifiers/neural_net.py
1
12775
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from past.builtins import xrange class TwoLayerNet(object): """ A two-layer fully-connected neural network. The net has an input dimension of N, a hidden layer dimension of H, and performs classification over C classes. We train the network with a softmax loss function and L2 regularization on the weight matrices. The network uses a ReLU nonlinearity after the first fully connected layer. In other words, the network has the following architecture: input - fully connected layer - ReLU - fully connected layer - softmax The outputs of the second fully-connected layer are the scores for each class. """ def __init__(self, input_size, hidden_size, output_size, std=1e-4): """ Initialize the model. Weights are initialized to small random values and biases are initialized to zero. Weights and biases are stored in the variable self.params, which is a dictionary with the following keys: W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) Inputs: - input_size: The dimension D of the input data. - hidden_size: The number of neurons H in the hidden layer. - output_size: The number of classes C. """ self.params = {} self.params['W1'] = std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def loss(self, X, y=None, reg=0.0, dropout=False): """ Compute the loss and gradients for a two layer fully connected neural network. Inputs: - X: Input data of shape (N, D). Each X[i] is a training sample. - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is an integer in the range 0 <= y[i] < C. This parameter is optional; if it is not passed then we only return scores, and if it is passed then we instead return the loss and gradients. - reg: Regularization strength. Returns: If y is None, return a matrix scores of shape (N, C) where scores[i, c] is the score for class c on input X[i]. If y is not None, instead return a tuple of: - loss: Loss (data loss and regularization loss) for this batch of training samples. - grads: Dictionary mapping parameter names to gradients of those parameters with respect to the loss function; has the same keys as self.params. """ # Unpack variables from the params dictionary W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] N, D = X.shape p = 0.2 # Compute the forward pass scores = None ############################################################################# # TODO: Perform the forward pass, computing the class scores for the input. # # Store the result in the scores variable, which should be an array of # # shape (N, C). # ############################################################################# h = X.dot(W1)+b1 if dropout == True: drop_p = np.random.uniform(0,1,(W1.shape[1],)) drop_id = (drop_p>p).reshape(W1.shape[1]) # print(h[:, drop_id].shape) h[:, drop_id] = 0 z = np.maximum(0, h) scores = z.dot(W2)+b2 ############################################################################# # END OF YOUR CODE # ############################################################################# # If the targets are not given then jump out, we're done if y is None: return scores # Compute the loss loss = None ############################################################################# # TODO: Finish the forward pass, and compute the loss. This should include # # both the data loss and L2 regularization for W1 and W2. Store the result # # in the variable loss, which should be a scalar. Use the Softmax # # classifier loss. # ############################################################################# scores -= np.max(scores, axis=1, keepdims=True) s = np.sum(np.exp(scores), axis=1, keepdims=True) p = np.exp(scores)/s loss = np.sum(-np.log(p[np.arange(N), y])) loss /= N loss += reg*np.sum(W1*W1) + reg*np.sum(W2*W2) ############################################################################# # END OF YOUR CODE # ############################################################################# # Backward pass: compute gradients grads = {} ############################################################################# # TODO: Compute the backward pass, computing the derivatives of the weights # # and biases. Store the results in the grads dictionary. For example, # # grads['W1'] should store the gradient on W1, and be a matrix of same size # ############################################################################# dscores = p dscores[np.arange(N), y] -= 1 dscores /= N # W2 and b2 grads['W2'] = z.T.dot(dscores) grads['b2'] = np.sum(dscores, axis=0) # next backprop into hidden layer dhidden = dscores.dot(W2.T) # backprop the ReLU non-linearity dhidden[h<0] = 0 if dropout == True: dhidden[:, drop_id] = 0 # finally into W,b grads['W1'] = X.T.dot(dhidden) grads['b1'] = np.sum(dhidden, axis=0) # add regularization gradient contribution grads['W2'] += 2*reg*W2 grads['W1'] += 2*reg*W1 ############################################################################# # END OF YOUR CODE # ############################################################################# return loss, grads def train(self, X, y, X_val, y_val, learning_rate=1e-3, learning_rate_decay=0.95, reg=5e-6, num_iters=100, batch_size=200, verbose=False, mu=0, dropout=False): """ Train this neural network using stochastic gradient descent. Inputs: - X: A numpy array of shape (N, D) giving training data. - y: A numpy array f shape (N,) giving training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - X_val: A numpy array of shape (N_val, D) giving validation data. - y_val: A numpy array of shape (N_val,) giving validation labels. - learning_rate: Scalar giving learning rate for optimization. - learning_rate_decay: Scalar giving factor used to decay the learning rate after each epoch. - reg: Scalar giving regularization strength. - num_iters: Number of steps to take when optimizing. - batch_size: Number of training examples to use per step. - verbose: boolean; if true print progress during optimization. """ num_train = X.shape[0] iterations_per_epoch = max(num_train // batch_size, 1) # Use SGD to optimize the parameters in self.model loss_history = [] train_acc_history = [] val_acc_history = [] if mu != 0: v = {'W1':np.zeros_like(self.params['W1']), 'b1':np.zeros_like(self.params['b1']), 'W2':np.zeros_like(self.params['W2']), 'b2':np.zeros_like(self.params['b2'])} for it in xrange(num_iters): X_batch = None y_batch = None ######################################################################### # TODO: Create a random minibatch of training data and labels, storing # # them in X_batch and y_batch respectively. # ######################################################################### idx = np.random.choice(np.arange(num_train), batch_size) X_batch = X[idx, :] y_batch = y[idx] ######################################################################### # END OF YOUR CODE # ######################################################################### # Compute loss and gradients using the current minibatch loss, grads = self.loss(X_batch, y=y_batch, reg=reg, dropout=dropout) loss_history.append(loss) ######################################################################### # TODO: Use the gradients in the grads dictionary to update the # # parameters of the network (stored in the dictionary self.params) # # using stochastic gradient descent. You'll need to use the gradients # # stored in the grads dictionary defined above. # ######################################################################### for str in ['W1','b1','W2','b2']: if mu == 0: self.params[str] -= learning_rate*grads[str] else: v[str] = mu*v[str] - learning_rate*grads[str] self.params[str] += v[str] ######################################################################### # END OF YOUR CODE # ######################################################################### if verbose and it % 100 == 0: print('iteration %d / %d: loss %f' % (it, num_iters, loss)) # Every epoch, check train and val accuracy and decay learning rate. if it % iterations_per_epoch == 0: # Check accuracy train_acc = (self.predict(X_batch) == y_batch).mean() val_acc = (self.predict(X_val) == y_val).mean() train_acc_history.append(train_acc) val_acc_history.append(val_acc) # Decay learning rate # learning_rate *= learning_rate_decay return { 'loss_history': loss_history, 'train_acc_history': train_acc_history, 'val_acc_history': val_acc_history, } def predict(self, X): """ Use the trained weights of this two-layer network to predict labels for data points. For each data point we predict scores for each of the C classes, and assign each data point to the class with the highest score. Inputs: - X: A numpy array of shape (N, D) giving N D-dimensional data points to classify. Returns: - y_pred: A numpy array of shape (N,) giving predicted labels for each of the elements of X. For all i, y_pred[i] = c means that X[i] is predicted to have class c, where 0 <= c < C. """ y_pred = None ########################################################################### # TODO: Implement this function; it should be VERY simple! # ########################################################################### W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] N, D = X.shape h = X.dot(W1)+b1 z = np.maximum(0, h) scores = z.dot(W2)+b2 y_pred = scores.argmax(axis=1) ########################################################################### # END OF YOUR CODE # ########################################################################### return y_pred
mit
evanbiederstedt/RRBSfun
scripts/PDR_methyl_CLL_RRBS_cw154_StackA1.py
1
2026
import glob import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib import os os.chdir('/Users/evanbiederstedt/Downloads/RRBS_data_files') # set glob subdirectory via cell batch cll_cells1 = glob.glob("RRBS_cw154*") for filename in cll_cells1: df = pd.read_table(filename) df = df.drop(['chr', 'start', 'strand', 'avgWeightedEnt', 'CpGEntropy', 'tss', 'tssDistance', 'genes', 'exons', 'introns', 'promoter', 'cgi', 'geneDensity', 'ctcfUpstream', 'ctcfDownstream','ctcfDensity', 'geneDistalRegulatoryModules', 'vistaEnhancers', '3PrimeUTR', 'ctcfUpDistance', 'ctcfDownDistance','3PrimeUTRDistance', '5PrimeUTR', '5PrimeUTRDistance', 'firstExon','geneDistalRegulatoryModulesK562', 'geneDistalRegulatoryModulesK562Distance', 'hypoInHues64','hypoInHues64Distance', 'genesDistance', 'exonsDistance', 'intronsDistance', 'promoterDistance', 'cgiDistance', 'ctcf', 'ctcfDistance', 'geneDistalRegulatoryModulesDistance', 'vistaEnhancersDistance', 'firstExonDistance'], axis=1) num_bins2 = np.ceil(df['avgReadCpGs'].max()/1.25) df['avgReadCpGs_binned'] = pd.cut(df['avgReadCpGs'], num_bins2, labels=False) df['read_stack_ID'] = (df.avgReadCpGs_binned.shift(1) != df.avgReadCpGs_binned).astype(int).cumsum() df['total_reads'] = df[["methReadCount", "unmethReadCount", "mixedReadCount"]].sum(axis=1) df['avgReadCpGs'] = df['avgReadCpGs'].values.round(decimals=0) df1 = df.groupby(['read_stack_ID', 'avgReadCpGs'])[['thisMeth', 'thisUnmeth', 'methReadCount', 'unmethReadCount', 'mixedReadCount', 'total_reads']].sum() df1.reset_index(inplace=True) df1["methylation"] = df1["thisMeth"]/(df1["thisMeth"]+df1["thisUnmeth"]) # corrected df1["PDR_per_stack"] = df1["mixedReadCount"]/df1["total_reads"] df1.to_csv(str("stacked_") + str(filename) +str(".csv"))
mit
dansbecker/skflow
examples/iris_custom_decay_dnn.py
6
1600
# Copyright 2015-present Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sklearn import datasets, metrics from sklearn.cross_validation import train_test_split import skflow import tensorflow as tf iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # setup exponential decay function def exp_decay(global_step): return tf.train.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) # use customized decay function in learning_rate classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=800, learning_rate=exp_decay) classifier.fit(X_train, y_train) score = metrics.accuracy_score(y_test, classifier.predict(X_test))
apache-2.0
hsiaoyi0504/scikit-learn
sklearn/ensemble/voting_classifier.py
178
8006
""" Soft Voting/Majority Rule classifier. This module contains a Soft Voting/Majority Rule classifier for classification estimators. """ # Authors: Sebastian Raschka <[email protected]>, # Gilles Louppe <[email protected]> # # Licence: BSD 3 clause import numpy as np from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import TransformerMixin from ..base import clone from ..preprocessing import LabelEncoder from ..externals import six class VotingClassifier(BaseEstimator, ClassifierMixin, TransformerMixin): """Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the :ref:`User Guide <voting_classifier>`. Parameters ---------- estimators : list of (string, estimator) tuples Invoking the `fit` method on the `VotingClassifier` will fit clones of those original estimators that will be stored in the class attribute `self.estimators_`. voting : str, {'hard', 'soft'} (default='hard') If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probalities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like, shape = [n_classifiers], optional (default=`None`) Sequence of weights (`float` or `int`) to weight the occurances of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. Attributes ---------- classes_ : array-like, shape = [n_predictions] Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier >>> clf1 = LogisticRegression(random_state=1) >>> clf2 = RandomForestClassifier(random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1]) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> """ def __init__(self, estimators, voting='hard', weights=None): self.estimators = estimators self.named_estimators = dict(estimators) self.voting = voting self.weights = weights def fit(self, X, y): """ Fit the estimators. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: raise NotImplementedError('Multilabel and multi-output' ' classification is not supported.') if self.voting not in ('soft', 'hard'): raise ValueError("Voting must be 'soft' or 'hard'; got (voting=%r)" % self.voting) if self.weights and len(self.weights) != len(self.estimators): raise ValueError('Number of classifiers and weights must be equal' '; got %d weights, %d estimators' % (len(self.weights), len(self.estimators))) self.le_ = LabelEncoder() self.le_.fit(y) self.classes_ = self.le_.classes_ self.estimators_ = [] for name, clf in self.estimators: fitted_clf = clone(clf).fit(X, self.le_.transform(y)) self.estimators_.append(fitted_clf) return self def predict(self, X): """ Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- maj : array-like, shape = [n_samples] Predicted class labels. """ if self.voting == 'soft': maj = np.argmax(self.predict_proba(X), axis=1) else: # 'hard' voting predictions = self._predict(X) maj = np.apply_along_axis(lambda x: np.argmax(np.bincount(x, weights=self.weights)), axis=1, arr=predictions) maj = self.le_.inverse_transform(maj) return maj def _collect_probas(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict_proba(X) for clf in self.estimators_]) def _predict_proba(self, X): """Predict class probabilities for X in 'soft' voting """ avg = np.average(self._collect_probas(X), axis=0, weights=self.weights) return avg @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- avg : array-like, shape = [n_samples, n_classes] Weighted average probability for each class per sample. """ if self.voting == 'hard': raise AttributeError("predict_proba is not available when" " voting=%r" % self.voting) return self._predict_proba def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- If `voting='soft'`: array-like = [n_classifiers, n_samples, n_classes] Class probabilties calculated by each classifier. If `voting='hard'`: array-like = [n_classifiers, n_samples] Class labels predicted by each classifier. """ if self.voting == 'soft': return self._collect_probas(X) else: return self._predict(X) def get_params(self, deep=True): """Return estimator parameter names for GridSearch support""" if not deep: return super(VotingClassifier, self).get_params(deep=False) else: out = super(VotingClassifier, self).get_params(deep=False) out.update(self.named_estimators.copy()) for name, step in six.iteritems(self.named_estimators): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value return out def _predict(self, X): """Collect results from clf.predict calls. """ return np.asarray([clf.predict(X) for clf in self.estimators_]).T
bsd-3-clause
Wonjuseo/Project101
0/0-6. pythonbasic-3.py
1
2191
# List Comprehensions list1 = [i for i in range(10)] print(list1) # print: 0,1,2,3,4,5,6,7,8,9 list1 = [i for i in range(10) if i % 2 == 0] print(list1) # print: 0,2,4,6,8 print(abs(-3),complex(1,2),abs(complex(1,2))) # print: 3, 1+2j, 2.2360(values) print(all([True,True,True]),all([True,False,True])) # print: True, False print(divmod(7,3),divmod(8,3)) # print: (2,1) (2,2) print(max(1,2,3,4,5),min(1,2,3,4,5)) # print: 5 1 list1= [1,2,3,4,5] iter1 = iter(list1) print(next(iter1),next(iter1),next(iter1)) # print: 1 2 3 print(pow(2,6),round(3.1415),round(3.1415,2),sum([1,2,3,4])) # print: 64 3 3.14 10 for i in range(0,10,3): print(i) # print: 0 3 6 9 a = [1,2,3] b = [4,5,6] zip1 = zip(a,b) print(list(zip1)) # print: (1,4), (2,5), (3,6) from math import pi print(pi) # print: 3.141592653589793 from datetime import datetime print(datetime.now()) # print: now time import calendar print(calendar.prmonth(2017,2)) # print: calender # Python Image Library from PIL import Image from PIL import ImageFilter #im = Image.open('./123456.jpg') #imout = im.filter(ImageFilter.SMOOTH_MORE) # BLUR, CONTOUR, DETAIL, EDGE_ENHANCE, EDGE_ENHANCE_MORE, EMBOSS, FIND_EDGES, SMOOTH, SMOOTH_MORE, SHARPEN #imout.show() # matplotlib from pylab import * plot([1,2,3,4]) ylabel('some numbers') show() import matplotlib.pyplot as plt plt.plot([1,2,3,4],[1,4,9,16],'ro') plt.axis([0,6,0,20]) plt.show() # scatter import numpy as np x = np.random.randn(1000) y = np.random.randn(1000) plt.scatter(x,y) plt.show() x = np.linspace(0,5,10) y = x**2 fig = plt.figure() axes1 = fig.add_axes([0.1,0.1,0.8,0.8]) axes2 = fig.add_axes([0.2,0.5,0.4,0.3]) axes1.plot(x,y,'r') axes1.set_xlabel('x') axes1.set_ylabel('y') axes1.set_title('title') axes2.plot(y,x,'g') axes2.set_xlabel('y') axes2.set_ylabel('x') axes2.set_title('inser title') fig.show() # subplots, step, bar n = np.array([0,1,2,3,4,5]) fig, axes = plt.subplots(nrows=1,ncols=2) axes[0].step(n,n**2,lw=2) axes[0].set_title('step') axes[1].bar(n,n**2,align='center',alpha=0.5) axes[1].set_title('bar') plt.show()
apache-2.0
duguyue100/telauges
scripts/convnet_test.py
1
5234
""" @author: Yuhuang Hu @contact: [email protected] @note: ConvNet tests """ import numpy as np; import theano import theano.tensor as T; import matplotlib.pyplot as plt; import telauges.utils as utils; from telauges.conv_net_layer import ConvNetLayer; from telauges.hidden_layer import HiddenLayer; from telauges.hidden_layer import SoftmaxLayer; n_epochs=50; training_portion=1; batch_size=200; nkerns=[50, 20]; datasets=utils.load_mnist("../data/mnist.pkl.gz"); rng=np.random.RandomState(23455); ### Loading and preparing dataset train_set_x, train_set_y = datasets[0]; valid_set_x, valid_set_y = datasets[1]; test_set_x, test_set_y = datasets[2]; n_train_batches=int(train_set_x.get_value(borrow=True).shape[0]*training_portion); n_valid_batches=valid_set_x.get_value(borrow=True).shape[0]; n_test_batches=test_set_x.get_value(borrow=True).shape[0]; n_train_batches /= batch_size; # number of train data batches n_valid_batches /= batch_size; # number of valid data batches n_test_batches /= batch_size; # number of test data batches print "[MESSAGE] The data is loaded" print "[MESSAGE] Building model" index=T.lscalar(); # batch index X=T.matrix('X'); # input data source y=T.ivector('y'); # input data label images=X.reshape((batch_size, 1, 28, 28)) # input size (28, 28), (5, 5) layer_0=ConvNetLayer(rng=rng, feature_maps=images, feature_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 7, 7), pool=True, activate_mode="relu"); filters=layer_0.filters; for i in xrange(nkerns[0]): plt.subplot(8, 7, i); plt.imshow(filters.get_value(borrow=True)[i,0,:,:], cmap = plt.get_cmap('gray'), interpolation='nearest'); plt.axis('off') plt.show(); # input size (12, 12), (3, 3) layer_1=ConvNetLayer(rng=rng, feature_maps=layer_0.out_feature_maps, feature_shape=(batch_size, nkerns[0], 11, 11), filter_shape=(nkerns[1], nkerns[0], 4, 4), pool=True, activate_mode="relu"); # output size (5, 5) layer_2=HiddenLayer(rng=rng, data_in=layer_1.out_feature_maps.flatten(2), n_in=nkerns[1]*16, n_out=300); layer_3=SoftmaxLayer(rng=rng, data_in=layer_2.output, n_in=300, n_out=10); params=layer_0.params+layer_1.params+layer_2.params+layer_3.params; cost=layer_3.cost(y)+0.001*((layer_0.filters**2).sum()+(layer_1.filters**2).sum()+(layer_2.W**2).sum()+(layer_3.W**2).sum()); gparams=T.grad(cost, params); updates=[(param_i, param_i-0.1*grad_i) for param_i, grad_i in zip(params, gparams)]; test_model = theano.function(inputs=[index], outputs=layer_3.errors(y), givens={X: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size]}); validate_model = theano.function(inputs=[index], outputs=layer_3.errors(y), givens={X: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size]}); train_model = theano.function(inputs=[index], outputs=cost, updates=updates, givens={X: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size]}); print "[MESSAGE] The model is built"; print "[MESSAGE] Start training" validation_frequency = n_train_batches; validation_record=np.zeros((n_epochs, 1)); test_record=np.zeros((n_epochs, 1)); epoch = 0; while (epoch < n_epochs): epoch = epoch + 1; for minibatch_index in xrange(n_train_batches): mlp_minibatch_avg_cost = train_model(minibatch_index); iter = (epoch - 1) * n_train_batches + minibatch_index; if (iter + 1) % validation_frequency == 0: validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]; validation_record[epoch-1] = np.mean(validation_losses); print 'MLP MODEL'; print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, validation_record[epoch-1] * 100.)); test_losses = [test_model(i) for i in xrange(n_test_batches)]; test_record[epoch-1] = np.mean(test_losses); print((' epoch %i, minibatch %i/%i, test error %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_record[epoch-1] * 100.)); filters=layer_0.filters; for i in xrange(nkerns[0]): plt.subplot(8, 7, i); plt.imshow(filters.get_value(borrow=True)[i,0,:,:], cmap = plt.get_cmap('gray'), interpolation='nearest'); plt.axis('off') plt.show();
gpl-3.0
billy-inn/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
freeman-lab/dask
dask/dataframe/tests/test_optimize_dataframe.py
1
1939
import pytest from operator import getitem from toolz import valmap import bcolz from dask.dataframe.optimize import rewrite_rules, dataframe_from_ctable import dask.dataframe as dd import pandas as pd dsk = {('x', 0): pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}, index=[0, 1, 3]), ('x', 1): pd.DataFrame({'a': [4, 5, 6], 'b': [3, 2, 1]}, index=[5, 6, 8]), ('x', 2): pd.DataFrame({'a': [7, 8, 9], 'b': [0, 0, 0]}, index=[9, 9, 9])} dfs = list(dsk.values()) def test_column_optimizations_with_bcolz_and_rewrite(): bc = bcolz.ctable([[1, 2, 3], [10, 20, 30]], names=['a', 'b']) func = lambda x: x for cols in [None, 'abc', ['abc']]: dsk2 = dict((('x', i), (func, (getitem, (dataframe_from_ctable, bc, slice(0, 2), cols, {}), (list, ['a', 'b'])))) for i in [1, 2, 3]) expected = dict((('x', i), (func, (dataframe_from_ctable, bc, slice(0, 2), (list, ['a', 'b']), {}))) for i in [1, 2, 3]) result = valmap(rewrite_rules.rewrite, dsk2) assert result == expected def test_fast_functions(): df = dd.DataFrame(dsk, 'x', ['a', 'b'], [None, None, None, None]) e = df.a + df.b assert len(e.dask) > 6 assert len(dd.optimize(e.dask, e._keys())) == 6 def test_castra_column_store(): try: from castra import Castra except ImportError: return df = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]}) with Castra(template=df) as c: c.extend(df) df = c.to_dask() df2 = df[['x']] dsk = dd.optimize(df2.dask, df2._keys()) assert dsk == {(df2._name, 0): (Castra.load_partition, c, '0--2', (list, ['x']))}
bsd-3-clause
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/test_panel4d.py
7
35347
# -*- coding: utf-8 -*- from datetime import datetime from pandas.compat import range, lrange import operator import nose import numpy as np from pandas.types.common import is_float_dtype from pandas import Series, Index, isnull, notnull from pandas.core.panel import Panel from pandas.core.panel4d import Panel4D from pandas.core.series import remove_na from pandas.tseries.offsets import BDay from pandas.util.testing import (assert_panel_equal, assert_panel4d_equal, assert_frame_equal, assert_series_equal, assert_almost_equal) import pandas.util.testing as tm def add_nans(panel4d): for l, label in enumerate(panel4d.labels): panel = panel4d[label] tm.add_nans(panel) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel4d) def test_iter(self): tm.equalContents(list(self.panel4d), self.panel4d.labels) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel4d, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel4d # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_panel_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_panel_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) @classmethod def assert_panel4d_equal(cls, x, y): assert_panel4d_equal(x, y) def test_get_axis(self): assert(self.panel4d._get_axis(0) is self.panel4d.labels) assert(self.panel4d._get_axis(1) is self.panel4d.items) assert(self.panel4d._get_axis(2) is self.panel4d.major_axis) assert(self.panel4d._get_axis(3) is self.panel4d.minor_axis) def test_set_axis(self): new_labels = Index(np.arange(len(self.panel4d.labels))) # TODO: unused? # new_items = Index(np.arange(len(self.panel4d.items))) new_major = Index(np.arange(len(self.panel4d.major_axis))) new_minor = Index(np.arange(len(self.panel4d.minor_axis))) # ensure propagate to potentially prior-cached items too # TODO: unused? # label = self.panel4d['l1'] self.panel4d.labels = new_labels if hasattr(self.panel4d, '_item_cache'): self.assertNotIn('l1', self.panel4d._item_cache) self.assertIs(self.panel4d.labels, new_labels) self.panel4d.major_axis = new_major self.assertIs(self.panel4d[0].major_axis, new_major) self.assertIs(self.panel4d.major_axis, new_major) self.panel4d.minor_axis = new_minor self.assertIs(self.panel4d[0].minor_axis, new_minor) self.assertIs(self.panel4d.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel4d._get_axis_number('labels'), 0) self.assertEqual(self.panel4d._get_axis_number('items'), 1) self.assertEqual(self.panel4d._get_axis_number('major'), 2) self.assertEqual(self.panel4d._get_axis_number('minor'), 3) def test_get_axis_name(self): self.assertEqual(self.panel4d._get_axis_name(0), 'labels') self.assertEqual(self.panel4d._get_axis_name(1), 'items') self.assertEqual(self.panel4d._get_axis_name(2), 'major_axis') self.assertEqual(self.panel4d._get_axis_name(3), 'minor_axis') def test_arith(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self._test_op(self.panel4d, operator.add) self._test_op(self.panel4d, operator.sub) self._test_op(self.panel4d, operator.mul) self._test_op(self.panel4d, operator.truediv) self._test_op(self.panel4d, operator.floordiv) self._test_op(self.panel4d, operator.pow) self._test_op(self.panel4d, lambda x, y: y + x) self._test_op(self.panel4d, lambda x, y: y - x) self._test_op(self.panel4d, lambda x, y: y * x) self._test_op(self.panel4d, lambda x, y: y / x) self._test_op(self.panel4d, lambda x, y: y ** x) self.assertRaises(Exception, self.panel4d.__add__, self.panel4d['l1']) @staticmethod def _test_op(panel4d, op): result = op(panel4d, 1) assert_panel_equal(result['l1'], op(panel4d['l1'], 1)) def test_keys(self): tm.equalContents(list(self.panel4d.keys()), self.panel4d.labels) def test_iteritems(self): """Test panel4d.iteritems()""" self.assertEqual(len(list(self.panel4d.iteritems())), len(self.panel4d.labels)) def test_combinePanel4d(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = self.panel4d.add(self.panel4d) self.assert_panel4d_equal(result, self.panel4d * 2) def test_neg(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.assert_panel4d_equal(-self.panel4d, self.panel4d * -1) def test_select(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): p = self.panel4d # select labels result = p.select(lambda x: x in ('l1', 'l3'), axis='labels') expected = p.reindex(labels=['l1', 'l3']) self.assert_panel4d_equal(result, expected) # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel4d_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel4d_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=3) expected = p.reindex(minor=['A', 'D']) self.assert_panel4d_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo',), axis='items') self.assert_panel4d_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) def test_abs(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = self.panel4d.abs() expected = np.abs(self.panel4d) self.assert_panel4d_equal(result, expected) p = self.panel4d['l1'] result = p.abs() expected = np.abs(p) assert_panel_equal(result, expected) df = p['ItemA'] result = df.abs() expected = np.abs(df) assert_frame_equal(result, expected) class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel4d.__getitem__, 'ItemQ') def test_delitem_and_pop(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = self.panel4d['l2'] result = self.panel4d.pop('l2') assert_panel_equal(expected, result) self.assertNotIn('l2', self.panel4d.labels) del self.panel4d['l3'] self.assertNotIn('l3', self.panel4d.labels) self.assertRaises(Exception, self.panel4d.__delitem__, 'l3') values = np.empty((4, 4, 4, 4)) values[0] = 0 values[1] = 1 values[2] = 2 values[3] = 3 panel4d = Panel4D(values, lrange(4), lrange(4), lrange(4), lrange(4)) # did we delete the right row? panel4dc = panel4d.copy() del panel4dc[0] assert_panel_equal(panel4dc[1], panel4d[1]) assert_panel_equal(panel4dc[2], panel4d[2]) assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[1] assert_panel_equal(panel4dc[0], panel4d[0]) assert_panel_equal(panel4dc[2], panel4d[2]) assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[2] assert_panel_equal(panel4dc[1], panel4d[1]) assert_panel_equal(panel4dc[0], panel4d[0]) assert_panel_equal(panel4dc[3], panel4d[3]) panel4dc = panel4d.copy() del panel4dc[3] assert_panel_equal(panel4dc[1], panel4d[1]) assert_panel_equal(panel4dc[2], panel4d[2]) assert_panel_equal(panel4dc[0], panel4d[0]) def test_setitem(self): # LongPanel with one item # lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() # self.assertRaises(Exception, self.panel.__setitem__, # 'ItemE', lp) # Panel p = Panel(dict( ItemA=self.panel4d['l1']['ItemA'][2:].filter(items=['A', 'B']))) self.panel4d['l4'] = p self.panel4d['l5'] = p p2 = self.panel4d['l4'] assert_panel_equal(p, p2.reindex(items=p.items, major_axis=p.major_axis, minor_axis=p.minor_axis)) # scalar self.panel4d['lG'] = 1 self.panel4d['lE'] = True self.assertEqual(self.panel4d['lG'].values.dtype, np.int64) self.assertEqual(self.panel4d['lE'].values.dtype, np.bool_) # object dtype self.panel4d['lQ'] = 'foo' self.assertEqual(self.panel4d['lQ'].values.dtype, np.object_) # boolean dtype self.panel4d['lP'] = self.panel4d['l1'] > 0 self.assertEqual(self.panel4d['lP'].values.dtype, np.bool_) def test_setitem_by_indexer(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Panel panel4dc = self.panel4d.copy() p = panel4dc.iloc[0] def func(): self.panel4d.iloc[0] = p self.assertRaises(NotImplementedError, func) # DataFrame panel4dc = self.panel4d.copy() df = panel4dc.iloc[0, 0] df.iloc[:] = 1 panel4dc.iloc[0, 0] = df self.assertTrue((panel4dc.iloc[0, 0].values == 1).all()) # Series panel4dc = self.panel4d.copy() s = panel4dc.iloc[0, 0, :, 0] s.iloc[:] = 1 panel4dc.iloc[0, 0, :, 0] = s self.assertTrue((panel4dc.iloc[0, 0, :, 0].values == 1).all()) # scalar panel4dc = self.panel4d.copy() panel4dc.iloc[0] = 1 panel4dc.iloc[1] = True panel4dc.iloc[2] = 'foo' self.assertTrue((panel4dc.iloc[0].values == 1).all()) self.assertTrue(panel4dc.iloc[1].values.all()) self.assertTrue((panel4dc.iloc[2].values == 'foo').all()) def test_setitem_by_indexer_mixed_type(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH 8702 self.panel4d['foo'] = 'bar' # scalar panel4dc = self.panel4d.copy() panel4dc.iloc[0] = 1 panel4dc.iloc[1] = True panel4dc.iloc[2] = 'foo' self.assertTrue((panel4dc.iloc[0].values == 1).all()) self.assertTrue(panel4dc.iloc[1].values.all()) self.assertTrue((panel4dc.iloc[2].values == 'foo').all()) def test_comparisons(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): p1 = tm.makePanel4D() p2 = tm.makePanel4D() tp = p1.reindex(labels=p1.labels.tolist() + ['foo']) p = p1[p1.labels[0]] def test_comp(func): result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, p) result3 = func(self.panel4d, 0) self.assert_numpy_array_equal(result3.values, func(self.panel4d.values, 0)) with np.errstate(invalid='ignore'): test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_major_xs(self): ref = self.panel4d['l1']['ItemA'] idx = self.panel4d.major_axis[5] xs = self.panel4d.major_xs(idx) assert_series_equal(xs['l1'].T['ItemA'], ref.xs(idx), check_names=False) # not contained idx = self.panel4d.major_axis[0] - BDay() self.assertRaises(Exception, self.panel4d.major_xs, idx) def test_major_xs_mixed(self): self.panel4d['l4'] = 'foo' xs = self.panel4d.major_xs(self.panel4d.major_axis[0]) self.assertEqual(xs['l1']['A'].dtype, np.float64) self.assertEqual(xs['l4']['A'].dtype, np.object_) def test_minor_xs(self): ref = self.panel4d['l1']['ItemA'] idx = self.panel4d.minor_axis[1] xs = self.panel4d.minor_xs(idx) assert_series_equal(xs['l1'].T['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel4d.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel4d['l4'] = 'foo' xs = self.panel4d.minor_xs('D') self.assertEqual(xs['l1'].T['ItemA'].dtype, np.float64) self.assertEqual(xs['l4'].T['ItemA'].dtype, np.object_) def test_xs(self): l1 = self.panel4d.xs('l1', axis=0) expected = self.panel4d['l1'] assert_panel_equal(l1, expected) # view if possible l1_view = self.panel4d.xs('l1', axis=0) l1_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel4d['l1'].values).all()) # mixed-type self.panel4d['strings'] = 'foo' result = self.panel4d.xs('D', axis=3) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): panel4d = self.panel4d labels = panel4d.labels[[1, 0]] items = panel4d.items[[1, 0]] dates = panel4d.major_axis[::2] cols = ['D', 'C', 'F'] # all 4 specified assert_panel4d_equal(panel4d.ix[labels, items, dates, cols], panel4d.reindex(labels=labels, items=items, major=dates, minor=cols)) # 3 specified assert_panel4d_equal(panel4d.ix[:, items, dates, cols], panel4d.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel4d_equal(panel4d.ix[:, :, dates, cols], panel4d.reindex(major=dates, minor=cols)) assert_panel4d_equal(panel4d.ix[:, items, :, cols], panel4d.reindex(items=items, minor=cols)) assert_panel4d_equal(panel4d.ix[:, items, dates, :], panel4d.reindex(items=items, major=dates)) # only 1 assert_panel4d_equal(panel4d.ix[:, items, :, :], panel4d.reindex(items=items)) assert_panel4d_equal(panel4d.ix[:, :, dates, :], panel4d.reindex(major=dates)) assert_panel4d_equal(panel4d.ix[:, :, :, cols], panel4d.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): pass def test_get_value(self): for label in self.panel4d.labels: for item in self.panel4d.items: for mjr in self.panel4d.major_axis[::2]: for mnr in self.panel4d.minor_axis: result = self.panel4d.get_value( label, item, mjr, mnr) expected = self.panel4d[label][item][mnr][mjr] assert_almost_equal(result, expected) def test_set_value(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): for label in self.panel4d.labels: for item in self.panel4d.items: for mjr in self.panel4d.major_axis[::2]: for mnr in self.panel4d.minor_axis: self.panel4d.set_value(label, item, mjr, mnr, 1.) assert_almost_equal( self.panel4d[label][item][mnr][mjr], 1.) res3 = self.panel4d.set_value('l4', 'ItemE', 'foobar', 'baz', 5) self.assertTrue(is_float_dtype(res3['l4'].values)) # resize res = self.panel4d.set_value('l4', 'ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel4D) self.assertIsNot(res, self.panel4d) self.assertEqual(res.get_value('l4', 'ItemE', 'foo', 'bar'), 1.5) res3 = self.panel4d.set_value('l4', 'ItemE', 'foobar', 'baz', 5) self.assertTrue(is_float_dtype(res3['l4'].values)) class TestPanel4d(tm.TestCase, CheckIndexing, SafeForSparse, SafeForLongAndSparse): _multiprocess_can_split_ = True @classmethod def assert_panel4d_equal(cls, x, y): assert_panel4d_equal(x, y) def setUp(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.panel4d = tm.makePanel4D(nper=8) add_nans(self.panel4d) def test_constructor(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): panel4d = Panel4D(self.panel4d._data) self.assertIs(panel4d._data, self.panel4d._data) panel4d = Panel4D(self.panel4d._data, copy=True) self.assertIsNot(panel4d._data, self.panel4d._data) assert_panel4d_equal(panel4d, self.panel4d) vals = self.panel4d.values # no copy panel4d = Panel4D(vals) self.assertIs(panel4d.values, vals) # copy panel4d = Panel4D(vals, copy=True) self.assertIsNot(panel4d.values, vals) # GH #8285, test when scalar data is used to construct a Panel4D # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: panel4d = Panel4D(val, labels=range(2), items=range( 3), major_axis=range(4), minor_axis=range(5)) vals = np.empty((2, 3, 4, 5), dtype=dtype) vals.fill(val) expected = Panel4D(vals, dtype=dtype) assert_panel4d_equal(panel4d, expected) # test the case when dtype is passed panel4d = Panel4D(1, labels=range(2), items=range( 3), major_axis=range(4), minor_axis=range(5), dtype='float32') vals = np.empty((2, 3, 4, 5), dtype='float32') vals.fill(1) expected = Panel4D(vals, dtype='float32') assert_panel4d_equal(panel4d, expected) def test_constructor_cast(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): zero_filled = self.panel4d.fillna(0) casted = Panel4D(zero_filled._data, dtype=int) casted2 = Panel4D(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel4D(zero_filled._data, dtype=np.int32) casted2 = Panel4D(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_consolidate(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.assertTrue(self.panel4d._data.is_consolidated()) self.panel4d['foo'] = 1. self.assertFalse(self.panel4d._data.is_consolidated()) panel4d = self.panel4d.consolidate() self.assertTrue(panel4d._data.is_consolidated()) def test_ctor_dict(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): l1 = self.panel4d['l1'] l2 = self.panel4d['l2'] d = {'A': l1, 'B': l2.ix[['ItemB'], :, :]} panel4d = Panel4D(d) assert_panel_equal(panel4d['A'], self.panel4d['l1']) assert_frame_equal(panel4d.ix['B', 'ItemB', :, :], self.panel4d.ix['l2', ['ItemB'], :, :]['ItemB']) def test_constructor_dict_mixed(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data = dict((k, v.values) for k, v in self.panel4d.iteritems()) result = Panel4D(data) exp_major = Index(np.arange(len(self.panel4d.major_axis))) self.assert_index_equal(result.major_axis, exp_major) result = Panel4D(data, labels=self.panel4d.labels, items=self.panel4d.items, major_axis=self.panel4d.major_axis, minor_axis=self.panel4d.minor_axis) assert_panel4d_equal(result, self.panel4d) data['l2'] = self.panel4d['l2'] result = Panel4D(data) assert_panel4d_equal(result, self.panel4d) # corner, blow up data['l2'] = data['l2']['ItemB'] self.assertRaises(Exception, Panel4D, data) data['l2'] = self.panel4d['l2'].values[:, :, :-1] self.assertRaises(Exception, Panel4D, data) def test_constructor_resize(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data = self.panel4d._data labels = self.panel4d.labels[:-1] items = self.panel4d.items[:-1] major = self.panel4d.major_axis[:-1] minor = self.panel4d.minor_axis[:-1] result = Panel4D(data, labels=labels, items=items, major_axis=major, minor_axis=minor) expected = self.panel4d.reindex( labels=labels, items=items, major=major, minor=minor) assert_panel4d_equal(result, expected) result = Panel4D(data, items=items, major_axis=major) expected = self.panel4d.reindex(items=items, major=major) assert_panel4d_equal(result, expected) result = Panel4D(data, items=items) expected = self.panel4d.reindex(items=items) assert_panel4d_equal(result, expected) result = Panel4D(data, minor_axis=minor) expected = self.panel4d.reindex(minor=minor) assert_panel4d_equal(result, expected) def test_conform(self): p = self.panel4d['l1'].filter(items=['ItemA', 'ItemB']) conformed = self.panel4d.conform(p) tm.assert_index_equal(conformed.items, self.panel4d.labels) tm.assert_index_equal(conformed.major_axis, self.panel4d.major_axis) tm.assert_index_equal(conformed.minor_axis, self.panel4d.minor_axis) def test_reindex(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ref = self.panel4d['l2'] # labels result = self.panel4d.reindex(labels=['l1', 'l2']) assert_panel_equal(result['l2'], ref) # items result = self.panel4d.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['l2']['ItemB'], ref['ItemB']) # major new_major = list(self.panel4d.major_axis[:10]) result = self.panel4d.reindex(major=new_major) assert_frame_equal( result['l2']['ItemB'], ref['ItemB'].reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel4d.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel4d.minor_axis[:2]) result = self.panel4d.reindex(minor=new_minor) assert_frame_equal( result['l2']['ItemB'], ref['ItemB'].reindex(columns=new_minor)) result = self.panel4d.reindex(labels=self.panel4d.labels, items=self.panel4d.items, major=self.panel4d.major_axis, minor=self.panel4d.minor_axis) # don't necessarily copy result = self.panel4d.reindex() assert_panel4d_equal(result, self.panel4d) self.assertFalse(result is self.panel4d) # with filling smaller_major = self.panel4d.major_axis[::5] smaller = self.panel4d.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel4d.major_axis, method='pad') assert_panel_equal(larger.ix[:, :, self.panel4d.major_axis[1], :], smaller.ix[:, :, smaller_major[0], :]) # don't necessarily copy result = self.panel4d.reindex( major=self.panel4d.major_axis, copy=False) assert_panel4d_equal(result, self.panel4d) self.assertTrue(result is self.panel4d) def test_not_hashable(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): p4D_empty = Panel4D() self.assertRaises(TypeError, hash, p4D_empty) self.assertRaises(TypeError, hash, self.panel4d) def test_reindex_like(self): # reindex_like with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): smaller = self.panel4d.reindex(labels=self.panel4d.labels[:-1], items=self.panel4d.items[:-1], major=self.panel4d.major_axis[:-1], minor=self.panel4d.minor_axis[:-1]) smaller_like = self.panel4d.reindex_like(smaller) assert_panel4d_equal(smaller, smaller_like) def test_sort_index(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): import random rlabels = list(self.panel4d.labels) ritems = list(self.panel4d.items) rmajor = list(self.panel4d.major_axis) rminor = list(self.panel4d.minor_axis) random.shuffle(rlabels) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel4d.reindex(labels=rlabels) sorted_panel4d = random_order.sort_index(axis=0) assert_panel4d_equal(sorted_panel4d, self.panel4d) def test_fillna(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): self.assertFalse(np.isfinite(self.panel4d.values).all()) filled = self.panel4d.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) self.assertRaises(NotImplementedError, self.panel4d.fillna, method='pad') def test_swapaxes(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = self.panel4d.swapaxes('labels', 'items') self.assertIs(result.items, self.panel4d.labels) result = self.panel4d.swapaxes('labels', 'minor') self.assertIs(result.labels, self.panel4d.minor_axis) result = self.panel4d.swapaxes('items', 'minor') self.assertIs(result.items, self.panel4d.minor_axis) result = self.panel4d.swapaxes('items', 'major') self.assertIs(result.items, self.panel4d.major_axis) result = self.panel4d.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel4d.minor_axis) # this should also work result = self.panel4d.swapaxes(0, 1) self.assertIs(result.labels, self.panel4d.items) # this works, but return a copy result = self.panel4d.swapaxes('items', 'items') assert_panel4d_equal(self.panel4d, result) self.assertNotEqual(id(self.panel4d), id(result)) def test_update(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): p4d = Panel4D([[[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]]) other = Panel4D([[[[3.6, 2., np.nan]], [[np.nan, np.nan, 7]]]]) p4d.update(other) expected = Panel4D([[[[3.6, 2, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]]) assert_panel4d_equal(p4d, expected) def test_dtypes(self): result = self.panel4d.dtypes expected = Series(np.dtype('float64'), index=self.panel4d.labels) assert_series_equal(result, expected) def test_repr_empty(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): empty = Panel4D() repr(empty) def test_rename(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): mapper = {'l1': 'foo', 'l2': 'bar', 'l3': 'baz'} renamed = self.panel4d.rename_axis(mapper, axis=0) exp = Index(['foo', 'bar', 'baz']) self.assert_index_equal(renamed.labels, exp) renamed = self.panel4d.rename_axis(str.lower, axis=3) exp = Index(['a', 'b', 'c', 'd']) self.assert_index_equal(renamed.minor_axis, exp) # don't copy renamed_nocopy = self.panel4d.rename_axis(mapper, axis=0, copy=False) renamed_nocopy['foo'] = 3. self.assertTrue((self.panel4d['l1'].values == 3).all()) def test_get_attr(self): assert_panel_equal(self.panel4d['l1'], self.panel4d.l1) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
CIFASIS/pylearn2
pylearn2/utils/image.py
39
18841
""" Utility functions for working with images. """ import logging import numpy as np plt = None axes = None from theano.compat.six.moves import xrange from theano.compat.six import string_types import warnings try: import matplotlib.pyplot as plt import matplotlib.axes except (RuntimeError, ImportError, TypeError) as matplotlib_exception: warnings.warn("Unable to import matplotlib. Some features unavailable. " "Original exception: " + str(matplotlib_exception)) import os try: from PIL import Image except ImportError: Image = None from pylearn2.utils import string_utils as string from pylearn2.utils.exc import reraise_as from tempfile import mkstemp from multiprocessing import Process import subprocess logger = logging.getLogger(__name__) def ensure_Image(): """Makes sure Image has been imported from PIL""" global Image if Image is None: raise RuntimeError("You are trying to use PIL-dependent functionality" " but don't have PIL installed.") def imview(*args, **kwargs): """ A matplotlib-based image viewer command, wrapping `matplotlib.pyplot.imshow` but behaving more sensibly. Parameters ---------- figure : TODO TODO: write parameters section using decorators to inherit the matplotlib docstring Notes ----- Parameters are identical to `matplotlib.pyplot.imshow` but this behaves somewhat differently: * By default, it creates a new figure (unless a `figure` keyword argument is supplied. * It modifies the axes of that figure to use the full frame, without ticks or tick labels. * It turns on `nearest` interpolation by default (i.e., it does not antialias pixel data). This can be overridden with the `interpolation` argument as in `imshow`. All other arguments and keyword arguments are passed on to `imshow`.` """ if 'figure' not in kwargs: f = plt.figure() else: f = kwargs['figure'] new_ax = matplotlib.axes.Axes(f, [0, 0, 1, 1], xticks=[], yticks=[], frame_on=False) f.delaxes(f.gca()) f.add_axes(new_ax) if len(args) < 5 and 'interpolation' not in kwargs: kwargs['interpolation'] = 'nearest' plt.imshow(*args, **kwargs) def imview_async(*args, **kwargs): """ A version of `imview` that forks a separate process and immediately shows the image. Parameters ---------- window_title : str TODO: writeme with decorators to inherit the other imviews' docstrings Notes ----- Supports the `window_title` keyword argument to cope with the title always being 'Figure 1'. Returns the `multiprocessing.Process` handle. """ if 'figure' in kwargs: raise ValueError("passing a figure argument not supported") def fork_image_viewer(): f = plt.figure() kwargs['figure'] = f imview(*args, **kwargs) if 'window_title' in kwargs: f.set_window_title(kwargs['window_title']) plt.show() p = Process(None, fork_image_viewer) p.start() return p def show(image): """ .. todo:: WRITEME Parameters ---------- image : PIL Image object or ndarray If ndarray, integer formats are assumed to use 0-255 and float formats are assumed to use 0-1 """ viewer_command = string.preprocess('${PYLEARN2_VIEWER_COMMAND}') if viewer_command == 'inline': return imview(image) if hasattr(image, '__array__'): # do some shape checking because PIL just raises a tuple indexing error # that doesn't make it very clear what the problem is if len(image.shape) < 2 or len(image.shape) > 3: raise ValueError('image must have either 2 or 3 dimensions but its' ' shape is ' + str(image.shape)) # The below is a temporary workaround that prevents us from crashing # 3rd party image viewers such as eog by writing out overly large # images. # In the long run we should determine if this is a bug in PIL when # producing # such images or a bug in eog and determine a proper fix. # Since this is hopefully just a short term workaround the # constants below are not included in the interface to the # function, so that 3rd party code won't start passing them. max_height = 4096 max_width = 4096 # Display separate warnings for each direction, since it's # common to crop only one. if image.shape[0] > max_height: image = image[0:max_height, :, :] warnings.warn("Cropping image to smaller height to avoid crashing " "the viewer program.") if image.shape[0] > max_width: image = image[:, 0:max_width, :] warnings.warn("Cropping the image to a smaller width to avoid " "crashing the viewer program.") # This ends the workaround if image.dtype == 'int8': image = np.cast['uint8'](image) elif str(image.dtype).startswith('float'): # don't use *=, we don't want to modify the input array image = image * 255. image = np.cast['uint8'](image) # PIL is too stupid to handle single-channel arrays if len(image.shape) == 3 and image.shape[2] == 1: image = image[:, :, 0] try: ensure_Image() image = Image.fromarray(image) except TypeError: reraise_as(TypeError("PIL issued TypeError on ndarray of shape " + str(image.shape) + " and dtype " + str(image.dtype))) # Create a temporary file with the suffix '.png'. fd, name = mkstemp(suffix='.png') os.close(fd) # Note: # Although we can use tempfile.NamedTemporaryFile() to create # a temporary file, the function should be used with care. # # In Python earlier than 2.7, a temporary file created by the # function will be deleted just after the file is closed. # We can re-use the name of the temporary file, but there is an # instant where a file with the name does not exist in the file # system before we re-use the name. This may cause a race # condition. # # In Python 2.7 or later, tempfile.NamedTemporaryFile() has # the 'delete' argument which can control whether a temporary # file will be automatically deleted or not. With the argument, # the above race condition can be avoided. # image.save(name) if os.name == 'nt': subprocess.Popen(viewer_command + ' ' + name + ' && del ' + name, shell=True) else: subprocess.Popen(viewer_command + ' ' + name + ' ; rm ' + name, shell=True) def pil_from_ndarray(ndarray): """ Converts an ndarray to a PIL image. Parameters ---------- ndarray : ndarray An ndarray containing an image. Returns ------- pil : PIL Image A PIL Image containing the image. """ try: if ndarray.dtype == 'float32' or ndarray.dtype == 'float64': assert ndarray.min() >= 0.0 assert ndarray.max() <= 1.0 ndarray = np.cast['uint8'](ndarray * 255) if len(ndarray.shape) == 3 and ndarray.shape[2] == 1: ndarray = ndarray[:, :, 0] ensure_Image() rval = Image.fromarray(ndarray) return rval except Exception as e: logger.exception('original exception: ') logger.exception(e) logger.exception('ndarray.dtype: {0}'.format(ndarray.dtype)) logger.exception('ndarray.shape: {0}'.format(ndarray.shape)) raise assert False def ndarray_from_pil(pil, dtype='uint8'): """ Converts a PIL Image to an ndarray. Parameters ---------- pil : PIL Image An image represented as a PIL Image object dtype : str The dtype of ndarray to create Returns ------- ndarray : ndarray The image as an ndarray. """ rval = np.asarray(pil) if dtype != rval.dtype: rval = np.cast[dtype](rval) if str(dtype).startswith('float'): rval /= 255. if len(rval.shape) == 2: rval = rval.reshape(rval.shape[0], rval.shape[1], 1) return rval def rescale(image, shape): """ Scales image to be no larger than shape. PIL might give you unexpected results beyond that. Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols i = pil_from_ndarray(image) ensure_Image() i.thumbnail([shape[1], shape[0]], Image.ANTIALIAS) rval = ndarray_from_pil(i, dtype=image.dtype) return rval resize = rescale def fit_inside(image, shape): """ Scales image down to fit inside shape preserves proportions of image Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols if image.shape[0] <= shape[0] and image.shape[1] <= shape[1]: return image.copy() row_ratio = float(image.shape[0]) / float(shape[0]) col_ratio = float(image.shape[1]) / float(shape[1]) if row_ratio > col_ratio: target_shape = [shape[0], min(image.shape[1] / row_ratio, shape[1])] else: target_shape = [min(image.shape[0] / col_ratio, shape[0]), shape[1]] assert target_shape[0] <= shape[0] assert target_shape[1] <= shape[1] assert target_shape[0] == shape[0] or target_shape[1] == shape[1] rval = rescale(image, target_shape) return rval def letterbox(image, shape): """ Pads image with black letterboxing to bring image.shape up to shape Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 # rows, cols, channels assert len(shape) == 2 # rows, cols assert image.shape[0] <= shape[0] assert image.shape[1] <= shape[1] if image.shape[0] == shape[0] and image.shape[1] == shape[1]: return image.copy() rval = np.zeros((shape[0], shape[1], image.shape[2]), dtype=image.dtype) rstart = (shape[0] - image.shape[0]) / 2 cstart = (shape[1] - image.shape[1]) / 2 rend = rstart + image.shape[0] cend = cstart + image.shape[1] rval[rstart:rend, cstart:cend] = image return rval def make_letterboxed_thumbnail(image, shape): """ Scales image down to shape. Preserves proportions of image, introduces black letterboxing if necessary. Parameters ---------- image : WRITEME shape : WRITEME Returns ------- WRITEME """ assert len(image.shape) == 3 assert len(shape) == 2 shrunk = fit_inside(image, shape) letterboxed = letterbox(shrunk, shape) return letterboxed def load(filepath, rescale_image=True, dtype='float64'): """ Load an image from a file. Parameters ---------- filepath : str Path to the image file to load rescale_image : bool Default value: True If True, returned images have pixel values in [0, 1]. Otherwise, values are in [0, 255]. dtype: str The dtype to use for the returned value Returns ------- img : numpy ndarray An array containing the image that was in the file. """ assert isinstance(filepath, string_types) if not rescale_image and dtype == 'uint8': ensure_Image() rval = np.asarray(Image.open(filepath)) assert rval.dtype == 'uint8' return rval s = 1.0 if rescale_image: s = 255. try: ensure_Image() rval = Image.open(filepath) except Exception: reraise_as(Exception("Could not open " + filepath)) numpy_rval = np.array(rval) msg = ("Tried to load an image, got an array with %d" " dimensions. Expected 2 or 3." "This may indicate a mildly corrupted image file. Try " "converting it to a different image format with a different " "editor like gimp or imagemagic. Sometimes these programs are " "more robust to minor corruption than PIL and will emit a " "correctly formatted image in the new format.") if numpy_rval.ndim not in [2, 3]: logger.error(dir(rval)) logger.error(rval) logger.error(rval.size) rval.show() raise AssertionError(msg % numpy_rval.ndim) rval = numpy_rval rval = np.cast[dtype](rval) / s if rval.ndim == 2: rval = rval.reshape(rval.shape[0], rval.shape[1], 1) if rval.ndim != 3: raise AssertionError("Something went wrong opening " + filepath + '. Resulting shape is ' + str(rval.shape) + " (it's meant to have 3 dimensions by now)") return rval def save(filepath, ndarray): """ Saves an image to a file. Parameters ---------- filepath : str The path to write the file to. ndarray : ndarray An array containing the image to be saved. """ pil_from_ndarray(ndarray).save(filepath) def scale_to_unit_interval(ndar, eps=1e-8): """ Scales all values in the ndarray ndar to be between 0 and 1 Parameters ---------- ndar : WRITEME eps : WRITEME Returns ------- WRITEME """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), scale_rows_to_unit_interval=True, output_pixel_vals=True): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). Parameters ---------- x : numpy.ndarray 2-d ndarray or 4 tuple of 2-d ndarrays or None for channels, in which every row is a flattened image. shape : 2-tuple of ints The first component is the height of each image, the second component is the width. tile_shape : 2-tuple of ints The number of images to tile in (row, columns) form. scale_rows_to_unit_interval : bool Whether or not the values need to be before being plotted to [0, 1]. output_pixel_vals : bool Whether or not the output should be pixel values (int8) or floats. Returns ------- y : 2d-ndarray The return value has the same dtype as X, and is suitable for viewing as an image with PIL.Image.fromarray. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 # The expression below can be re-written in a more C style as # follows : # # out_shape = [0,0] # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] - # tile_spacing[0] # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] - # tile_spacing[1] out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 # Create an output np ndarray to store the image if output_pixel_vals: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) # colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in xrange(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype dt = out_array.dtype if output_pixel_vals: dt = 'uint8' out_array[:, :, i] = np.zeros(out_shape, dtype=dt) + \ channel_defaults[i] else: # use a recurrent call to compute the channel and store it # in the output out_array[:, :, i] = tile_raster_images( X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output dt = X.dtype if output_pixel_vals: dt = 'uint8' out_array = np.zeros(out_shape, dtype=dt) for tile_row in xrange(tile_shape[0]): for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: this_x = X[tile_row * tile_shape[1] + tile_col] if scale_rows_to_unit_interval: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function this_img = scale_to_unit_interval( this_x.reshape(img_shape)) else: this_img = this_x.reshape(img_shape) # add the slice to the corresponding position in the # output array c = 1 if output_pixel_vals: c = 255 out_array[ tile_row * (H + Hs): tile_row * (H + Hs) + H, tile_col * (W + Ws): tile_col * (W + Ws) + W ] = this_img * c return out_array if __name__ == '__main__': black = np.zeros((50, 50, 3), dtype='uint8') red = black.copy() red[:, :, 0] = 255 green = black.copy() green[:, :, 1] = 255 show(black) show(green) show(red)
bsd-3-clause
jpinsonault/android_sensor_logger
python_scripts/cluster_light.py
1
2894
import numpy as np import argparse from pprint import pprint from sklearn import mixture from sklearn import datasets import matplotlib.pyplot as plt from sklearn import decomposition from LogEntry import LogEntry from LogEntry import db from datetime import datetime from matplotlib.dates import DayLocator, HourLocator, DateFormatter, drange from numpy import arange args = None format_string = '%H:%M:%S %m/%d/%Y' def parse_args(): global args parser = argparse.ArgumentParser() args = parser.parse_args() def main(): g = mixture.GMM(n_components=4) log_entries = load_light() light_data = [min(row.light_reading, 120) for row in log_entries] timestamps = [datetime.strptime(row.timestamp, format_string) for row in log_entries] g.fit(light_data) predictions = predict(g, light_data) light_dict = {} inside = bin_by_hour(timestamps, predictions, [0,1]) outside = bin_by_hour(timestamps, predictions, [2,3]) pprint(inside) pprint(outside) def plot_light_data(timestamps, predictions): fig, ax = plt.subplots() ax.plot_date(timestamps, predictions, 'b') ax.xaxis.set_minor_locator(HourLocator(arange(0,25,6))) ax.xaxis.set_minor_formatter(DateFormatter('%H')) ax.xaxis.set_major_locator(DayLocator()) ax.xaxis.set_major_formatter(DateFormatter('%a')) ax.fmt_xdata = DateFormatter('%H:%M:%S') fig.autofmt_xdate() plt.show() def bin_by_hour(timestamps, predictions, clusters): filtered = [timestamps[index] for index, entry in enumerate(timestamps) if predictions[index] in clusters] buckets = {hour: 0 for hour in range(24)} for time in filtered: hour = time.hour buckets[hour] = buckets.get(hour, 0) + 1 return buckets def predict(gmm, data): results = gmm.predict(data) smoothed = smooth_results(results) converter = make_converter(gmm, smoothed) return [converter[value] for value in smoothed] def load_light(): light_data = LogEntry.select() return sorted(light_data, key=lambda row: datetime.strptime(row.timestamp, format_string)) def smooth_results(data): new_data = [] for index in range(len(data)): new_data.append(get_most_common(data, index)) return new_data def make_converter(gmm, data): converter = {} means = [[index, value[0]] for index, value in enumerate(gmm.means_)] for index, mean in enumerate(sorted(means, key=lambda means: means[1])): converter[mean[0]] = index return converter def get_most_common(data, index): window_size = 100 start = max(index - window_size, 0) end = min(index + window_size, len(data)) buckets = {} for value in data[start:end]: buckets[value] = buckets.get(value, 0) + 1 return max(buckets.iterkeys(), key=(lambda key: buckets[key])) if __name__ == '__main__': main()
mit
sgenoud/scikit-learn
sklearn/mixture/gmm.py
1
28544
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import numpy as np import warnings from ..base import BaseEstimator from ..utils import check_random_state, deprecated from ..utils.extmath import logsumexp from .. import cluster EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covars : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: from scipy import linalg U, s, V = linalg.svd(covar) sqrtS = np.diag(np.sqrt(s)) sqrt_covar = np.dot(U, np.dot(sqrtS, V)) rand = np.dot(sqrt_covar, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (0 by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. thresh : float, optional Convergence threshold. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. Attributes ---------- `weights_` : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. `means_` : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. `covars_` : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' `converged_` : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Ininite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=0.01) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, thresh=0.01) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=1e-2, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc'): self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on `cvtype`:: (`n_states`, 'n_features') if 'spherical', (`n_features`, `n_features`) if 'tied', (`n_states`, `n_features`) if 'diag', (`n_states`, `n_features`, `n_features`) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def eval(self, X): """Evaluate the model on data Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob: array_like, shape (n_samples,) Log probabilities of each data point in X responsibilities: array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('the shape of X is not compatible with self') lpr = (log_multivariate_normal_density( X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities @deprecated("""will be removed in v0.12; use the score or predict method instead, depending on the question""") def decode(self, X): """Find most likely mixture components for each point in X. DEPRECATED IN VERSION 0.10; WILL BE REMOVED IN VERSION 0.12 use the score or predict method instead, depending on the question. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprobs : array_like, shape (n_samples,) Log probability of each point in `obs` under the model. components : array_like, shape (n_samples,) Index of the most likelihod mixture components for each observation """ logprob, posteriors = self.eval(X) return logprob, posteriors.argmax(axis=1) def score(self, X): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.eval(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.eval(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.eval(X) return responsibilities @deprecated("""will be removed in v0.12; use the score or predict method instead, depending on the question""") def rvs(self, n_samples=1, random_state=None): """Generate random samples from the model. DEPRECATED IN VERSION 0.11; WILL BE REMOVED IN VERSION 0.12 use sample instead """ return self.sample(n_samples, random_state) def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in xrange(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit(self, X, **kwargs): """Estimate model parameters with the expectation-maximization algorithm. A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. """ ## initialization step X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) if kwargs: warnings.warn("Setting parameters in the 'fit' method is" "deprecated. Set it on initialization instead.", DeprecationWarning) # initialisations for in case the user still adds parameters to fit # so things don't break if 'n_iter' in kwargs: self.n_iter = kwargs['n_iter'] if 'n_init' in kwargs: if kwargs['n_init'] < 1: raise ValueError('GMM estimation requires at least one run') else: self.n_init = kwargs['n_init'] if 'params' in kwargs: self.params = kwargs['params'] if 'init_params' in kwargs: self.init_params = kwargs['init_params'] max_log_prob = - np.infty for _ in range(self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components).fit(X).cluster_centers_ if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) # EM algorithms log_likelihood = [] # reset self.converged_ to False self.converged_ = False for i in xrange(self.n_iter): # Expectation step curr_log_likelihood, responsibilities = self.eval(X) log_likelihood.append(curr_log_likelihood.sum()) # Check for convergence. if i > 0 and abs(log_likelihood[-1] - log_likelihood[-2]) < \ self.thresh: self.converged_ = True break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) # if the results are better, keep it if self.n_iter: if log_likelihood[-1] > max_log_prob: max_log_prob = log_likelihood[-1] best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weihgts. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (- 2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### ## some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means=0.0, covars=1.0): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means=0.0, covars=1.0): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" from scipy import linalg n_samples, n_dim = X.shape icv = linalg.pinv(covars) lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.log(linalg.det(covars) + 0.1) + np.sum(X * np.dot(X, icv), 1)[:, np.newaxis] - 2 * np.dot(np.dot(X, icv), means.T) + np.sum(means * np.dot(means, icv), 1)) return lpr def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices. """ from scipy import linalg import itertools if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works solve_triangular = linalg.solve n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(itertools.izip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probabily stuck in a component with too # few observations, we need to reinitialize this components cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + \ n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape" "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template """ if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in xrange(gmm.n_components): post = responsibilities[:, c] # Underflow Errors in doing post * X.T are not important np.seterr(under='ignore') avg_cv = np.dot(post * X.T, X) / (post.sum() + 10 * EPS) mu = gmm.means_[c][np.newaxis] cv[c] = (avg_cv - np.dot(mu.T, mu) + min_covar * np.eye(n_features)) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian n_features = X.shape[1] avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) return (avg_X2 - avg_means2 + min_covar * np.eye(n_features)) / X.shape[0] _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
ElDeveloper/qiime
qiime/colors.py
15
24391
#!/usr/bin/env python # file colors.py __author__ = "Jesse Stombaugh" __copyright__ = "Copyright 2011, The QIIME Project" # consider project name # remember to add yourself __credits__ = ["Rob Knight", "Jesse Stombaugh", "Yoshiki Vazquez-Baeza"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jesse Stombaugh" __email__ = "[email protected]" """Code for coloring series based on prefs file. """ from colorsys import rgb_to_hsv, hsv_to_rgb from parse import parse_mapping_file, group_by_field, parse_taxa_summary_table from numpy import array from math import floor import os import re from qiime.util import MissingFileError from qiime.sort import natsort def string_to_rgb(s): """Converts hex string to RGB""" orig_s = s s = s.strip() if s.startswith('#'): s = s[1:] if not len(s) == 6: raise ValueError("String %s doesn't look like a hex string" % orig_s) return int(s[:2], 16), int(s[2:4], 16), int(s[4:], 16) def rgb_tuple_to_hsv(rgb): """Converts rgb tuple to hsv on Mage's scale""" rgb_0_to_1 = array(rgb) / 255.0 hsv = rgb_to_hsv(*tuple(rgb_0_to_1)) return hsv[0] * 360, hsv[1] * 100, hsv[2] * 100 def mage_hsv_tuple_to_rgb(hsv): """Converts hsv tuple on Mage scale to rgb on 0-255 scale""" hsv_0_to_1 = hsv[0] / 360.0, hsv[1] / 100.0, hsv[2] / 100.0 rgb = hsv_to_rgb(*tuple(hsv_0_to_1)) return int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255) class Color(object): """Stores a color object: name, HSV, ability to write as HTML or Mage. Note: the reason we store as HSV, not RGB, is that you frequently want to do gradient colors by hue going from e.g. white to blue, white to red, etc. Unfortunately, in RGB, you can't specify _which_ white you have in e.g. #FFFFFF, whereas to get the right gradient you need to be able to specify that you want (0,0,100) or (180,0,100) or whatever. Hence the colorspace gymnastics. """ def __init__(self, name, coords, colorspace='rgb'): """Returns new Color object. Init with name and coords as (R,G,B). Can also initialize with coords as (H,S,V) or #aabbcc format. """ self.Name = name if isinstance(coords, str): # assume is hex format self.Coords = rgb_tuple_to_hsv(string_to_rgb(coords)) elif colorspace == 'rgb': self.Coords = rgb_tuple_to_hsv(tuple(coords)) elif colorspace == 'hsv': self.Coords = tuple(coords) else: raise ValueError( "Unknown colorspace %s: valid values are rgb, hsv" % colorspace) def toRGB(self): """Returns self as r, g, b tuple.""" return mage_hsv_tuple_to_rgb(self.Coords) def toMage(self): """Returns self as Mage/KiNG-format string""" h, s, v = self.Coords return '@hsvcolor {%s} %3.1f %3.1f %3.1f' % (self.Name, h, s, v) def toHex(self): """Returns self as hex string.""" rgb = self.toRGB() return ('#%02s%02s%02s' % (hex(rgb[0])[2:], hex(rgb[1])[2:], hex(rgb[2])[2:])).replace(' ', '0') def toInt(self): """Returns self as hex string.""" rgb = self.toHex()[1:] return int(float.fromhex(rgb)) def __str__(self): """Return string representation of self""" return str(self.Name) + ':' + self.toHex() def color_dict_to_objects(d, colorspace='hsv'): """Converts color dict to dict of Color objects""" result = {} for k, v in d.items(): result[k] = Color(k, v, colorspace) return result # Note: these are all in Mage HSV colorspace ''' These are the old colors data_color_hsv = { 'aqua': (180, 100, 100), 'blue': (240,100,100), 'fuchsia': (300,100,100), 'gray': (300,0,50.2), 'green': (120,100,50.2), 'lime': (120,100,100), 'maroon': (0,100,50.2), 'olive': (60,100,50.2), 'purple': (300,100,50.2), 'red': (0,100,100), 'silver': (0, 0, 75.3), 'teal': (180,100,50.2), 'yellow': (60,100,100) } This is the old order data_color_order = ['blue','lime','red','aqua','fuchsia','yellow','green', \ 'maroon','teal','purple','olive','silver','gray'] ''' data_color_hsv = { #'black1': (0,0,20), 'red1': (0, 100, 100), 'blue1': (240, 100, 100), 'orange1': (28, 98, 95), 'green1': (120, 100, 50.2), 'purple1': (302, 73, 57), 'yellow1': (60, 100, 100), 'cyan1': (184, 49, 96), 'pink1': (333, 37, 96), 'teal1': (178, 42, 63), 'brown1': (36, 89, 42), 'gray1': (0, 0, 50.2), 'lime': (123, 99, 96), 'red2': (14, 51, 97), 'blue2': (211, 42, 85), 'orange2': (32, 46, 99), 'green2': (142, 36, 79), 'purple2': (269, 29, 75), 'yellow2': (56, 40, 100), #'black2': (303,100,24), 'gray2': (0, 0, 75.3), #'teal2': (192,100,24), 'red3': (325, 100, 93), 'blue3': (197, 100, 100), #'purple3': (271,43,36), 'brown2': (33, 45, 77), 'green3': (60, 100, 50.2), 'purple4': (264, 75, 100), #'yellow3': (60,66,75), #'blue4': (213,45,77), 'red4': (348, 31, 74), 'teal3': (180, 100, 50.2), #'brown3': (60,100,28), 'red5': (0, 100, 50.2), 'green4': (81, 100, 26), #'purple5': (240,100,41), 'orange3': (26, 100, 65) #'brown4': (25,100,20), #'red6': (17,100,63), #'purple6':(272,100,44) } data_color_order = ['red1', 'blue1', 'orange1', 'green1', 'purple1', 'yellow1', 'cyan1', 'pink1', 'teal1', 'brown1', 'gray1', 'lime', 'red2', 'blue2', 'orange2', 'green2', 'purple2', 'yellow2', 'gray2', 'red3', 'blue3', 'brown2', 'green3', 'purple4', 'red4', 'teal3', 'red5', 'green4', 'orange3'] data_colors = color_dict_to_objects(data_color_hsv) kinemage_colors = [ 'hotpink', 'blue', 'lime', 'gold', 'red', 'sea', 'purple', 'green'] def iter_color_groups(mapping, prefs): """Iterates over color groups for each category given mapping file/prefs. See get_group_colors for details of algorithm. """ # Iterate through prefs and color by given mapping labels for key in natsort(prefs.keys()): col_name = prefs[key]['column'] if 'colors' in prefs[key]: if isinstance(prefs[key]['colors'], dict): colors = prefs[key]['colors'].copy() # copy so we can mutate else: colors = prefs[key]['colors'][:] else: colors = {} labelname = prefs[key]['column'] # Define groups and associate appropriate colors to each group groups = group_by_field(mapping, col_name) colors, data_colors, data_color_order = \ get_group_colors(groups, colors) yield labelname, groups, colors, data_colors, data_color_order def get_group_colors(groups, colors, data_colors=data_colors, data_color_order=data_color_order): """Figures out group colors for a specific series based on prefs. Algorithm is as follows: - For each name, color pair we know about: - Check if the name is one of the groups (exact match) - If it isn't, assume it's a prefix and pull out all the matching groups - If the color is just a string, set everything to the color with that name - Otherwise, assume that either it's a new color we're adding, or that it's a range for gradient coloring. - If it's a new color, create it and add it to added_data_colors. - If it's a gradient, make up all the new colors and add them to added_data_colors The current method for gradient coloring of columns (should perhaps replace with more general method) is to pass in any of the following: 'colors':(('white', (0,0,100)),('red',(0,100,100))) makes gradient between white and red, applies to all samples 'colors':{'RK':(('white',(0,0,100)),('red',(0,100,100))), 'NF':(('white',(120,0,100)),('green',(120,100,100))) } pulls the combination samples starting with RK, colors with first gradient, then pulls the combination samples starting with NF, colors with the next gradient. Return values are: - colors: dict of {group_value:color_name} - data_colors: dict of {color_name:color_object} - data_color_order: order in which the data colors are used/written. """ added_data_colors = {} if isinstance(colors, dict): # assume we're getting some of the colors out of a dict if colors.items() != []: for k, v in sorted(colors.items()): if k not in groups: # assume is prefix k_matches = [g for g in groups if g.startswith(k)] if isinstance(v, str): # just set everything to this color for m in k_matches: colors[m] = v else: # assume is new color or range first, second = v if isinstance(first, str): # new named color? if first not in data_colors: added_data_colors[first] = Color(first, second) for m in k_matches: colors[m] = first else: # new color range? start_color, end_color = map(get_color, [first, second]) num_colors = len(k_matches) curr_data_colors = color_dict_to_objects( make_color_dict(start_color, start_hsv, end_color, end_hsv, num_colors)) curr_colors = {} color_groups(k_matches, curr_colors, natsort(curr_data_colors)) colors.update(curr_colors) added_data_colors.update(curr_data_colors) del colors[k] elif not isinstance(v, str): # assume val is new color color = get_color(v) if color.Name not in data_colors: added_data_colors[color.Name] = color colors[k] = color.Name # handle any leftover groups color_groups(groups, colors, data_color_order) # add new colors data_colors.update(added_data_colors) if added_data_colors != {}: data_color_order.append(''.join(natsort(added_data_colors))) else: # handle case where no prefs is used color_groups(groups, colors, data_color_order) else: # handle the case where colors is a tuple for gradients start_color, end_color = map(get_color, colors) start_hsv = start_color.Coords end_hsv = end_color.Coords num_colors = len(groups) data_colors = color_dict_to_objects( make_color_dict(start_color, start_hsv, end_color, end_hsv, num_colors)) data_color_order = list(natsort(data_colors.keys())) colors = {} color_groups(groups, colors, data_color_order) return colors, data_colors, data_color_order def get_color(color, data_colors=data_colors): """Gets a color by looking up its name or initializing with name+data""" if isinstance(color, str): if color in data_colors: return data_colors[color] else: raise ValueError("Color name %s in prefs not recognized" % color) else: name, coords = color if isinstance(coords, str): colorspace = 'rgb' else: colorspace = 'hsv' return Color(name, coords, colorspace) def color_groups(groups, colors, data_color_order): """Colors a set of groups in data_color_order, handling special colors. Modifies colors in-place. Cycles through data colors (i.e. wraps around when last color is reached). """ group_num = -1 for g in natsort(groups): if g not in colors: group_num += 1 if group_num == len(data_color_order): group_num = 0 colors[g] = data_color_order[group_num] def make_color_dict(start_name, start_hsv, end_name, end_hsv, n): """Makes dict of color gradient""" colors = linear_gradient(start_hsv, end_hsv, n) names = ['%sto%s%s_%s' % (start_name, end_name, n, i) for i in range(n)] return dict(zip(names, colors)) def combine_map_label_cols(combinecolorby, mapping): """Merge two or more mapping columns into one column""" combinedmapdata = array([''] * len(mapping), dtype='a100') title = [] match = False for p in range(len(combinecolorby)): for i in range(len(mapping[0])): if str(combinecolorby[p]) == str(mapping[0][i]): match = True for q in range(len(mapping)): combinedmapdata[q] = combinedmapdata[q] + mapping[q][i] break else: match = False if not match: raise ValueError( 'One of the columns you tried to combine does not exist!') title.append(combinecolorby[p]) combinedmapdata[0] = '&&'.join(title) for i in range(len(combinedmapdata)): mapping[i].append(combinedmapdata[i]) return mapping def process_colorby(colorby, data, color_prefs=None): """Parses the colorby option from the command line. color_prefs is required if colorby is not passed. """ match = False prefs = {} mapping = data['map'] colorbydata = [] if colorby is None and color_prefs is None: # if coloby option are prefs file not given, color by all categories # in mapping file colorbydata = mapping[0] elif colorby and color_prefs: # if both the colorby option and prefs file are given, use the categories # from the colorby option with their appropriate colors in the prefs # file prefs_colorby = [color_prefs[i]['column'] for i in color_prefs] cmd_colorby = colorby.strip().strip("'").split(',') for i in range(len(cmd_colorby)): for j in range(len(prefs_colorby)): if cmd_colorby[i] == prefs_colorby[j]: colorbydata.append(prefs_colorby[j]) match = True break else: match = False if not match: colorbydata.append(cmd_colorby[i]) names = list(colorbydata) elif colorby: # if only the colorby option is passed colorbydata = colorby.strip().strip("'").split(',') else: # if only the prefs file is passed colorbydata = [color_prefs[i]['column'] for i in color_prefs] names = list(color_prefs) match = False for j, col in enumerate(colorbydata): key = str(col) # transfer over old color data if it was present if '&&' in col: # Create an array using multiple columns from mapping file combinecolorby = col.split('&&') data['map'] = combine_map_label_cols(combinecolorby, mapping) prefs[key] = {} prefs[key]['column'] = '&&'.join(combinecolorby) else: # Color by only one column in mapping file prefs[key] = {} prefs[key]['column'] = col if color_prefs: for p in color_prefs: if 'column' in color_prefs[p] and color_prefs[p]['column'] == col: if 'colors' in color_prefs[p]: prefs[key]['colors'] = color_prefs[p]['colors'] else: prefs[key]['colors'] = ( ('white', (0, 0, 100)), ('red', (0, 100, 100))) match = True break else: match = False if not match: prefs[key] = {} prefs[key]['column'] = col prefs[key]['colors'] = ( ('white', (0, 0, 100)), ('red', (0, 100, 100))) return prefs, data def linear_gradient(start, end, nbins, eps=1e-10): """Makes linear color gradient from start to end, using nbins. Returns list of (x, y, z) tuples in current colorspace. eps is used to prevent the case where start and end are the same. """ start = array(start) end = array(end) result = [] n_minus_1 = max(float(nbins - 1), eps) for i in range(nbins): result.append( list((start * (n_minus_1 - i) / n_minus_1) + (end * (i / n_minus_1)))) return result # The following functions were not unit_tested, however the parts within # the functions are unit_tested def get_map(options, data): """Opens and returns mapping data""" try: map_f = open(options.map_fname, 'U').readlines() except (TypeError, IOError): raise MissingFileError('Mapping file required for this analysis') data['map'] = parse_mapping_file(map_f) return data['map'] def map_from_coords(coords): """Makes pseudo mapping file from coords. set data['map'] to result of this if coords file supplied but not map. TODO: write equivalent function for other inputs, e.g. for rarefaction -- basic principle is that you need data structure that you can extract list of sample ids from. """ result = (([['SampleID', 'Sample']])) for i in range(len(data['coord'][0])): data['map'].append([data['coord'][0][i], 'Sample']) def sample_color_prefs_and_map_data_from_options(options): """Returns color prefs and mapping data based on options. Note: opens files as needed. Only returns the info related to metadata coloring and category maps. If you need additional info, it is necessary to get that info explicitly (e.g. coord files, rarefaction files, etc.). For example, you might modify the data dict afterwards to add coords, rarefaction info, etc. depending on the application. """ data = {} # Open and get mapping data, if none supplied create a pseudo mapping \ # file mapping, headers, comments = get_map(options, data) new_mapping = [] new_mapping.append(headers) for i in range(len(mapping)): new_mapping.append(mapping[i]) data['map'] = new_mapping # need to set some other way from sample ids # Determine which mapping headers to color by, if none given, color by \ # Sample ID's try: colorby = options.colorby except AttributeError: colorby = None if options.prefs_path: prefs = eval(open(options.prefs_path, 'U').read()) color_prefs, data = process_colorby(colorby, data, prefs['sample_coloring']) if 'background_color' in prefs: background_color = prefs['background_color'] else: background_color = 'black' if 'ball_scale' in prefs: ball_scale = prefs['ball_scale'] else: ball_scale = 1.0 arrow_colors = {} if 'arrow_line_color' in prefs: arrow_colors['line_color'] = prefs['arrow_line_color'] else: arrow_colors['line_color'] = 'white' if 'arrow_head_color' in prefs: arrow_colors['head_color'] = prefs['arrow_head_color'] else: arrow_colors['head_color'] = 'red' else: background_color = 'black' color_prefs, data = process_colorby(colorby, data, None) ball_scale = 1.0 arrow_colors = {'line_color': 'white', 'head_color': 'red'} if options.prefs_path and options.background_color: background_color = options.background_color elif options.background_color: background_color = options.background_color if background_color == 'black': label_color = 'white' else: label_color = 'black' return ( color_prefs, data, background_color, label_color, ball_scale, arrow_colors ) def taxonomy_color_prefs_and_map_data_from_options(options): """Returns color prefs and counts data based on options. counts data is any file in a format that can be parsed by parse_otu_table """ data = {} data['counts'] = {} taxonomy_levels = [] # need to set some other way from sample ids # Determine which mapping headers to color by, if none given, color by \ # Sample ID's taxonomy_count_files = options.counts_fname for f in taxonomy_count_files: try: counts_f = open(f, 'U').readlines() except (TypeError, IOError): raise MissingFileError('Counts file required for this analysis') sample_ids, otu_ids, otu_table = \ parse_taxa_summary_table(counts_f) data['counts'][f] = (sample_ids, otu_ids, otu_table) level = max([len(t.split(';')) - 1 for t in otu_ids]) taxonomy_levels.append(str(level)) if options.prefs_path: prefs = eval(open(options.prefs_path, 'U').read()) color_prefs = taxonomy_process_prefs(taxonomy_levels, prefs['taxonomy_coloring']) if 'background_color' in prefs: background_color = prefs['background_color'] else: background_color = 'black' else: background_color = 'black' color_prefs = taxonomy_process_prefs(taxonomy_levels, None) if options.prefs_path and options.background_color: background_color = options.background_color elif options.background_color: background_color = options.background_color if background_color == 'black': label_color = 'white' else: label_color = 'black' return color_prefs, data, background_color, label_color def taxonomy_process_prefs(taxonomy_levels, color_prefs=None): """Creates taxonomy prefs dict given specific taxonomy levels. color_prefs is not required taxonomy_levels is a list of the level number i.e. Phylum is 2 prefs will include a 'colors' dictionary for each given level if there is a cooresponding level in color_prefs that is the dictionary for the level otherwise it adds and empty dict """ prefs = {} for j, col in enumerate(taxonomy_levels): key = str(col) col = str(col) # Color by only one level prefs[key] = {} prefs[key]['column'] = col if color_prefs: for p in color_prefs: if 'column' in color_prefs[p] and str(color_prefs[p]['column']) == col: if 'colors' in color_prefs[p]: prefs[key]['colors'] = color_prefs[p]['colors'].copy() else: prefs[key]['colors'] = {} match = True break else: match = False if not match: prefs[key] = {} prefs[key]['column'] = col prefs[key]['colors'] = {} return prefs def get_qiime_hex_string_color(index): """Retrieve an HEX color from the list of QIIME colors Input: index: index of the color to retrieve, if the number is greater than the number of available colors, it will rollover in the list. Output: color: string in the format #FF0000 """ assert index >= 0, "There are no negative indices for the QIIME colors" n_colors = len(data_color_order) if index >= n_colors: index = int(index - floor((index / n_colors) * n_colors)) return data_colors[data_color_order[index]].toHex() def matplotlib_rgb_color(rgb_color): """Returns RGB color in matplotlib format. ex: (255,0,255) will return (1.0,0.0,1.0) """ return tuple([i / 255. for i in rgb_color])
gpl-2.0
hdmetor/scikit-learn
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
matsaleh13/courses
deeplearning1/nbs/lesson3.0.py
1
9648
# lesson2.py # Stand-alone script to run the code from the lesson2-matsaleh.ipynb Jupyter Notebook. ''' Lesson 3 Assignment Plan: 1. Start with Vgg16 model with binary output and weights from lesson2.5.py. 2. Create an overfitted model: a. Split conv and FC layers into two separate models. b. Precalculate FC layer inputs from conv layer output. c. Remove dropout from the FC model. d. Fit the FC model to the data. e. Save the weights. 3. Add data augmentation to the training set: a. Combine the Conv (locked) and FC models. b. Compile and train the combined model. c. Save the weights. 4. Add batchnorm to the combined model: a. Create a standalone model from the Vgg16bn model's BN layers. b. Fit the BN model to the data. c. Save the weights. d. Create another BN model and combine it with the conv model into a final model. e. Set the BN layer weights from the first BN model (why not just combine *that* BN model with the conv model)? f. Save the weights. 5. Fit the final model: a. Incrementally, saving the weights along the way. lesson3.0.py: - Based on lesson2.5.py - now with functions ''' import os import os.path import click import utils from vgg16 import Vgg16 import numpy as np from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import confusion_matrix from numpy.random import random, permutation from scipy import misc, ndimage from scipy.ndimage.interpolation import zoom import keras from keras import backend as K from keras.utils.data_utils import get_file from keras.models import Sequential from keras.layers import Input from keras.layers.core import Flatten, Dense, Dropout, Lambda from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, RMSprop, Nadam from keras.preprocessing import image # # Utility Functions # def onehot(x): # Returns two-column matrix with one row for each class. return np.array(OneHotEncoder().fit_transform(x.reshape(-1, 1)).todense()) # # Constants # INPUT_PATH = None OUTPUT_PATH = None TRAIN_PATH = None VALID_PATH = None TEST_PATH = None MODEL_PATH = None RESULTS_PATH = None BATCH_SIZE = None NUM_EPOCHS = None # # Data Setup # def setup_folders(): click.echo() click.echo('Setting up folders...') click.echo() click.echo('Input folder: %s' % INPUT_PATH) global TRAIN_PATH TRAIN_PATH = os.path.join(INPUT_PATH, 'train') click.echo('Training data: %s' % TRAIN_PATH) global VALID_PATH VALID_PATH = os.path.join(INPUT_PATH, 'valid') click.echo('Validation data: %s' % VALID_PATH) global TEST_PATH TEST_PATH = os.path.join(INPUT_PATH, 'test') click.echo('Test data: %s' % TEST_PATH) click.echo() click.echo('Output folder: %s' % OUTPUT_PATH) global MODEL_PATH MODEL_PATH = os.path.join(OUTPUT_PATH, 'models') if not os.path.exists(MODEL_PATH): os.makedirs(MODEL_PATH) click.echo('Model data: %s' % MODEL_PATH) global RESULTS_PATH RESULTS_PATH = os.path.join(OUTPUT_PATH, 'results') if not os.path.exists(RESULTS_PATH): os.makedirs(RESULTS_PATH) click.echo('Results: %s' % RESULTS_PATH) click.echo() def load_data(): # # NOTE: Loading and use of data structures is pretty fucked up here. # Some things require getting data from generators, others require NumPy arrays. # In the end we use both, and sometimes re-load the data from disk and/or re-transform # it more than once. # click.echo('Loading raw training data from %s...' % TRAIN_PATH) global TRAIN_BATCHES TRAIN_BATCHES = utils.get_batches(TRAIN_PATH, shuffle=False, batch_size=1) click.echo('Loading array from generator...') global TRAIN_ARRAY TRAIN_ARRAY = utils.get_data(TRAIN_PATH) click.echo('\tshape: %s' % (TRAIN_ARRAY.shape,)) click.echo() # TRAIN_DATA = os.path.join(MODEL_PATH, 'train_data.bc') # click.echo('Saving processed training data to %s...' % TRAIN_DATA) # utils.save_array(TRAIN_DATA, TRAIN_ARRAY) click.echo('Loading raw validation data from %s...' % VALID_PATH) global VALID_BATCHES VALID_BATCHES = utils.get_batches(VALID_PATH, shuffle=False, batch_size=1) click.echo('Loading array from generator...') global VALID_ARRAY VALID_ARRAY = utils.get_data(VALID_PATH) click.echo('\tshape: %s' % (VALID_ARRAY.shape,)) click.echo() def get_true_labels(): click.echo('Getting the true labels for every image...') global TRAIN_CLASSES TRAIN_CLASSES = TRAIN_BATCHES.classes global TRAIN_LABELS TRAIN_LABELS = onehot(TRAIN_CLASSES) # click.echo('\tTraining labels look like this: \n%s\n...\n%s' % (TRAIN_LABELS[:5], TRAIN_LABELS[-5:])) # click.echo() global VALID_CLASSES VALID_CLASSES = VALID_BATCHES.classes global VALID_LABELS VALID_LABELS = onehot(VALID_CLASSES) # click.echo('\tValidation labels look like this: \n%s\n...\n%s' % (VALID_LABELS[:5], VALID_LABELS[-5:])) # click.echo() def prepare_generators(): click.echo('Preparing image data generators...') gen = image.ImageDataGenerator() # NOTE: Why do we overwrite these generators using the arrays? # TRAIN_BATCHES and VALID_BATCHES here are generators, # but still not quite the same as above. global TRAIN_BATCHES TRAIN_BATCHES = gen.flow(TRAIN_ARRAY, TRAIN_LABELS, batch_size=BATCH_SIZE, shuffle=True) global VALID_BATCHES VALID_BATCHES = gen.flow(VALID_ARRAY, VALID_LABELS, batch_size=BATCH_SIZE, shuffle=False) def create_model(): vgg = Vgg16() vgg.model.pop() click.echo('Replacing last layer of model...') for layer in vgg.model.layers: layer.trainable=False vgg.model.add(Dense(2, activation='softmax')) # OPTIMIZER = Nadam() OPTIMIZER = RMSprop(lr=0.001) vgg.model.compile(optimizer=OPTIMIZER, loss='categorical_crossentropy', metrics=['accuracy']) return vgg, OPTIMIZER def fit_model(model, opt): # First epoch higher LR LR=0.01 K.set_value(opt.lr, LR) click.echo('Fitting last layer of model using LR=%s' % LR) model.fit_generator(TRAIN_BATCHES, samples_per_epoch=TRAIN_BATCHES.n, nb_epoch=NUM_EPOCHS, validation_data=VALID_BATCHES, nb_val_samples=VALID_BATCHES.n) # Next batch, lower again LR=0.001 K.set_value(opt.lr, LR) click.echo('Fitting last layer of model using LR=%s' % LR) model.fit_generator(TRAIN_BATCHES, samples_per_epoch=TRAIN_BATCHES.n, nb_epoch=NUM_EPOCHS, validation_data=VALID_BATCHES, nb_val_samples=VALID_BATCHES.n) click.echo('Saving model weights...') model.save_weights(os.path.join(MODEL_PATH, 'finetune_1_ll.h5')) def eval_model(model): click.echo('Evaluating model with validation data...') TEST_LOSS = model.evaluate(VALID_ARRAY, VALID_LABELS) click.echo('TEST_LOSS: %s' % (TEST_LOSS,)) click.echo('Confusion matrix after last layer retraining') PREDS = model.predict_classes(VALID_ARRAY, batch_size=BATCH_SIZE) PROBS = model.predict_proba(VALID_ARRAY, batch_size=BATCH_SIZE)[:, 0] CM = confusion_matrix(VALID_CLASSES, PREDS) click.echo(CM) def predict(model): click.echo('Predicting labels for test data set...') TEST_BATCHES = utils.get_batches(TEST_PATH, shuffle=False, batch_size=BATCH_SIZE) TEST_PREDS = model.predict_generator(TEST_BATCHES, TEST_BATCHES.nb_sample) TEST_FILENAMES = TEST_BATCHES.filenames #Save our test results arrays so we can use them again later # click.echo('Saving raw prediction results.') # utils.save_array(os.path.join(MODEL_PATH, 'test_preds.dat'), TEST_PREDS) # utils.save_array(os.path.join(MODEL_PATH, 'filenames.dat'), TEST_FILENAMES) # Grab the dog prediction column IS_DOG = TEST_PREDS[:, 1] # To play it safe, we use a sneaky trick to round down our edge predictions # Swap all ones with .95 and all zeros with .05 IS_DOG = IS_DOG.clip(min=0.05, max=0.95) # Extract imageIds from the filenames in our test/unknown directory IDS = np.array([int(os.path.splitext(os.path.basename(f))[0]) for f in TEST_FILENAMES]) # Combine the ids and IS_DOG columns into a single 2-column array. SUBMIT = np.stack([IDS, IS_DOG], axis=1) click.echo('Formatting and saving data for Kaggle submission.') np.savetxt(os.path.join(RESULTS_PATH, 'kaggle_submission.csv'), SUBMIT, fmt='%d,%.5f', header='id,label', comments='') click.echo('Model training and prediction complete.') @click.command() @click.option('--sample', is_flag=True, default=True, help='Use sample dataset for training.') @click.option('--sample-set', default='sample', help='Sample dataset to train on.') @click.option('--local', default=True, help='Local environment (vs. FloydHub)') def main(sample, sample_set, local): global BATCH_SIZE global NUM_EPOCHS global INPUT_PATH global OUTPUT_PATH if local: BATCH_SIZE = 32 else: BATCH_SIZE = 64 INPUT_PATH = os.path.join('.', 'input') OUTPUT_PATH = os.path.join('.', 'output') if sample: INPUT_PATH = os.path.join(INPUT_PATH, sample_set) OUTPUT_PATH = os.path.join(OUTPUT_PATH, sample_set) NUM_EPOCHS = 4 else: NUM_EPOCHS = 10 setup_folders() load_data() get_true_labels() prepare_generators() vgg, opt = create_model() fit_model(vgg.model, opt) eval_model(vgg.model) predict(vgg.model) if __name__ == '__main__': main()
apache-2.0
r-mart/scikit-learn
sklearn/decomposition/pca.py
192
23117
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
gchrupala/visually-grounded-speech
imaginet/simple_data.py
2
7498
import numpy import cPickle as pickle import gzip import os import copy import funktional.util as util from funktional.util import autoassign from sklearn.preprocessing import StandardScaler import string import random # Types of tokenization def words(sentence): return sentence['tokens'] def characters(sentence): return list(sentence['raw']) def compressed(sentence): return [ c.lower() for c in sentence['raw'] if c in string.letters ] def phonemes(sentence): return [ pho for pho in sentence['ipa'] if pho != "*" ] class NoScaler(): def __init__(self): pass def fit_transform(self, x): return x def transform(self, x): return x def inverse_transform(self, x): return x class InputScaler(): def __init__(self): self.scaler = StandardScaler() def fit_transform(self, data): flat = numpy.vstack(data) self.scaler.fit(flat) return [ self.scaler.transform(X) for X in data ] def transform(self, data): return [ self.scaler.transform(X) for X in data ] def inverse_transform(self, data): return [ self.scaler.inverse_transform(X) for X in data ] def vector_padder(vecs): """Pads each vector in vecs with zeros at the beginning. Returns 3D tensor with dimensions: (BATCH_SIZE, SAMPLE_LENGTH, NUMBER_FEATURES). """ max_len = max(map(len, vecs)) return numpy.array([ numpy.vstack([numpy.zeros((max_len-len(vec),vec.shape[1])) , vec]) for vec in vecs ], dtype='float32') class Batcher(object): def __init__(self, mapper, pad_end=False): autoassign(locals()) self.BEG = self.mapper.BEG_ID self.END = self.mapper.END_ID def pad(self, xss): # PAD AT BEGINNING max_len = max((len(xs) for xs in xss)) def pad_one(xs): if self.pad_end: return xs + [ self.END for _ in range(0,(max_len-len(xs))) ] return [ self.BEG for _ in range(0,(max_len-len(xs))) ] + xs return [ pad_one(xs) for xs in xss ] def batch_inp(self, sents): mb = self.padder(sents) return mb[:,1:] def padder(self, sents): return numpy.array(self.pad([[self.BEG]+sent+[self.END] for sent in sents]), dtype='int32') def batch(self, gr): """Prepare minibatch. Returns: - input string - visual target vector - output string at t-1 - target string """ mb_inp = self.padder([x['tokens_in'] for x in gr]) mb_target_t = self.padder([x['tokens_out'] for x in gr]) inp = mb_inp[:,1:] target_t = mb_target_t[:,1:] target_prev_t = mb_target_t[:,0:-1] target_v = numpy.array([ x['img'] for x in gr ], dtype='float32') audio = vector_padder([ x['audio'] for x in gr ]) if x['audio'] is not None else None return { 'input': inp, 'target_v':target_v, 'target_prev_t':target_prev_t, 'target_t':target_t, 'audio': audio } class SimpleData(object): """Training / validation data prepared to feed to the model.""" def __init__(self, provider, tokenize=words, min_df=10, scale=True, scale_input=False, batch_size=64, shuffle=False, limit=None, curriculum=False, val_vocab=False): autoassign(locals()) self.data = {} self.mapper = util.IdMapper(min_df=self.min_df) self.scaler = StandardScaler() if scale else NoScaler() self.audio_scaler = InputScaler() if scale_input else NoScaler() parts = insideout(self.shuffled(arrange(provider.iterImages(split='train'), tokenize=self.tokenize, limit=limit))) parts_val = insideout(self.shuffled(arrange(provider.iterImages(split='val'), tokenize=self.tokenize))) # TRAINING if self.val_vocab: _ = list(self.mapper.fit_transform(parts['tokens_in'] + parts_val['tokens_in'])) parts['tokens_in'] = self.mapper.transform(parts['tokens_in']) # FIXME UGLY HACK else: parts['tokens_in'] = self.mapper.fit_transform(parts['tokens_in']) parts['tokens_out'] = self.mapper.transform(parts['tokens_out']) parts['img'] = self.scaler.fit_transform(parts['img']) parts['audio'] = self.audio_scaler.fit_transform(parts['audio']) self.data['train'] = outsidein(parts) # VALIDATION parts_val['tokens_in'] = self.mapper.transform(parts_val['tokens_in']) parts_val['tokens_out'] = self.mapper.transform(parts_val['tokens_out']) parts_val['img'] = self.scaler.transform(parts_val['img']) parts_val['audio'] = self.audio_scaler.transform(parts_val['audio']) self.data['valid'] = outsidein(parts_val) self.batcher = Batcher(self.mapper, pad_end=False) def shuffled(self, xs): if not self.shuffle: return xs else: zs = copy.copy(list(xs)) random.shuffle(zs) return zs def iter_train_batches(self): # sort data by length if self.curriculum: data = [self.data['train'][i] for i in numpy.argsort([len(x['tokens_in']) for x in self.data['train']])] else: data = self.data['train'] for bunch in util.grouper(data, self.batch_size*20): bunch_sort = [ bunch[i] for i in numpy.argsort([len(x['tokens_in']) for x in bunch]) ] for item in util.grouper(bunch_sort, self.batch_size): yield self.batcher.batch(item) def iter_valid_batches(self): for bunch in util.grouper(self.data['valid'], self.batch_size*20): bunch_sort = [ bunch[i] for i in numpy.argsort([len(x['tokens_in']) for x in bunch]) ] for item in util.grouper(bunch_sort, self.batch_size): yield self.batcher.batch(item) def dump(self, model_path): """Write scaler and batcher to disc.""" pickle.dump(self.scaler, gzip.open(os.path.join(model_path, 'scaler.pkl.gz'), 'w'), protocol=pickle.HIGHEST_PROTOCOL) pickle.dump(self.batcher, gzip.open(os.path.join(model_path, 'batcher.pkl.gz'), 'w'), protocol=pickle.HIGHEST_PROTOCOL) def arrange(data, tokenize=words, limit=None): for i,image in enumerate(data): if limit is not None and i > limit: break for sent in image['sentences']: toks = tokenize(sent) yield {'tokens_in': toks, 'tokens_out': toks, 'audio': sent.get('audio'), 'img': image['feat']} def insideout(ds): """Transform a list of dictionaries to a dictionary of lists.""" ds = list(ds) result = dict([(k, []) for k in ds[0].keys()]) for d in ds: for k,v in d.items(): result[k].append(v) return result def outsidein(d): """Transform a dictionary of lists to a list of dictionaries.""" ds = [] keys = d.keys() for key in keys: d[key] = list(d[key]) for i in range(len(d.values()[0])): ds.append(dict([(k, d[k][i]) for k in keys])) return ds
mit
LaurenLuoYun/losslessh264
plot_prior_misses.py
40
1124
# Run h264dec on a single file compiled with PRIOR_STATS and then run this script # Outputs timeseries plot at /tmp/misses.pdf import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import os def temporal_misses(key): values = data[key] numbins = 100 binsize = len(values) // numbins bins = [[]] for v in values: if len(bins[-1]) >= binsize: bins.append([]) bins[-1].append(v) x = range(len(bins)) total_misses = float(sum(values)) y = [100 * float(sum(b)) / total_misses for b in bins] return plt.plot(x, y, label=key)[0] paths = filter(lambda s: 'misses.log' in s, os.listdir('/tmp/')) data = {p.split('_misses.')[0]: map(lambda c: c == '0', open('/tmp/' + p).read()) for p in paths} handles = [] plt.figure(figsize=(20,10)) keys = data.keys() for k in keys: handles.append(temporal_misses(k)) plt.axis((0, 100, 0, 2)) plt.xlabel('temporal %') plt.ylabel('% total misses') plt.legend(handles, keys, bbox_to_anchor=(1, 1), bbox_transform=plt.gcf().transFigure) out = PdfPages('/tmp/misses.pdf') out.savefig() out.close()
bsd-2-clause
meghana1995/sympy
sympy/physics/quantum/tests/test_circuitplot.py
93
2065
from sympy.physics.quantum.circuitplot import labeller, render_label, Mz, CreateOneQubitGate,\ CreateCGate from sympy.physics.quantum.gate import CNOT, H, SWAP, CGate, S, T from sympy.external import import_module from sympy.utilities.pytest import skip mpl = import_module('matplotlib') def test_render_label(): assert render_label('q0') == r'$|q0\rangle$' assert render_label('q0', {'q0': '0'}) == r'$|q0\rangle=|0\rangle$' def test_Mz(): assert str(Mz(0)) == 'Mz(0)' def test_create1(): Qgate = CreateOneQubitGate('Q') assert str(Qgate(0)) == 'Q(0)' def test_createc(): Qgate = CreateCGate('Q') assert str(Qgate([1],0)) == 'C((1),Q(0))' def test_labeller(): """Test the labeller utility""" assert labeller(2) == ['q_1', 'q_0'] assert labeller(3,'j') == ['j_2', 'j_1', 'j_0'] def test_cnot(): """Test a simple cnot circuit. Right now this only makes sure the code doesn't raise an exception, and some simple properties """ if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] c = CircuitPlot(CNOT(1,0),2) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == [] def test_ex1(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(CNOT(1,0)*H(1),2,labels=labeller(2)) assert c.ngates == 2 assert c.nqubits == 2 assert c.labels == ['q_1', 'q_0'] def test_ex4(): if not mpl: skip("matplotlib not installed") else: from sympy.physics.quantum.circuitplot import CircuitPlot c = CircuitPlot(SWAP(0,2)*H(0)* CGate((0,),S(1)) *H(1)*CGate((0,),T(2))\ *CGate((1,),S(2))*H(2),3,labels=labeller(3,'j')) assert c.ngates == 7 assert c.nqubits == 3 assert c.labels == ['j_2', 'j_1', 'j_0']
bsd-3-clause
yidawang/brainiak
examples/eventseg/simulated_data.py
7
3607
"""Example of finding event segmentations on simulated data This code generates simulated datasets that have temporally-clustered structure (with the same series of latent event patterns). An event segmentation is learned on the first dataset, and then we try to find the same series of events in other datasets. We measure how well we find the latent boundaries and the log-likelihood of the fits, and compare to a null model in which the event order is randomly shuffled. """ import brainiak.eventseg.event import numpy as np from scipy import stats import logging import matplotlib.pyplot as plt logging.basicConfig(level=logging.DEBUG) def generate_event_labels(T, K, length_std): event_labels = np.zeros(T, dtype=int) start_TR = 0 for e in range(K - 1): length = round( ((T - start_TR) / (K - e)) * (1 + length_std * np.random.randn())) length = min(max(length, 1), T - start_TR - (K - e)) event_labels[start_TR:(start_TR + length)] = e start_TR = start_TR + length event_labels[start_TR:] = K - 1 return event_labels def generate_data(V, T, event_labels, event_means, noise_std): simul_data = np.empty((V, T)) for t in range(T): simul_data[:, t] = stats.multivariate_normal.rvs( event_means[:, event_labels[t]], cov=noise_std, size=1) simul_data = stats.zscore(simul_data, axis=1, ddof=1) return simul_data # Parameters for creating small simulated datasets V = 10 K = 10 T = 500 T2 = 300 # Generate the first dataset np.random.seed(1) event_means = np.random.randn(V, K) event_labels = generate_event_labels(T, K, 0.1) simul_data = generate_data(V, T, event_labels, event_means, 1) # Find the events in this dataset simul_seg = brainiak.eventseg.event.EventSegment(K) simul_seg.fit(simul_data.T) # Generate other datasets with the same underlying sequence of event # patterns, and try to find matching events test_loops = 10 bound_match = np.empty((2, test_loops)) LL = np.empty((2, test_loops)) for test_i in range(test_loops): # Generate data event_labels2 = generate_event_labels(T2, K, 0.5) simul_data2 = generate_data(V, T2, event_labels2, event_means, 0.1) # Find events matching previously-learned events gamma, LL[0, test_i] = simul_seg.find_events(simul_data2.T) est_events2 = np.argmax(gamma, axis=1) bound_match[0, test_i] = 1 - np.sum(abs(np.diff(event_labels2) - np.diff(est_events2))) / (2 * K) # Run again, but with the order of events shuffled so that it no longer # corresponds to the training data gamma, LL[1, test_i] = simul_seg.find_events(simul_data2.T, scramble=True) est_events2 = np.argmax(gamma, axis=1) bound_match[1, test_i] = 1 - np.sum(abs(np.diff(event_labels2) - np.diff(est_events2))) / (2 * K) # Across the testing datasets, print how well we identify the true event # boundaries and the log-likehoods in real vs. shuffled data print("Boundary match: {:.2} (null: {:.2})".format( np.mean(bound_match[0, :]), np.mean(bound_match[1, :]))) print("Log-likelihood: {:.3} (null: {:.3})".format( np.mean(LL[0, :]), np.mean(LL[1, :]))) plt.figure() plt.subplot(2, 1, 1) plt.imshow(simul_data2, interpolation='nearest', cmap=plt.cm.bone, aspect='auto') plt.xlabel('Timepoints') plt.ylabel('Voxels') plt.subplot(2, 1, 2) gamma, LL[0, test_i] = simul_seg.find_events(simul_data2.T) est_events2 = np.argmax(gamma, axis=1) plt.plot(est_events2) plt.xlabel('Timepoints') plt.ylabel('Event label') plt.show()
apache-2.0
JPFrancoia/scikit-learn
examples/model_selection/plot_learning_curve.py
76
4509
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
pradyu1993/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
4
1741
""" =================================================================== Multi-output Decision Tree Regression =================================================================== Multi-output regression with :ref:`decision trees <tree>`: the decision tree is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print __doc__ import numpy as np # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model from sklearn.tree import DecisionTreeRegressor clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_3 = DecisionTreeRegressor(max_depth=8) clf_1.fit(X, y) clf_2.fit(X, y) clf_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) y_3 = clf_3.predict(X_test) # Plot the results import pylab as pl pl.figure() pl.scatter(y[:, 0], y[:, 1], c="k", label="data") pl.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") pl.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") pl.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") pl.xlim([-6, 6]) pl.ylim([-6, 6]) pl.xlabel("data") pl.ylabel("target") pl.title("Multi-output Decision Tree Regression") pl.legend() pl.show()
bsd-3-clause
dhermes/gcloud-python
bigquery/google/cloud/bigquery/table.py
2
48877
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define API Tables.""" from __future__ import absolute_import import copy import datetime import operator import warnings import six try: import pandas except ImportError: # pragma: NO COVER pandas = None from google.api_core.page_iterator import HTTPIterator import google.cloud._helpers from google.cloud.bigquery import _helpers from google.cloud.bigquery.schema import SchemaField from google.cloud.bigquery.schema import _build_schema_resource from google.cloud.bigquery.schema import _parse_schema_resource from google.cloud.bigquery.external_config import ExternalConfig _NO_PANDAS_ERROR = ( "The pandas library is not installed, please install " "pandas to use the to_dataframe() function." ) _TABLE_HAS_NO_SCHEMA = 'Table has no schema: call "client.get_table()"' _MARKER = object() def _reference_getter(table): """A :class:`~google.cloud.bigquery.table.TableReference` pointing to this table. Returns: google.cloud.bigquery.table.TableReference: pointer to this table. """ from google.cloud.bigquery import dataset dataset_ref = dataset.DatasetReference(table.project, table.dataset_id) return TableReference(dataset_ref, table.table_id) def _view_use_legacy_sql_getter(table): """bool: Specifies whether to execute the view with Legacy or Standard SQL. This boolean specifies whether to execute the view with Legacy SQL (:data:`True`) or Standard SQL (:data:`False`). The client side default is :data:`False`. The server-side default is :data:`True`. If this table is not a view, :data:`None` is returned. Raises: ValueError: For invalid value types. """ view = table._properties.get("view") if view is not None: # The server-side default for useLegacySql is True. return view.get("useLegacySql", True) # In some cases, such as in a table list no view object is present, but the # resource still represents a view. Use the type as a fallback. if table.table_type == "VIEW": # The server-side default for useLegacySql is True. return True class EncryptionConfiguration(object): """Custom encryption configuration (e.g., Cloud KMS keys). Args: kms_key_name (str): resource ID of Cloud KMS key used for encryption """ def __init__(self, kms_key_name=None): self._properties = {} if kms_key_name is not None: self._properties["kmsKeyName"] = kms_key_name @property def kms_key_name(self): """str: Resource ID of Cloud KMS key Resource ID of Cloud KMS key or :data:`None` if using default encryption. """ return self._properties.get("kmsKeyName") @kms_key_name.setter def kms_key_name(self, value): self._properties["kmsKeyName"] = value @classmethod def from_api_repr(cls, resource): """Construct an encryption configuration from its API representation Args: resource (Dict[str, object]): An encryption configuration representation as returned from the API. Returns: google.cloud.bigquery.table.EncryptionConfiguration: An encryption configuration parsed from ``resource``. """ config = cls() config._properties = copy.deepcopy(resource) return config def to_api_repr(self): """Construct the API resource representation of this encryption configuration. Returns: Dict[str, object]: Encryption configuration as represented as an API resource """ return copy.deepcopy(self._properties) def __eq__(self, other): if not isinstance(other, EncryptionConfiguration): return NotImplemented return self.kms_key_name == other.kms_key_name def __ne__(self, other): return not self == other def __hash__(self): return hash(self.kms_key_name) def __repr__(self): return "EncryptionConfiguration({})".format(self.kms_key_name) class TableReference(object): """TableReferences are pointers to tables. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables Args: dataset_ref (google.cloud.bigquery.dataset.DatasetReference): A pointer to the dataset table_id (str): The ID of the table """ def __init__(self, dataset_ref, table_id): self._project = dataset_ref.project self._dataset_id = dataset_ref.dataset_id self._table_id = table_id @property def project(self): """str: Project bound to the table""" return self._project @property def dataset_id(self): """str: ID of dataset containing the table.""" return self._dataset_id @property def table_id(self): """str: The table ID.""" return self._table_id @property def path(self): """str: URL path for the table's APIs.""" return "/projects/%s/datasets/%s/tables/%s" % ( self._project, self._dataset_id, self._table_id, ) @classmethod def from_string(cls, table_id, default_project=None): """Construct a table reference from table ID string. Args: table_id (str): A table ID in standard SQL format. If ``default_project`` is not specified, this must included a project ID, dataset ID, and table ID, each separated by ``.``. default_project (str): Optional. The project ID to use when ``table_id`` does not include a project ID. Returns: TableReference: Table reference parsed from ``table_id``. Examples: >>> TableReference.from_string('my-project.mydataset.mytable') TableRef...(DatasetRef...('my-project', 'mydataset'), 'mytable') Raises: ValueError: If ``table_id`` is not a fully-qualified table ID in standard SQL format. """ from google.cloud.bigquery.dataset import DatasetReference output_project_id = default_project output_dataset_id = None output_table_id = None parts = table_id.split(".") if len(parts) < 2: raise ValueError( "table_id must be a fully-qualified table ID in " 'standard SQL format. e.g. "project.dataset.table", got ' "{}".format(table_id) ) elif len(parts) == 2: if not default_project: raise ValueError( "When default_project is not set, table_id must be a " "fully-qualified table ID in standard SQL format. " 'e.g. "project.dataset_id.table_id", got {}'.format(table_id) ) output_dataset_id, output_table_id = parts elif len(parts) == 3: output_project_id, output_dataset_id, output_table_id = parts if len(parts) > 3: raise ValueError( "Too many parts in table_id. Must be a fully-qualified table " 'ID in standard SQL format. e.g. "project.dataset.table", ' "got {}".format(table_id) ) return cls( DatasetReference(output_project_id, output_dataset_id), output_table_id ) @classmethod def from_api_repr(cls, resource): """Factory: construct a table reference given its API representation Args: resource (Dict[str, object]): Table reference representation returned from the API Returns: google.cloud.bigquery.table.TableReference: Table reference parsed from ``resource``. """ from google.cloud.bigquery.dataset import DatasetReference project = resource["projectId"] dataset_id = resource["datasetId"] table_id = resource["tableId"] return cls(DatasetReference(project, dataset_id), table_id) def to_api_repr(self): """Construct the API resource representation of this table reference. Returns: Dict[str, object]: Table reference represented as an API resource """ return { "projectId": self._project, "datasetId": self._dataset_id, "tableId": self._table_id, } def _key(self): """A tuple key that uniquely describes this field. Used to compute this instance's hashcode and evaluate equality. Returns: Tuple[str]: The contents of this :class:`DatasetReference`. """ return (self._project, self._dataset_id, self._table_id) def __eq__(self, other): if not isinstance(other, TableReference): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __hash__(self): return hash(self._key()) def __repr__(self): from google.cloud.bigquery.dataset import DatasetReference dataset_ref = DatasetReference(self._project, self._dataset_id) return "TableReference({}, '{}')".format(repr(dataset_ref), self._table_id) class Table(object): """Tables represent a set of rows whose values correspond to a schema. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables Args: table_ref (google.cloud.bigquery.table.TableReference): A pointer to a table schema (List[google.cloud.bigquery.schema.SchemaField]): The table's schema """ _PROPERTY_TO_API_FIELD = { "friendly_name": "friendlyName", "expires": "expirationTime", "time_partitioning": "timePartitioning", "partitioning_type": "timePartitioning", "partition_expiration": "timePartitioning", "view_use_legacy_sql": "view", "view_query": "view", "external_data_configuration": "externalDataConfiguration", "encryption_configuration": "encryptionConfiguration", } def __init__(self, table_ref, schema=None): self._properties = {"tableReference": table_ref.to_api_repr(), "labels": {}} # Let the @property do validation. if schema is not None: self.schema = schema @property def project(self): """str: Project bound to the table.""" return self._properties["tableReference"]["projectId"] @property def dataset_id(self): """str: ID of dataset containing the table.""" return self._properties["tableReference"]["datasetId"] @property def table_id(self): """str: ID of the table.""" return self._properties["tableReference"]["tableId"] reference = property(_reference_getter) @property def path(self): """str: URL path for the table's APIs.""" return "/projects/%s/datasets/%s/tables/%s" % ( self.project, self.dataset_id, self.table_id, ) @property def schema(self): """List[google.cloud.bigquery.schema.SchemaField]: Table's schema. Raises: TypeError: If 'value' is not a sequence ValueError: If any item in the sequence is not a :class:`~google.cloud.bigquery.schema.SchemaField` """ prop = self._properties.get("schema") if not prop: return [] else: return _parse_schema_resource(prop) @schema.setter def schema(self, value): if value is None: self._properties["schema"] = None elif not all(isinstance(field, SchemaField) for field in value): raise ValueError("Schema items must be fields") else: self._properties["schema"] = {"fields": _build_schema_resource(value)} @property def labels(self): """Dict[str, str]: Labels for the table. This method always returns a dict. To change a table's labels, modify the dict, then call ``Client.update_table``. To delete a label, set its value to :data:`None` before updating. Raises: ValueError: If ``value`` type is invalid. """ return self._properties.setdefault("labels", {}) @labels.setter def labels(self, value): if not isinstance(value, dict): raise ValueError("Pass a dict") self._properties["labels"] = value @property def encryption_configuration(self): """google.cloud.bigquery.table.EncryptionConfiguration: Custom encryption configuration for the table. Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None` if using default encryption. See `protecting data with Cloud KMS keys <https://cloud.google.com/bigquery/docs/customer-managed-encryption>`_ in the BigQuery documentation. """ prop = self._properties.get("encryptionConfiguration") if prop is not None: prop = EncryptionConfiguration.from_api_repr(prop) return prop @encryption_configuration.setter def encryption_configuration(self, value): api_repr = value if value is not None: api_repr = value.to_api_repr() self._properties["encryptionConfiguration"] = api_repr @property def created(self): """Union[datetime.datetime, None]: Datetime at which the table was created (:data:`None` until set from the server). """ creation_time = self._properties.get("creationTime") if creation_time is not None: # creation_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(creation_time) ) @property def etag(self): """Union[str, None]: ETag for the table resource (:data:`None` until set from the server). """ return self._properties.get("etag") @property def modified(self): """Union[datetime.datetime, None]: Datetime at which the table was last modified (:data:`None` until set from the server). """ modified_time = self._properties.get("lastModifiedTime") if modified_time is not None: # modified_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(modified_time) ) @property def num_bytes(self): """Union[int, None]: The size of the table in bytes (:data:`None` until set from the server). """ return _helpers._int_or_none(self._properties.get("numBytes")) @property def num_rows(self): """Union[int, None]: The number of rows in the table (:data:`None` until set from the server). """ return _helpers._int_or_none(self._properties.get("numRows")) @property def self_link(self): """Union[str, None]: URL for the table resource (:data:`None` until set from the server). """ return self._properties.get("selfLink") @property def full_table_id(self): """Union[str, None]: ID for the table (:data:`None` until set from the server). In the format ``project_id:dataset_id.table_id``. """ return self._properties.get("id") @property def table_type(self): """Union[str, None]: The type of the table (:data:`None` until set from the server). Possible values are ``'TABLE'``, ``'VIEW'``, or ``'EXTERNAL'``. """ return self._properties.get("type") @property def time_partitioning(self): """google.cloud.bigquery.table.TimePartitioning: Configures time-based partitioning for a table. Raises: ValueError: If the value is not :class:`TimePartitioning` or :data:`None`. """ prop = self._properties.get("timePartitioning") if prop is not None: return TimePartitioning.from_api_repr(prop) @time_partitioning.setter def time_partitioning(self, value): api_repr = value if isinstance(value, TimePartitioning): api_repr = value.to_api_repr() elif value is not None: raise ValueError( "value must be google.cloud.bigquery.table.TimePartitioning " "or None" ) self._properties["timePartitioning"] = api_repr @property def partitioning_type(self): """Union[str, None]: Time partitioning of the table if it is partitioned (Defaults to :data:`None`). The only partitioning type that is currently supported is :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`. """ warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.type_ @partitioning_type.setter def partitioning_type(self, value): warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is None: self._properties["timePartitioning"] = {} self._properties["timePartitioning"]["type"] = value @property def partition_expiration(self): """Union[int, None]: Expiration time in milliseconds for a partition. If :attr:`partition_expiration` is set and :attr:`type_` is not set, :attr:`type_` will default to :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`. """ warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.expiration_ms @partition_expiration.setter def partition_expiration(self, value): warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is None: self._properties["timePartitioning"] = {"type": TimePartitioningType.DAY} self._properties["timePartitioning"]["expirationMs"] = str(value) @property def clustering_fields(self): """Union[List[str], None]: Fields defining clustering for the table (Defaults to :data:`None`). Clustering fields are immutable after table creation. .. note:: As of 2018-06-29, clustering fields cannot be set on a table which does not also have time partioning defined. """ prop = self._properties.get("clustering") if prop is not None: return list(prop.get("fields", ())) @clustering_fields.setter def clustering_fields(self, value): """Union[List[str], None]: Fields defining clustering for the table (Defaults to :data:`None`). """ if value is not None: prop = self._properties.setdefault("clustering", {}) prop["fields"] = value else: if "clustering" in self._properties: del self._properties["clustering"] @property def description(self): """Union[str, None]: Description of the table (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ return self._properties.get("description") @description.setter def description(self, value): if not isinstance(value, six.string_types) and value is not None: raise ValueError("Pass a string, or None") self._properties["description"] = value @property def expires(self): """Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types. """ expiration_time = self._properties.get("expirationTime") if expiration_time is not None: # expiration_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(expiration_time) ) @expires.setter def expires(self, value): if not isinstance(value, datetime.datetime) and value is not None: raise ValueError("Pass a datetime, or None") value_ms = google.cloud._helpers._millis_from_datetime(value) self._properties["expirationTime"] = _helpers._str_or_none(value_ms) @property def friendly_name(self): """Union[str, None]: Title of the table (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ return self._properties.get("friendlyName") @friendly_name.setter def friendly_name(self, value): if not isinstance(value, six.string_types) and value is not None: raise ValueError("Pass a string, or None") self._properties["friendlyName"] = value @property def location(self): """Union[str, None]: Location in which the table is hosted Defaults to :data:`None`. """ return self._properties.get("location") @property def view_query(self): """Union[str, None]: SQL query defining the table as a view (defaults to :data:`None`). By default, the query is treated as Standard SQL. To use Legacy SQL, set :attr:`view_use_legacy_sql` to :data:`True`. Raises: ValueError: For invalid value types. """ view = self._properties.get("view") if view is not None: return view.get("query") @view_query.setter def view_query(self, value): if not isinstance(value, six.string_types): raise ValueError("Pass a string") view = self._properties.get("view") if view is None: view = self._properties["view"] = {} view["query"] = value # The service defaults useLegacySql to True, but this # client uses Standard SQL by default. if view.get("useLegacySql") is None: view["useLegacySql"] = False @view_query.deleter def view_query(self): """Delete SQL query defining the table as a view.""" self._properties.pop("view", None) view_use_legacy_sql = property(_view_use_legacy_sql_getter) @view_use_legacy_sql.setter def view_use_legacy_sql(self, value): if not isinstance(value, bool): raise ValueError("Pass a boolean") if self._properties.get("view") is None: self._properties["view"] = {} self._properties["view"]["useLegacySql"] = value @property def streaming_buffer(self): """google.cloud.bigquery.StreamingBuffer: Information about a table's streaming buffer. """ sb = self._properties.get("streamingBuffer") if sb is not None: return StreamingBuffer(sb) @property def external_data_configuration(self): """Union[google.cloud.bigquery.ExternalConfig, None]: Configuration for an external data source (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ prop = self._properties.get("externalDataConfiguration") if prop is not None: prop = ExternalConfig.from_api_repr(prop) return prop @external_data_configuration.setter def external_data_configuration(self, value): if not (value is None or isinstance(value, ExternalConfig)): raise ValueError("Pass an ExternalConfig or None") api_repr = value if value is not None: api_repr = value.to_api_repr() self._properties["externalDataConfiguration"] = api_repr @classmethod def from_string(cls, full_table_id): """Construct a table from fully-qualified table ID. Args: full_table_id (str): A fully-qualified table ID in standard SQL format. Must included a project ID, dataset ID, and table ID, each separated by ``.``. Returns: Table: Table parsed from ``full_table_id``. Examples: >>> Table.from_string('my-project.mydataset.mytable') Table(TableRef...(D...('my-project', 'mydataset'), 'mytable')) Raises: ValueError: If ``full_table_id`` is not a fully-qualified table ID in standard SQL format. """ return cls(TableReference.from_string(full_table_id)) @classmethod def from_api_repr(cls, resource): """Factory: construct a table given its API representation Args: resource (Dict[str, object]): Table resource representation from the API dataset (google.cloud.bigquery.dataset.Dataset): The dataset containing the table. Returns: google.cloud.bigquery.table.Table: Table parsed from ``resource``. Raises: KeyError: If the ``resource`` lacks the key ``'tableReference'``, or if the ``dict`` stored within the key ``'tableReference'`` lacks the keys ``'tableId'``, ``'projectId'``, or ``'datasetId'``. """ from google.cloud.bigquery import dataset if ( "tableReference" not in resource or "tableId" not in resource["tableReference"] ): raise KeyError( "Resource lacks required identity information:" '["tableReference"]["tableId"]' ) project_id = resource["tableReference"]["projectId"] table_id = resource["tableReference"]["tableId"] dataset_id = resource["tableReference"]["datasetId"] dataset_ref = dataset.DatasetReference(project_id, dataset_id) table = cls(dataset_ref.table(table_id)) table._properties = resource return table def to_api_repr(self): """Constructs the API resource of this table Returns: Dict[str, object]: Table represented as an API resource """ return copy.deepcopy(self._properties) def _build_resource(self, filter_fields): """Generate a resource for ``update``.""" partial = {} for filter_field in filter_fields: api_field = self._PROPERTY_TO_API_FIELD.get(filter_field) if api_field is None and filter_field not in self._properties: raise ValueError("No Table property %s" % filter_field) elif api_field is not None: partial[api_field] = self._properties.get(api_field) else: # allows properties that are not defined in the library # and properties that have the same name as API resource key partial[filter_field] = self._properties[filter_field] return partial def __repr__(self): return "Table({})".format(repr(self.reference)) class TableListItem(object): """A read-only table resource from a list operation. For performance reasons, the BigQuery API only includes some of the table properties when listing tables. Notably, :attr:`~google.cloud.bigquery.table.Table.schema` and :attr:`~google.cloud.bigquery.table.Table.num_rows` are missing. For a full list of the properties that the BigQuery API returns, see the `REST documentation for tables.list <https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list>`_. Args: resource (Dict[str, object]): A table-like resource object from a table list response. A ``tableReference`` property is required. Raises: ValueError: If ``tableReference`` or one of its required members is missing from ``resource``. """ def __init__(self, resource): if "tableReference" not in resource: raise ValueError("resource must contain a tableReference value") if "projectId" not in resource["tableReference"]: raise ValueError( "resource['tableReference'] must contain a projectId value" ) if "datasetId" not in resource["tableReference"]: raise ValueError( "resource['tableReference'] must contain a datasetId value" ) if "tableId" not in resource["tableReference"]: raise ValueError("resource['tableReference'] must contain a tableId value") self._properties = resource @property def project(self): """str: Project bound to the table.""" return self._properties["tableReference"]["projectId"] @property def dataset_id(self): """str: ID of dataset containing the table.""" return self._properties["tableReference"]["datasetId"] @property def table_id(self): """str: ID of the table.""" return self._properties["tableReference"]["tableId"] reference = property(_reference_getter) @property def labels(self): """Dict[str, str]: Labels for the table. This method always returns a dict. To change a table's labels, modify the dict, then call ``Client.update_table``. To delete a label, set its value to :data:`None` before updating. """ return self._properties.setdefault("labels", {}) @property def full_table_id(self): """Union[str, None]: ID for the table (:data:`None` until set from the server). In the format ``project_id:dataset_id.table_id``. """ return self._properties.get("id") @property def table_type(self): """Union[str, None]: The type of the table (:data:`None` until set from the server). Possible values are ``'TABLE'``, ``'VIEW'``, or ``'EXTERNAL'``. """ return self._properties.get("type") @property def time_partitioning(self): """google.cloud.bigquery.table.TimePartitioning: Configures time-based partitioning for a table. """ prop = self._properties.get("timePartitioning") if prop is not None: return TimePartitioning.from_api_repr(prop) @property def partitioning_type(self): """Union[str, None]: Time partitioning of the table if it is partitioned (Defaults to :data:`None`). """ warnings.warn( "This method will be deprecated in future versions. Please use " "TableListItem.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.type_ @property def partition_expiration(self): """Union[int, None]: Expiration time in milliseconds for a partition. If this property is set and :attr:`type_` is not set, :attr:`type_` will default to :attr:`TimePartitioningType.DAY`. """ warnings.warn( "This method will be deprecated in future versions. Please use " "TableListItem.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.expiration_ms @property def friendly_name(self): """Union[str, None]: Title of the table (defaults to :data:`None`).""" return self._properties.get("friendlyName") view_use_legacy_sql = property(_view_use_legacy_sql_getter) def _row_from_mapping(mapping, schema): """Convert a mapping to a row tuple using the schema. Args: mapping (Dict[str, object]) Mapping of row data: must contain keys for all required fields in the schema. Keys which do not correspond to a field in the schema are ignored. schema (List[google.cloud.bigquery.schema.SchemaField]): The schema of the table destination for the rows Returns: Tuple[object]: Tuple whose elements are ordered according to the schema. Raises: ValueError: If schema is empty. """ if len(schema) == 0: raise ValueError(_TABLE_HAS_NO_SCHEMA) row = [] for field in schema: if field.mode == "REQUIRED": row.append(mapping[field.name]) elif field.mode == "REPEATED": row.append(mapping.get(field.name, ())) elif field.mode == "NULLABLE": row.append(mapping.get(field.name)) else: raise ValueError("Unknown field mode: {}".format(field.mode)) return tuple(row) class StreamingBuffer(object): """Information about a table's streaming buffer. See https://cloud.google.com/bigquery/streaming-data-into-bigquery. Args: resource (Dict[str, object]): streaming buffer representation returned from the API """ def __init__(self, resource): self.estimated_bytes = int(resource["estimatedBytes"]) self.estimated_rows = int(resource["estimatedRows"]) # time is in milliseconds since the epoch. self.oldest_entry_time = google.cloud._helpers._datetime_from_microseconds( 1000.0 * int(resource["oldestEntryTime"]) ) class Row(object): """A BigQuery row. Values can be accessed by position (index), by key like a dict, or as properties. Args: values (Sequence[object]): The row values field_to_index (Dict[str, int]): A mapping from schema field names to indexes """ # Choose unusual field names to try to avoid conflict with schema fields. __slots__ = ("_xxx_values", "_xxx_field_to_index") def __init__(self, values, field_to_index): self._xxx_values = values self._xxx_field_to_index = field_to_index def values(self): """Return the values included in this row. Returns: Sequence[object]: A sequence of length ``len(row)``. """ return copy.deepcopy(self._xxx_values) def keys(self): """Return the keys for using a row as a dict. Returns: Iterable[str]: The keys corresponding to the columns of a row Examples: >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).keys()) ['x', 'y'] """ return six.iterkeys(self._xxx_field_to_index) def items(self): """Return items as ``(key, value)`` pairs. Returns: Iterable[Tuple[str, object]]: The ``(key, value)`` pairs representing this row. Examples: >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).items()) [('x', 'a'), ('y', 'b')] """ for key, index in six.iteritems(self._xxx_field_to_index): yield (key, copy.deepcopy(self._xxx_values[index])) def get(self, key, default=None): """Return a value for key, with a default value if it does not exist. Args: key (str): The key of the column to access default (object): The default value to use if the key does not exist. (Defaults to :data:`None`.) Returns: object: The value associated with the provided key, or a default value. Examples: When the key exists, the value associated with it is returned. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('x') 'a' The default value is :data:`None` when the key does not exist. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z') None The default value can be overrided with the ``default`` parameter. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', '') '' >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', default = '') '' """ index = self._xxx_field_to_index.get(key) if index is None: return default return self._xxx_values[index] def __getattr__(self, name): value = self._xxx_field_to_index.get(name) if value is None: raise AttributeError("no row field {!r}".format(name)) return self._xxx_values[value] def __len__(self): return len(self._xxx_values) def __getitem__(self, key): if isinstance(key, six.string_types): value = self._xxx_field_to_index.get(key) if value is None: raise KeyError("no row field {!r}".format(key)) key = value return self._xxx_values[key] def __eq__(self, other): if not isinstance(other, Row): return NotImplemented return ( self._xxx_values == other._xxx_values and self._xxx_field_to_index == other._xxx_field_to_index ) def __ne__(self, other): return not self == other def __repr__(self): # sort field dict by value, for determinism items = sorted(self._xxx_field_to_index.items(), key=operator.itemgetter(1)) f2i = "{" + ", ".join("%r: %d" % item for item in items) + "}" return "Row({}, {})".format(self._xxx_values, f2i) class RowIterator(HTTPIterator): """A class for iterating through HTTP/JSON API row list responses. Args: client (google.cloud.bigquery.Client): The API client. api_request (Callable[google.cloud._http.JSONConnection.api_request]): The function to use to make API requests. path (str): The method path to query for the list of items. page_token (str): A token identifying a page in a result set to start fetching results from. max_results (int, optional): The maximum number of results to fetch. page_size (int, optional): The number of items to return per page. extra_params (Dict[str, object]): Extra query string parameters for the API call. """ def __init__( self, client, api_request, path, schema, page_token=None, max_results=None, page_size=None, extra_params=None, ): super(RowIterator, self).__init__( client, api_request, path, item_to_value=_item_to_row, items_key="rows", page_token=page_token, max_results=max_results, extra_params=extra_params, page_start=_rows_page_start, next_token="pageToken", ) self._schema = schema self._field_to_index = _helpers._field_to_index_mapping(schema) self._total_rows = None self._page_size = page_size def _get_next_page_response(self): """Requests the next page from the path provided. Returns: Dict[str, object]: The parsed JSON response of the next page's contents. """ params = self._get_query_params() if self._page_size is not None: params["maxResults"] = self._page_size return self.api_request( method=self._HTTP_METHOD, path=self.path, query_params=params ) @property def schema(self): """List[google.cloud.bigquery.schema.SchemaField]: Table's schema.""" return list(self._schema) @property def total_rows(self): """int: The total number of rows in the table.""" return self._total_rows def to_dataframe(self): """Create a pandas DataFrame from the query results. Returns: pandas.DataFrame: A :class:`~pandas.DataFrame` populated with row data and column headers from the query results. The column headers are derived from the destination table's schema. Raises: ValueError: If the :mod:`pandas` library cannot be imported. """ if pandas is None: raise ValueError(_NO_PANDAS_ERROR) column_headers = [field.name for field in self.schema] # Use generator, rather than pulling the whole rowset into memory. rows = (row.values() for row in iter(self)) return pandas.DataFrame(rows, columns=column_headers) class _EmptyRowIterator(object): """An empty row iterator. This class prevents API requests when there are no rows to fetch or rows are impossible to fetch, such as with query results for DDL CREATE VIEW statements. """ schema = () pages = () total_rows = 0 def to_dataframe(self): if pandas is None: raise ValueError(_NO_PANDAS_ERROR) return pandas.DataFrame() def __iter__(self): return iter(()) class TimePartitioningType(object): """Specifies the type of time partitioning to perform.""" DAY = "DAY" """str: Generates one partition per day.""" class TimePartitioning(object): """Configures time-based partitioning for a table. Args: type_ (google.cloud.bigquery.table.TimePartitioningType, optional): Specifies the type of time partitioning to perform. Defaults to :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`, which is the only currently supported type. field (str, optional): If set, the table is partitioned by this field. If not set, the table is partitioned by pseudo column ``_PARTITIONTIME``. The field must be a top-level ``TIMESTAMP`` or ``DATE`` field. Its mode must be ``NULLABLE`` or ``REQUIRED``. expiration_ms(int, optional): Number of milliseconds for which to keep the storage for a partition. require_partition_filter (bool, optional): If set to true, queries over the partitioned table require a partition filter that can be used for partition elimination to be specified. """ def __init__( self, type_=None, field=None, expiration_ms=None, require_partition_filter=None ): self._properties = {} if type_ is None: self.type_ = TimePartitioningType.DAY else: self.type_ = type_ if field is not None: self.field = field if expiration_ms is not None: self.expiration_ms = expiration_ms if require_partition_filter is not None: self.require_partition_filter = require_partition_filter @property def type_(self): """google.cloud.bigquery.table.TimePartitioningType: The type of time partitioning to use. """ return self._properties["type"] @type_.setter def type_(self, value): self._properties["type"] = value @property def field(self): """str: Field in the table to use for partitioning""" return self._properties.get("field") @field.setter def field(self, value): self._properties["field"] = value @property def expiration_ms(self): """int: Number of milliseconds to keep the storage for a partition.""" return _helpers._int_or_none(self._properties.get("expirationMs")) @expiration_ms.setter def expiration_ms(self, value): if value is not None: # Allow explicitly setting the expiration to None. value = str(value) self._properties["expirationMs"] = value @property def require_partition_filter(self): """bool: Specifies whether partition filters are required for queries """ return self._properties.get("requirePartitionFilter") @require_partition_filter.setter def require_partition_filter(self, value): self._properties["requirePartitionFilter"] = value @classmethod def from_api_repr(cls, api_repr): """Return a :class:`TimePartitioning` object deserialized from a dict. This method creates a new ``TimePartitioning`` instance that points to the ``api_repr`` parameter as its internal properties dict. This means that when a ``TimePartitioning`` instance is stored as a property of another object, any changes made at the higher level will also appear here:: >>> time_partitioning = TimePartitioning() >>> table.time_partitioning = time_partitioning >>> table.time_partitioning.field = 'timecolumn' >>> time_partitioning.field 'timecolumn' Args: api_repr (Mapping[str, str]): The serialized representation of the TimePartitioning, such as what is output by :meth:`to_api_repr`. Returns: google.cloud.bigquery.table.TimePartitioning: The ``TimePartitioning`` object. """ instance = cls(api_repr["type"]) instance._properties = api_repr return instance def to_api_repr(self): """Return a dictionary representing this object. This method returns the properties dict of the ``TimePartitioning`` instance rather than making a copy. This means that when a ``TimePartitioning`` instance is stored as a property of another object, any changes made at the higher level will also appear here. Returns: dict: A dictionary representing the TimePartitioning object in serialized form. """ return self._properties def _key(self): return tuple(sorted(self._properties.items())) def __eq__(self, other): if not isinstance(other, TimePartitioning): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __hash__(self): return hash(self._key()) def __repr__(self): key_vals = ["{}={}".format(key, val) for key, val in self._key()] return "TimePartitioning({})".format(",".join(key_vals)) def _item_to_row(iterator, resource): """Convert a JSON row to the native object. .. note:: This assumes that the ``schema`` attribute has been added to the iterator after being created, which should be done by the caller. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type resource: dict :param resource: An item to be converted to a row. :rtype: :class:`~google.cloud.bigquery.table.Row` :returns: The next row in the page. """ return Row( _helpers._row_tuple_from_json(resource, iterator.schema), iterator._field_to_index, ) # pylint: disable=unused-argument def _rows_page_start(iterator, page, response): """Grab total rows when :class:`~google.cloud.iterator.Page` starts. :type iterator: :class:`~google.api_core.page_iterator.Iterator` :param iterator: The iterator that is currently in use. :type page: :class:`~google.api_core.page_iterator.Page` :param page: The page that was just created. :type response: dict :param response: The JSON API response for a page of rows in a table. """ total_rows = response.get("totalRows") if total_rows is not None: total_rows = int(total_rows) iterator._total_rows = total_rows # pylint: enable=unused-argument
apache-2.0
ajmendez/batlog2
bin/plot_batlog.py
1
3345
#!/usr/bin/env python import json import pylab import numpy as np from datetime import datetime from pysurvey.plot import setup, dateticks, hist, minmax, embiggen from parse_batlog import OUTFILENAME as FILENAME from matplotlib.dates import date2num, num2date def make(): tag = 'Voltage' tag = 'CurrentCapacity' data = json.load(open(FILENAME,'r')) date = date2num([datetime.fromtimestamp(x['date']) for x in data if len(x) > 1]) amp = [x[tag] for x in data if len(x) > 1] damp = np.diff(amp) ddate = date[:-1] + np.diff(date)/2.0 uii = np.where(damp > 2) dii = np.where(damp < -2) print len(data) plot_params = dict( marker = 's', markersize=2, alpha=0.2, linestyle='_', markeredgewidth=0, markeredgecolor='none', ) xr = embiggen(minmax(date), 0.02, 'both') yr = [0,7000] dyr = [-80,80] if np.max(amp) > 7000: yr = [0,10000] dyr = [-100,100] setup(figsize=(16,8)) setup(subplt=(2,3,1), autoticks=True, title='Last Recorded: {}'.format(num2date(date[-1])), xlabel='Date', xr=xr, ylabel=tag, yr=yr) pylab.plot(date, amp, **plot_params) dateticks('%Y-%m-%d') tmp = date % 7.0 setup(subplt=(2,3,2), autoticks=True, title='Current Date: {}'.format(datetime.now()), xlabel='Day of Week', xtickv=np.arange(7), xr=[-0.2,6.2], xticknames='sun mon tue wed thur fri sat'.split(), ylabel=tag, yr=yr) pylab.plot(tmp, amp, **plot_params) tmp = (date % 1.0) * 24.0 setup(subplt=(2,3,3), autoticks=True, xlabel='Hour of Day', xr=[-0.4,24.4], xtickv=np.arange(0,25,4), xtickrotate=dict(rotation=90, ha='center'), xticknames='mid 4am 8am noon 4pm 8pm mid'.split(), ylabel=tag, yr=yr) pylab.plot(tmp, amp, **plot_params) # dateticks('%Y-%m-%d') setup(subplt=(2,3,4), autoticks=True, xlabel='Date', xr=xr, ylabel='Delta', yr=dyr) pylab.plot(ddate, damp, **plot_params) dateticks('%Y-%m-%d', ha='center') tmp = (date % 7.0)[:-1] setup(subplt=(2,3,5), autoticks=True, xlabel='Day of Week', xtickv=np.arange(7), xr=[-0.2,6.2], xticknames='sun mon tue wed thur fri sat'.split(), ylabel=tag, yr=dyr) pylab.plot(tmp, damp, **plot_params) hist(tmp[uii], np.linspace(0,7,90), alpha=0.5, norm=dyr[1], filled=True) hist(tmp[dii], np.linspace(0,7,90), alpha=0.5, norm=dyr[0], filled=True) tmp = ((date % 1.0) * 24.0)[:-1] setup(subplt=(2,3,6), autoticks=True, xlabel='Hour of Day', xr=[-0.4,24.4], xtickv=np.arange(0,25,4), xtickrotate=dict(rotation=90, ha='center'), xticknames='mid 4am 8am noon 4pm 8pm mid'.split(), ylabel=tag, yr=dyr) pylab.plot(tmp, damp, **plot_params) hist(tmp[uii], np.linspace(0,24,50), alpha=0.5, norm=dyr[1], filled=True) hist(tmp[dii], np.linspace(0,24,50), alpha=0.5, norm=dyr[0], filled=True) # dateticks('%Y-%m-%d') # pylab.tight_layout() setup(hspace=0, wspace=0) pylab.show() if __name__ == '__main__': from pysurvey import util util.setup_stop() make()
bsd-2-clause
joshloyal/scikit-learn
sklearn/linear_model/tests/test_ridge.py
13
26703
import numpy as np import scipy.sparse as sp from scipy import linalg from itertools import product from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.datasets import make_regression from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold from sklearn.utils import check_random_state from sklearn.datasets import make_multilabel_classification diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr", "sag"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_regression_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) def test_ridge_sample_weights(): # TODO: loop over sparse data as well rng = np.random.RandomState(0) param_grid = product((1.0, 1e-2), (True, False), ('svd', 'cholesky', 'lsqr', 'sparse_cg')) for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) for (alpha, intercept, solver) in param_grid: # Ridge with explicit sample_weight est = Ridge(alpha=alpha, fit_intercept=intercept, solver=solver) est.fit(X, y, sample_weight=sample_weight) coefs = est.coef_ inter = est.intercept_ # Closed form of the weighted regularized least square # theta = (X^T W X + alpha I)^(-1) * X^T W y W = np.diag(sample_weight) if intercept is False: X_aug = X I = np.eye(n_features) else: dummy_column = np.ones(shape=(n_samples, 1)) X_aug = np.concatenate((dummy_column, X), axis=1) I = np.eye(n_features + 1) I[0, 0] = 0 cf_coefs = linalg.solve(X_aug.T.dot(W).dot(X_aug) + alpha * I, X_aug.T.dot(W).dot(y)) if intercept is False: assert_array_almost_equal(coefs, cf_coefs) else: assert_array_almost_equal(coefs, cf_coefs[1:]) assert_almost_equal(inter, cf_coefs[0]) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) reg = Ridge(alpha=0.0) reg.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(reg.predict(X_test), [1., 2, 3, 4]) assert_equal(len(reg.coef_.shape), 1) assert_equal(type(reg.intercept_), np.float64) Y = np.vstack((Y, Y)).T reg.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(reg.coef_.shape), 2) assert_equal(type(reg.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:-1]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] fit_intercept = filter_ == DENSE_FILTER if fit_intercept: X_diabetes_ = X_diabetes - X_diabetes.mean(0) else: X_diabetes_ = X_diabetes ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept) ridge = Ridge(alpha=1.0, fit_intercept=fit_intercept) # because fit_intercept is applied # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes_, y_diabetes, fit_intercept) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes_[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes_[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes_, y_diabetes, fit_intercept) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('neg_mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for reg in (RidgeClassifier(), RidgeClassifierCV()): reg.fit(filter_(X_iris), y_iris) assert_equal(reg.coef_.shape, (n_classes, n_features)) y_pred = reg.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) cv = KFold(5) reg = RidgeClassifierCV(cv=cv) reg.fit(filter_(X_iris), y_iris) y_pred = reg.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5, fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3, fit_intercept=False) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def check_dense_sparse(test_func): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): yield check_dense_sparse, test_func def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd', fit_intercept=False) assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] reg = RidgeClassifier(class_weight=None) reg.fit(X, y) assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 reg = RidgeClassifier(class_weight={1: 0.001}) reg.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. reg = RidgeClassifier(class_weight='balanced') reg.fit(X, y) assert_array_equal(reg.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] reg = RidgeClassifier(class_weight=None) reg.fit(X, y) rega = RidgeClassifier(class_weight='balanced') rega.fit(X, y) assert_equal(len(rega.classes_), 2) assert_array_almost_equal(reg.coef_, rega.coef_) assert_array_almost_equal(reg.intercept_, rega.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for reg in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights reg1 = reg() reg1.fit(iris.data, iris.target) reg2 = reg(class_weight='balanced') reg2.fit(iris.data, iris.target) assert_almost_equal(reg1.coef_, reg2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} reg1 = reg() reg1.fit(iris.data, iris.target, sample_weight) reg2 = reg(class_weight=class_weight) reg2.fit(iris.data, iris.target) assert_almost_equal(reg1.coef_, reg2.coef_) # Check that sample_weight and class_weight are multiplicative reg1 = reg() reg1.fit(iris.data, iris.target, sample_weight ** 2) reg2 = reg(class_weight=class_weight) reg2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(reg1.coef_, reg2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] reg = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) reg.fit(X, y) # we give a small weights to class 1 reg = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) reg.fit(X, y) assert_array_equal(reg.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) cv = KFold(5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} gs = GridSearchCV(Ridge(), parameters, cv=cv) gs.fit(X, y, sample_weight=sample_weight) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1]) @ignore_warnings def test_n_iter(): # Test that self.n_iter_ is correct. n_targets = 2 X, y = X_diabetes, y_diabetes y_n = np.tile(y, (n_targets, 1)).T for max_iter in range(1, 4): for solver in ('sag', 'lsqr'): reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12) reg.fit(X, y_n) assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets)) for solver in ('sparse_cg', 'svd', 'cholesky'): reg = Ridge(solver=solver, max_iter=1, tol=1e-1) reg.fit(X, y_n) assert_equal(reg.n_iter_, None) def test_ridge_fit_intercept_sparse(): X, y = make_regression(n_samples=1000, n_features=2, n_informative=2, bias=10., random_state=42) X_csr = sp.csr_matrix(X) dense = Ridge(alpha=1., tol=1.e-15, solver='sag', fit_intercept=True) sparse = Ridge(alpha=1., tol=1.e-15, solver='sag', fit_intercept=True) dense.fit(X, y) sparse.fit(X_csr, y) assert_almost_equal(dense.intercept_, sparse.intercept_) assert_array_almost_equal(dense.coef_, sparse.coef_) # test the solver switch and the corresponding warning sparse = Ridge(alpha=1., tol=1.e-15, solver='lsqr', fit_intercept=True) assert_warns(UserWarning, sparse.fit, X_csr, y) assert_almost_equal(dense.intercept_, sparse.intercept_) assert_array_almost_equal(dense.coef_, sparse.coef_) def test_errors_and_values_helper(): ridgecv = _RidgeGCV() rng = check_random_state(42) alpha = 1. n = 5 y = rng.randn(n) v = rng.randn(n) Q = rng.randn(len(v), len(v)) QT_y = Q.T.dot(y) G_diag, c = ridgecv._errors_and_values_helper(alpha, y, v, Q, QT_y) # test that helper function behaves as expected out, c_ = ridgecv._errors(alpha, y, v, Q, QT_y) np.testing.assert_array_equal(out, (c / G_diag) ** 2) np.testing.assert_array_equal(c, c) out, c_ = ridgecv._values(alpha, y, v, Q, QT_y) np.testing.assert_array_equal(out, y - (c / G_diag)) np.testing.assert_array_equal(c_, c) def test_errors_and_values_svd_helper(): ridgecv = _RidgeGCV() rng = check_random_state(42) alpha = 1. for n, p in zip((5, 10), (12, 6)): y = rng.randn(n) v = rng.randn(p) U = rng.randn(n, p) UT_y = U.T.dot(y) G_diag, c = ridgecv._errors_and_values_svd_helper(alpha, y, v, U, UT_y) # test that helper function behaves as expected out, c_ = ridgecv._errors_svd(alpha, y, v, U, UT_y) np.testing.assert_array_equal(out, (c / G_diag) ** 2) np.testing.assert_array_equal(c, c) out, c_ = ridgecv._values_svd(alpha, y, v, U, UT_y) np.testing.assert_array_equal(out, y - (c / G_diag)) np.testing.assert_array_equal(c_, c) def test_ridge_classifier_no_support_multilabel(): X, y = make_multilabel_classification(n_samples=10, random_state=0) assert_raises(ValueError, RidgeClassifier().fit, X, y)
bsd-3-clause
alvarofierroclavero/scikit-learn
sklearn/cluster/tests/test_birch.py
342
5603
""" Tests for the birch clustering algorithm. """ from scipy import sparse import numpy as np from sklearn.cluster.tests.common import generate_clustered_data from sklearn.cluster.birch import Birch from sklearn.cluster.hierarchical import AgglomerativeClustering from sklearn.datasets import make_blobs from sklearn.linear_model import ElasticNet from sklearn.metrics import pairwise_distances_argmin, v_measure_score from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns def test_n_samples_leaves_roots(): # Sanity check for the number of samples in leaves and roots X, y = make_blobs(n_samples=10) brc = Birch() brc.fit(X) n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_]) n_samples_leaves = sum([sc.n_samples_ for leaf in brc._get_leaves() for sc in leaf.subclusters_]) assert_equal(n_samples_leaves, X.shape[0]) assert_equal(n_samples_root, X.shape[0]) def test_partial_fit(): # Test that fit is equivalent to calling partial_fit multiple times X, y = make_blobs(n_samples=100) brc = Birch(n_clusters=3) brc.fit(X) brc_partial = Birch(n_clusters=None) brc_partial.partial_fit(X[:50]) brc_partial.partial_fit(X[50:]) assert_array_equal(brc_partial.subcluster_centers_, brc.subcluster_centers_) # Test that same global labels are obtained after calling partial_fit # with None brc_partial.set_params(n_clusters=3) brc_partial.partial_fit(None) assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_) def test_birch_predict(): # Test the predict method predicts the nearest centroid. rng = np.random.RandomState(0) X = generate_clustered_data(n_clusters=3, n_features=3, n_samples_per_cluster=10) # n_samples * n_samples_per_cluster shuffle_indices = np.arange(30) rng.shuffle(shuffle_indices) X_shuffle = X[shuffle_indices, :] brc = Birch(n_clusters=4, threshold=1.) brc.fit(X_shuffle) centroids = brc.subcluster_centers_ assert_array_equal(brc.labels_, brc.predict(X_shuffle)) nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids) assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0) def test_n_clusters(): # Test that n_clusters param works properly X, y = make_blobs(n_samples=100, centers=10) brc1 = Birch(n_clusters=10) brc1.fit(X) assert_greater(len(brc1.subcluster_centers_), 10) assert_equal(len(np.unique(brc1.labels_)), 10) # Test that n_clusters = Agglomerative Clustering gives # the same results. gc = AgglomerativeClustering(n_clusters=10) brc2 = Birch(n_clusters=gc) brc2.fit(X) assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_) assert_array_equal(brc1.labels_, brc2.labels_) # Test that the wrong global clustering step raises an Error. clf = ElasticNet() brc3 = Birch(n_clusters=clf) assert_raises(ValueError, brc3.fit, X) # Test that a small number of clusters raises a warning. brc4 = Birch(threshold=10000.) assert_warns(UserWarning, brc4.fit, X) def test_sparse_X(): # Test that sparse and dense data give same results X, y = make_blobs(n_samples=100, centers=10) brc = Birch(n_clusters=10) brc.fit(X) csr = sparse.csr_matrix(X) brc_sparse = Birch(n_clusters=10) brc_sparse.fit(csr) assert_array_equal(brc.labels_, brc_sparse.labels_) assert_array_equal(brc.subcluster_centers_, brc_sparse.subcluster_centers_) def check_branching_factor(node, branching_factor): subclusters = node.subclusters_ assert_greater_equal(branching_factor, len(subclusters)) for cluster in subclusters: if cluster.child_: check_branching_factor(cluster.child_, branching_factor) def test_branching_factor(): # Test that nodes have at max branching_factor number of subclusters X, y = make_blobs() branching_factor = 9 # Purposefully set a low threshold to maximize the subclusters. brc = Birch(n_clusters=None, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) brc = Birch(n_clusters=3, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) # Raises error when branching_factor is set to one. brc = Birch(n_clusters=None, branching_factor=1, threshold=0.01) assert_raises(ValueError, brc.fit, X) def check_threshold(birch_instance, threshold): """Use the leaf linked list for traversal""" current_leaf = birch_instance.dummy_leaf_.next_leaf_ while current_leaf: subclusters = current_leaf.subclusters_ for sc in subclusters: assert_greater_equal(threshold, sc.radius) current_leaf = current_leaf.next_leaf_ def test_threshold(): # Test that the leaf subclusters have a threshold lesser than radius X, y = make_blobs(n_samples=80, centers=4) brc = Birch(threshold=0.5, n_clusters=None) brc.fit(X) check_threshold(brc, 0.5) brc = Birch(threshold=5.0, n_clusters=None) brc.fit(X) check_threshold(brc, 5.)
bsd-3-clause
jdherman/SALib
docs/conf.py
2
9326
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import inspect import shutil __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) # Support markdown from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.join(__location__, '../src')) # -- Run sphinx-apidoc ------------------------------------------------------ # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/rtfd/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. # Additionally it helps us to avoid running apidoc manually try: # for Sphinx >= 1.7 from sphinx.ext import apidoc except ImportError: from sphinx import apidoc output_dir = os.path.join(__location__, "api") module_dir = os.path.join(__location__, "../src/SALib") try: shutil.rmtree(output_dir) except FileNotFoundError: pass try: import sphinx from pkg_resources import parse_version cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) args = cmd_line.split(" ") if parse_version(sphinx.__version__) >= parse_version('1.7'): args = args[1:] apidoc.main(args) except Exception as e: print("Running `sphinx-apidoc` failed!\n{}".format(e)) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = ['.rst', '.md'] # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'SALib' copyright = u'2019, Jon Herman, Will Usher and others' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'sidebar_width': '300px', 'page_width': '1200px' } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from SALib import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'salib-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'SALib Documentation', u'Jon Herman, Will Usher and others', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://www.sphinx-doc.org/en/stable', None), 'python': ('https://docs.python.org/' + python_version, None), 'matplotlib': ('https://matplotlib.org', None), 'numpy': ('https://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), }
mit
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/tests/sparse/test_groupby.py
18
1736
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import pandas.util.testing as tm class TestSparseGroupBy(object): def setup_method(self, method): self.dense = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8), 'E': [np.nan, np.nan, 1, 2, np.nan, 1, np.nan, np.nan]}) self.sparse = self.dense.to_sparse() def test_first_last_nth(self): # tests for first / last / nth sparse_grouped = self.sparse.groupby('A') dense_grouped = self.dense.groupby('A') tm.assert_frame_equal(sparse_grouped.first(), dense_grouped.first()) tm.assert_frame_equal(sparse_grouped.last(), dense_grouped.last()) tm.assert_frame_equal(sparse_grouped.nth(1), dense_grouped.nth(1)) def test_aggfuncs(self): sparse_grouped = self.sparse.groupby('A') dense_grouped = self.dense.groupby('A') tm.assert_frame_equal(sparse_grouped.mean(), dense_grouped.mean()) # ToDo: sparse sum includes str column # tm.assert_frame_equal(sparse_grouped.sum(), # dense_grouped.sum()) tm.assert_frame_equal(sparse_grouped.count(), dense_grouped.count())
mit
wjlei1990/pycmt3d
src/pycmt3d/plot_util.py
1
22974
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Plot utils :copyright: Wenjie Lei ([email protected]), 2016 :license: GNU Lesser General Public License, version 3 (LGPLv3) (http://www.gnu.org/licenses/lgpl-3.0.en.html) """ from __future__ import print_function, division, absolute_import import os from collections import defaultdict import math import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.patches import Rectangle from obspy.geodetics import gps2dist_azimuth from obspy.imaging.beachball import beach from . import logger from .util import get_cmt_par, get_trwin_tag from .measure import _envelope # earth half circle EARTH_HC, _, _ = gps2dist_azimuth(0, 0, 0, 180) def _plot_new_seismogram_sub(trwin, outputdir, cmtsource, figure_format): obsd = trwin.datalist['obsd'] synt = trwin.datalist['synt'] new_synt = trwin.datalist['new_synt'] station = obsd.stats.station network = obsd.stats.network channel = obsd.stats.channel location = obsd.stats.location outputfig = os.path.join(outputdir, "%s.%s.%s.%s.%s" % ( network, station, location, channel, figure_format)) if cmtsource is None: offset = 0 else: offset = obsd.stats.starttime - cmtsource.cmt_time times = [offset + obsd.stats.delta*i for i in range(obsd.stats.npts)] fig = plt.figure(figsize=(15, 5)) # plot seismogram plt.subplot(211) plt.plot(times, obsd.data, color="black", linewidth=0.5, alpha=0.6, label="obsd") plt.plot(times, synt.data, color="red", linewidth=0.8, label="synt") plt.plot(times, new_synt.data, color="green", linewidth=0.8, label="new synt") plt.xlim(times[0], times[-1]) xlim1 = plt.xlim()[1] ylim1 = plt.ylim()[1] fontsize = 9 plt.text(0.01*xlim1, 0.80*ylim1, "Network: %2s Station: %s" % (network, station), fontsize=fontsize) plt.text(0.01*xlim1, 0.65*ylim1, "Location: %2s Channel:%3s" % (location, channel), fontsize=fontsize) for win in trwin.windows: left = win[0] + offset right = win[1] + offset re = Rectangle((left, plt.ylim()[0]), right - left, plt.ylim()[1] - plt.ylim()[0], color="blue", alpha=0.25) plt.gca().add_patch(re) # plot envelope plt.subplot(212) plt.plot(times, _envelope(obsd.data), color="black", linewidth=0.5, alpha=0.6, label="obsd") plt.plot(times, _envelope(synt.data), color="red", linewidth=0.8, label="synt") plt.plot(times, _envelope(new_synt.data), color="green", linewidth=0.8, label="new synt") plt.xlim(times[0], times[-1]) for win in trwin.windows: left = win[0] + offset right = win[1] + offset re = Rectangle((left, plt.ylim()[0]), right - left, plt.ylim()[1] - plt.ylim()[0], color="blue", alpha=0.25) plt.gca().add_patch(re) logger.info("output figname: %s" % outputfig) plt.legend(prop={'size': 6}) plt.savefig(outputfig) plt.close(fig) def plot_seismograms(data_container, outputdir, cmtsource=None, figure_format="png"): """ Plot the new synthetic and old synthetic data together with data. So we can see the how the seimogram changes after inversion. """ # make a check if 'new_synt' not in data_container.trwins[0].datalist.keys(): return "New synt not generated...Can't plot" if not os.path.exists(outputdir): os.makedirs(outputdir) logger.info("Plotting observed, synthetics and windows to dir: %s" % outputdir) for trwin in data_container: _plot_new_seismogram_sub(trwin, outputdir, cmtsource, figure_format) class PlotStats(object): """ plot histogram utils""" def __init__(self, data_container, metas, outputfn): self.data_container = data_container self.metas = metas self.outputfn = outputfn self.metas_sort = None self.key_map = None def sort_metas(self): metas_sort = defaultdict(list) key_map = defaultdict(set) """ sort metas into different categories for future plotting """ for trwin, meta in zip(self.data_container, self.metas): comp = trwin.channel cat_name = get_trwin_tag(trwin) key_map[comp].add(cat_name) metas_sort[cat_name].append(meta) self.metas_sort = metas_sort self.key_map = key_map @staticmethod def plot_stats_histogram_one_entry(pos, cat, vtype, data_b, data_a, num_bin): plt.subplot(pos) plt.xlabel(vtype, fontsize=15) plt.ylabel(cat, fontsize=15) if vtype == "cc": ax_min = min(min(data_b), min(data_a)) ax_max = max(max(data_b), max(data_a)) elif vtype == "chi": ax_min = 0.0 ax_max = max(max(data_b), max(data_a)) else: ax_min = min(min(data_b), min(data_a)) ax_max = max(max(data_b), max(data_a)) abs_max = max(abs(ax_min), abs(ax_max)) ax_min = -abs_max ax_max = abs_max binwidth = (ax_max - ax_min) / num_bin plt.hist( data_b, bins=np.arange(ax_min, ax_max+binwidth/2., binwidth), facecolor='blue', alpha=0.3) plt.hist( data_a, bins=np.arange(ax_min, ax_max+binwidth/2., binwidth), facecolor='green', alpha=0.5) def extract_metadata(self, cat_name, meta_varname): data_old = [] data_new = [] cat_data = self.metas_sort[cat_name] for meta in cat_data: data_old.extend(meta.prov["synt"][meta_varname]) data_new.extend(meta.prov["new_synt"][meta_varname]) return data_old, data_new def plot_stats_histogram_one_category( self, G, irow, cat_name, vtype_list, num_bins, vtype_dict): for var_idx, varname in enumerate(vtype_list): meta_varname = vtype_dict[varname] data_before, data_after = \ self.extract_metadata(cat_name, meta_varname) self.plot_stats_histogram_one_entry( G[irow, var_idx], cat_name, varname, data_before, data_after, num_bins[var_idx]) def plot_stats_histogram(self): """ Plot histogram of tshift, cc, power, cc_amplitude_ratio, waveform misfit values before and after inversion inside windows. :return: """ vtype_list = ['time shift', 'cc', 'power_l1_ratio(dB)', 'power_l2_ratio(dB)', 'CC amplitude ratio(dB)', 'chi'] num_bins = [15, 15, 15, 15, 15, 15] vtype_dict = {'time shift': "tshift", 'cc': "cc", "power_l1_ratio(dB)": "power_l1", "power_l2_ratio(dB)": "power_l2", "CC amplitude ratio(dB)": "cc_amp", "chi": "chi"} self.sort_metas() nrows = len(self.metas_sort.keys()) ncols = len(vtype_list) plt.figure(figsize=(4*ncols, 4*nrows)) G = gridspec.GridSpec(nrows, ncols) cat_names = sorted(self.metas_sort.keys()) for irow, cat in enumerate(cat_names): self.plot_stats_histogram_one_category( G, irow, cat, vtype_list, num_bins, vtype_dict) plt.tight_layout() plt.savefig(self.outputfn) class PlotInvSummary(object): def __init__(self, data_container=None, cmtsource=None, config=None, nregions=12, new_cmtsource=None, bootstrap_mean=None, bootstrap_std=None, var_reduction=0.0, mode="regional"): self.data_container = data_container self.cmtsource = cmtsource self.trwins = data_container.trwins self.config = config self.nregions = nregions self.new_cmtsource = new_cmtsource self.bootstrap_mean = bootstrap_mean self.bootstrap_std = bootstrap_std self.var_reduction = var_reduction if mode.lower() not in ["global", "regional"]: raise ValueError("Plot mode: 1) global; 2) regional") self.mode = mode.lower() self.sta_lat = None self.sta_lon = None self.sta_dist = [] # azimuth in degree unit self.sta_azi = [] # azimuth in radius unit self.sta_theta = [] self.prepare_array() def prepare_array(self): # station self.sta_lat = [window.latitude for window in self.trwins] self.sta_lon = [window.longitude for window in self.trwins] for sta_lat, sta_lon in zip(self.sta_lat, self.sta_lon): dist, az, baz = gps2dist_azimuth(self.cmtsource.latitude, self.cmtsource.longitude, sta_lat, sta_lon) self.sta_azi.append(az) self.sta_theta.append(az / 180.0 * np.pi) if self.mode == "regional": # if regional, then use original distance(in km) self.sta_dist.append(dist / 1000.0) elif self.mode == "global": # if global, then use degree as unit self.sta_dist.append(dist/EARTH_HC) def get_azimuth_bin_number(self, azimuth): """ Calculate the bin number of a given azimuth :param azimuth: test test test :return: """ # the azimth ranges from [0,360] # so a little modification here daz = 360.0 / self.nregions k = int(math.floor(azimuth / daz)) if k < 0 or k > self.nregions: if azimuth - 360.0 < 0.0001: k = self.nregions - 1 else: raise ValueError('Error bining azimuth') return k def calculate_azimuth_bin(self, azimuth_array): """ Calculate the azimuth and sort them into bins :return: """ delta = 2*np.pi/self.nregions bins = [delta*i for i in range(self.nregions)] naz_wins = np.zeros(self.nregions) for azimuth in azimuth_array: bin_idx = self.get_azimuth_bin_number(azimuth[0]) naz_wins[bin_idx] += azimuth[1] return bins, naz_wins @staticmethod def plot_si_bb(ax, cmt): # get moment tensor mt = [cmt.m_rr, cmt.m_tt, cmt.m_pp, cmt.m_rt, cmt.m_rp, cmt.m_tp] # plot beach ball b = beach(mt, linewidth=1, xy=(0, 0.6), width=1, size=2, facecolor='r') ax.add_collection(b) # set axis ax.set_xlim([-1, 1]) ax.set_ylim([-1, 1.5]) ax.set_aspect('equal') # magnitude text = "Mw=%4.3f" % cmt.moment_magnitude plt.text(-0.9, -0.3, text, fontsize=7) # lat and lon text = r"lat=%6.3f$^\circ$; lon=%6.3f$^\circ$" \ % (cmt.latitude, cmt.longitude) plt.text(-0.9, -0.5, text, fontsize=7) # depth text = "dep=%6.3f km;" % (cmt.depth_in_m/1000.0) plt.text(-0.9, -0.7, text, fontsize=7) ax.set_xticks([]) ax.set_yticks([]) # title text = "Init CMT" plt.text(-0.9, 1.3, text, fontsize=7) @staticmethod def plot_si_bb_comp(ax, cmt, cmt_init, tag): # get moment tensor mt = [cmt.m_rr, cmt.m_tt, cmt.m_pp, cmt.m_rt, cmt.m_rp, cmt.m_tp] # plot beach ball b = beach(mt, linewidth=1, xy=(0, 0.6), width=1, size=2, facecolor='r') ax.add_collection(b) # set axis ax.set_xlim([-1, 1]) ax.set_ylim([-1, 1.5]) ax.set_aspect('equal') # magnitude text = r"$\Delta$Mw=%4.3f" % ( cmt.moment_magnitude-cmt_init.moment_magnitude) plt.text(-0.9, -0.3, text, fontsize=7) # lat and lon text = r"$\Delta$lat=%6.3f$^\circ$; $\Delta$lon=%6.3f$^\circ$" \ % (cmt.latitude-cmt_init.latitude, cmt.longitude-cmt_init.longitude) plt.text(-0.9, -0.5, text, fontsize=7) # depth text = r"$\Delta$dep=%6.3f km;" % ( (cmt.depth_in_m-cmt_init.depth_in_m)/1000.0) plt.text(-0.9, -0.7, text, fontsize=7) ax.set_xticks([]) ax.set_yticks([]) text = tag plt.text(-0.9, 1.3, text, fontsize=7) def plot_table(self): par_mean = self.bootstrap_mean par_std = self.bootstrap_std std_over_mean = np.zeros(par_mean.shape) for _i in range(par_mean.shape[0]): if par_mean[_i] != 0: std_over_mean[_i] = par_std[_i]/np.abs(par_mean[_i]) else: std_over_mean[_i] = 0.0 fontsize = 9 incre = 0.06 pos = 1.00 format1 = "%15.4e %15.4e %15.4e %15.4e %10.2f%%" format2 = "%16.3f %16.3f %20.3f %20.3f %15.2f%%" format3 = "%15.3f %15.3f %18.3f %18.3f %18.2f%%" text = "Number of stations: %d Number of widnows: %d" \ % (len(self.sta_lat), self.data_container.nwindows) + \ "Envelope coef: %5.2f" plt.text(0, pos, text, fontsize=fontsize) pos -= incre text = "Number of Parameter:%3d Zero-Trace:%6s" \ " Double-couple:%6s " \ % (self.config.npar, self.config.zero_trace, self.config.double_couple) plt.text(0, pos, text, fontsize=fontsize) pos -= incre text = "Station Correction:%6s Norm_by_energy:%6s" \ " Norm_by_category:%6s" \ % (self.config.station_correction, self.config.weight_config.normalize_by_energy, self.config.weight_config.normalize_by_category) plt.text(0, pos, text, fontsize=fontsize) pos -= incre energy_change = \ (self.new_cmtsource.M0 - self.cmtsource.M0) / self.cmtsource.M0 text = "Inversion Damping:%6.3f Energy Change: %6.2f%%" \ " Variance Reduction: %6.2f%%" \ % (self.config.damping, energy_change*100, self.var_reduction*100) plt.text(0, pos, text, fontsize=fontsize) pos -= incre text = "*"*20 + " Summary Table " + "="*20 plt.text(0, pos, text, fontsize=fontsize) pos -= incre text = " PAR Old_CMT New_CMT Bootstrap_Mean" \ " Bootstrap_STD STD/Mean" plt.text(0, pos, text, fontsize=fontsize) pos -= incre text = "Mrr:" + format1 % ( self.cmtsource.m_rr, self.new_cmtsource.m_rr, par_mean[0], par_std[0], std_over_mean[0] * 100) plt.text(0, pos, text, fontsize=fontsize) text = "Mtt:" + format1 % ( self.cmtsource.m_tt, self.new_cmtsource.m_tt, par_mean[1], par_std[1], std_over_mean[1] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "Mpp:" + format1 % ( self.cmtsource.m_pp, self.new_cmtsource.m_pp, par_mean[2], par_std[2], std_over_mean[2] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "Mrt:" + format1 % ( self.cmtsource.m_rt, self.new_cmtsource.m_rt, par_mean[3], par_std[3], std_over_mean[3] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "Mrp:" + format1 % ( self.cmtsource.m_rp, self.new_cmtsource.m_rp, par_mean[4], par_std[4], std_over_mean[4] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "Mtp:" + format1 % ( self.cmtsource.m_tp, self.new_cmtsource.m_tp, par_mean[5], par_std[5], std_over_mean[5] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "DEP: " + format3 % ( self.cmtsource.depth_in_m, self.new_cmtsource.depth_in_m, par_mean[6], par_std[6], std_over_mean[6] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "LON:" + format2 % ( self.cmtsource.longitude, self.new_cmtsource.longitude, par_mean[7], par_std[7], std_over_mean[7] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "LAT: " + format2 % ( self.cmtsource.latitude, self.new_cmtsource.latitude, par_mean[8], par_std[8], std_over_mean[8] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "CMT: " + format2 % ( self.cmtsource.time_shift, self.new_cmtsource.time_shift, par_mean[9], par_std[9], std_over_mean[9] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) text = "HDR: " + format2 % ( self.cmtsource.half_duration, self.new_cmtsource.half_duration, par_mean[10], par_std[10], std_over_mean[10] * 100) pos -= incre plt.text(0, pos, text, fontsize=fontsize) plt.axis('off') def plot_global_map(self): """ Plot global map of event and stations """ from mpl_toolkits.basemap import Basemap # ax = plt.subplot(211) plt.title(self.cmtsource.eventname) m = Basemap(projection='cyl', lon_0=0.0, lat_0=0.0, resolution='c') m.drawcoastlines() m.fillcontinents() m.drawparallels(np.arange(-90., 120., 30.)) m.drawmeridians(np.arange(0., 420., 60.)) m.drawmapboundary() x, y = m(self.sta_lon, self.sta_lat) m.scatter(x, y, 30, color="r", marker="^", edgecolor="k", linewidth='0.3', zorder=3) cmt_lat = self.cmtsource.latitude cmt_lon = self.cmtsource.longitude focmecs = get_cmt_par(self.cmtsource)[:6] ax = plt.gca() if self.mode == 'regional': minlon = min(self.sta_lon) maxlon = max(self.sta_lon) minlat = min(self.sta_lat) maxlat = max(self.sta_lat) padding = 5. m.drawparallels(np.arange(-90., 120., padding)) m.drawmeridians(np.arange(0., 420., padding)) ax.set_xlim(minlon-padding, maxlon+padding) ax.set_ylim(minlat-padding, maxlat+padding) width_beach = min((maxlon+2*padding-minlon)/(4*padding), (maxlat+2*padding-minlat)/(4*padding)) else: width_beach = 20 bb = beach(focmecs, xy=(cmt_lon, cmt_lat), width=width_beach, linewidth=1, alpha=1.0) bb.set_zorder(10) ax.add_collection(bb) def plot_sta_dist_azi(self): plt.title("Station Dist and Azi", fontsize=10) ax = plt.gca() c = plt.scatter(self.sta_theta, self.sta_dist, marker=u'^', c='r', s=20, edgecolor='k', linewidth='0.3') c.set_alpha(0.75) plt.xticks(fontsize=8) plt.yticks(fontsize=6) if self.mode == "regional": ax.set_rmax(1.10 * max(self.sta_dist)) elif self.mode == "global": ax.set_rmax(1.0) ax.set_theta_zero_location('N') ax.set_theta_direction(-1) def plot_sta_azi(self): # set plt.subplot(***, polar=True) plt.title("Station Azimuth", fontsize=10) azimuth_array = [] for azi in self.sta_azi: azimuth_array.append([azi, 1]) bins, naz = self.calculate_azimuth_bin(azimuth_array) norm_factor = np.max(naz) bars = plt.bar(bins, naz, width=(bins[1]-bins[0]), bottom=0.0) for r, bar in zip(naz, bars): bar.set_facecolor(plt.cm.jet(r/norm_factor)) bar.set_alpha(0.5) bar.set_linewidth(0.3) # ax.set_xticklabels([]) # ax.set_yticklabels([]) plt.xticks(fontsize=8) plt.yticks(fontsize=6) ax = plt.gca() ax.set_theta_zero_location('N') ax.set_theta_direction(-1) def plot_win_azi(self): # set plt.subplot(***, polar=True) plt.title("Window Azimuth", fontsize=10) win_azi = [] for azi, window in zip(self.sta_azi, self.trwins): win_azi.append([azi, window.nwindows]) bins, naz = self.calculate_azimuth_bin(win_azi) norm_factor = np.max(naz) bars = plt.bar(bins, naz, width=(bins[1]-bins[0]), bottom=0.0) for r, bar in zip(naz, bars): bar.set_facecolor(plt.cm.jet(r/norm_factor)) bar.set_alpha(0.5) bar.set_linewidth(0.3) # ax.set_xticklabels([]) # ax.set_yticklabels([]) plt.xticks(fontsize=8) plt.yticks(fontsize=6) ax = plt.gca() ax.set_theta_zero_location('N') ax.set_theta_direction(-1) def plot_dataset(self, figurename=None): """ Plot only the dataset, including global map, station and window distribution, and beach ball """ plt.figure(figsize=(10, 7), facecolor='w', edgecolor='k') g = gridspec.GridSpec(2, 3) plt.subplot(g[0, :-1]) self.plot_global_map() plt.subplot(g[1, 0], polar=True) self.plot_sta_dist_azi() plt.subplot(g[1, 1], polar=True) self.plot_sta_azi() plt.subplot(g[1, 2], polar=True) self.plot_win_azi() ax = plt.subplot(g[0, 2]) self.plot_si_bb(ax, self.cmtsource) if figurename is None: plt.show() else: plt.savefig(figurename) def plot_inversion_summary(self, figurename=None): """ Plot the dataset and the inversion result. """ if self.new_cmtsource is None: raise ValueError("No new cmtsource...Can't plot summary") plt.figure(figsize=(10, 11), facecolor='w', edgecolor='k') g = gridspec.GridSpec(3, 3) plt.subplot(g[0, :-1]) self.plot_global_map() plt.subplot(g[1, 0], polar=True) self.plot_sta_dist_azi() plt.subplot(g[1, 1], polar=True) self.plot_sta_azi() plt.subplot(g[1, 2], polar=True) self.plot_win_azi() ax = plt.subplot(g[0, 2]) self.plot_si_bb(ax, self.cmtsource) ax = plt.subplot(g[2, 2]) self.plot_si_bb_comp(ax, self.new_cmtsource, self.cmtsource, "Inversion") plt.subplot(g[2, :-1]) self.plot_table() if figurename is None: plt.show() else: plt.savefig(figurename)
lgpl-3.0
garvitr/sympy
sympy/plotting/tests/test_plot.py
43
8577
from sympy import (pi, sin, cos, Symbol, Integral, summation, sqrt, log, oo, LambertW, I, meijerg, exp_polar, Max, Piecewise) from sympy.plotting import (plot, plot_parametric, plot3d_parametric_line, plot3d, plot3d_parametric_surface) from sympy.plotting.plot import unset_show from sympy.utilities.pytest import skip, raises from sympy.plotting.experimental_lambdify import lambdify from sympy.external import import_module from sympy.core.decorators import wraps from tempfile import NamedTemporaryFile import os import sys class MockPrint(object): def write(self, s): pass def disable_print(func, *args, **kwargs): @wraps(func) def wrapper(*args, **kwargs): sys.stdout = MockPrint() func(*args, **kwargs) sys.stdout = sys.__stdout__ return wrapper unset_show() # XXX: We could implement this as a context manager instead # That would need rewriting the plot_and_save() function # entirely class TmpFileManager: tmp_files = [] @classmethod def tmp_file(cls, name=''): cls.tmp_files.append(NamedTemporaryFile(prefix=name, suffix='.png').name) return cls.tmp_files[-1] @classmethod def cleanup(cls): map(os.remove, cls.tmp_files) def plot_and_save(name): tmp_file = TmpFileManager.tmp_file x = Symbol('x') y = Symbol('y') z = Symbol('z') ### # Examples from the 'introduction' notebook ### p = plot(x) p = plot(x*sin(x), x*cos(x)) p.extend(p) p[0].line_color = lambda a: a p[1].line_color = 'b' p.title = 'Big title' p.xlabel = 'the x axis' p[1].label = 'straight line' p.legend = True p.aspect_ratio = (1, 1) p.xlim = (-15, 20) p.save(tmp_file('%s_basic_options_and_colors' % name)) p.extend(plot(x + 1)) p.append(plot(x + 3, x**2)[1]) p.save(tmp_file('%s_plot_extend_append' % name)) p[2] = plot(x**2, (x, -2, 3)) p.save(tmp_file('%s_plot_setitem' % name)) p = plot(sin(x), (x, -2*pi, 4*pi)) p.save(tmp_file('%s_line_explicit' % name)) p = plot(sin(x)) p.save(tmp_file('%s_line_default_range' % name)) p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3))) p.save(tmp_file('%s_line_multiple_range' % name)) raises(ValueError, lambda: plot(x, y)) p = plot(Piecewise((1, x > 0), (0, True)),(x,-1,1)) p.save(tmp_file('%s_plot_piecewise' % name)) #parametric 2d plots. #Single plot with default range. plot_parametric(sin(x), cos(x)).save(tmp_file()) #Single plot with range. p = plot_parametric(sin(x), cos(x), (x, -5, 5)) p.save(tmp_file('%s_parametric_range' % name)) #Multiple plots with same range. p = plot_parametric((sin(x), cos(x)), (x, sin(x))) p.save(tmp_file('%s_parametric_multiple' % name)) #Multiple plots with different ranges. p = plot_parametric((sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5))) p.save(tmp_file('%s_parametric_multiple_ranges' % name)) #depth of recursion specified. p = plot_parametric(x, sin(x), depth=13) p.save(tmp_file('%s_recursion_depth' % name)) #No adaptive sampling. p = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500) p.save(tmp_file('%s_adaptive' % name)) #3d parametric plots p = plot3d_parametric_line(sin(x), cos(x), x) p.save(tmp_file('%s_3d_line' % name)) p = plot3d_parametric_line( (sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3))) p.save(tmp_file('%s_3d_line_multiple' % name)) p = plot3d_parametric_line(sin(x), cos(x), x, nb_of_points=30) p.save(tmp_file('%s_3d_line_points' % name)) # 3d surface single plot. p = plot3d(x * y) p.save(tmp_file('%s_surface' % name)) # Multiple 3D plots with same range. p = plot3d(-x * y, x * y, (x, -5, 5)) p.save(tmp_file('%s_surface_multiple' % name)) # Multiple 3D plots with different ranges. p = plot3d( (x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3))) p.save(tmp_file('%s_surface_multiple_ranges' % name)) # Single Parametric 3D plot p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y) p.save(tmp_file('%s_parametric_surface' % name)) # Multiple Parametric 3D plots. p = plot3d_parametric_surface( (x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)), (sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5))) p.save(tmp_file('%s_parametric_surface' % name)) ### # Examples from the 'colors' notebook ### p = plot(sin(x)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_line_arity2' % name)) p = plot(x*sin(x), x*cos(x), (x, 0, 10)) p[0].line_color = lambda a: a p.save(tmp_file('%s_colors_param_line_arity1' % name)) p[0].line_color = lambda a, b: a p.save(tmp_file('%s_colors_param_line_arity2a' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_param_line_arity2b' % name)) p = plot3d_parametric_line(sin(x) + 0.1*sin(x)*cos(7*x), cos(x) + 0.1*cos(x)*cos(7*x), 0.1*sin(7*x), (x, 0, 2*pi)) p[0].line_color = lambda a: sin(4*a) p.save(tmp_file('%s_colors_3d_line_arity1' % name)) p[0].line_color = lambda a, b: b p.save(tmp_file('%s_colors_3d_line_arity2' % name)) p[0].line_color = lambda a, b, c: c p.save(tmp_file('%s_colors_3d_line_arity3' % name)) p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_surface_arity1' % name)) p[0].surface_color = lambda a, b: b p.save(tmp_file('%s_colors_surface_arity2' % name)) p[0].surface_color = lambda a, b, c: c p.save(tmp_file('%s_colors_surface_arity3a' % name)) p[0].surface_color = lambda a, b, c: sqrt((a - 3*pi)**2 + b**2) p.save(tmp_file('%s_colors_surface_arity3b' % name)) p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y, (x, -1, 1), (y, -1, 1)) p[0].surface_color = lambda a: a p.save(tmp_file('%s_colors_param_surf_arity1' % name)) p[0].surface_color = lambda a, b: a*b p.save(tmp_file('%s_colors_param_surf_arity2' % name)) p[0].surface_color = lambda a, b, c: sqrt(a**2 + b**2 + c**2) p.save(tmp_file('%s_colors_param_surf_arity3' % name)) ### # Examples from the 'advanced' notebook ### i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y)) p = plot(i, (y, 1, 5)) p.save(tmp_file('%s_advanced_integral' % name)) s = summation(1/x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) p.save(tmp_file('%s_advanced_inf_sum' % name)) p = plot(summation(1/x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True p.save(tmp_file('%s_advanced_fin_sum' % name)) ### # Test expressions that can not be translated to np and generate complex # results. ### plot(sin(x) + I*cos(x)).save(tmp_file()) plot(sqrt(sqrt(-x))).save(tmp_file()) plot(LambertW(x)).save(tmp_file()) plot(sqrt(LambertW(x))).save(tmp_file()) #Characteristic function of a StudentT distribution with nu=10 plot((meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), 5 * x**2 * exp_polar(-I*pi)/2) + meijerg(((1/2,), ()), ((5, 0, 1/2), ()), 5*x**2 * exp_polar(I*pi)/2)) / (48 * pi), (x, 1e-6, 1e-2)).save(tmp_file()) def test_matplotlib(): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: try: plot_and_save('test') finally: # clean up TmpFileManager.cleanup() else: skip("Matplotlib not the default backend") # Tests for exception handling in experimental_lambdify def test_experimental_lambify(): x = Symbol('x') f = lambdify([x], Max(x, 5)) # XXX should f be tested? If f(2) is attempted, an # error is raised because a complex produced during wrapping of the arg # is being compared with an int. assert Max(2, 5) == 5 assert Max(5, 7) == 7 x = Symbol('x-3') f = lambdify([x], x + 1) assert f(1) == 2 @disable_print def test_append_issue_7140(): x = Symbol('x') p1 = plot(x) p2 = plot(x**2) p3 = plot(x + 2) # append a series p2.append(p1[0]) assert len(p2._series) == 2 with raises(TypeError): p1.append(p2) with raises(TypeError): p1.append(p2._series)
bsd-3-clause
carrillo/scikit-learn
sklearn/gaussian_process/tests/test_gaussian_process.py
267
6813
""" Testing for Gaussian Process module (sklearn.gaussian_process) """ # Author: Vincent Dubourg <[email protected]> # Licence: BSD 3 clause from nose.tools import raises from nose.tools import assert_true import numpy as np from sklearn.gaussian_process import GaussianProcess from sklearn.gaussian_process import regression_models as regression from sklearn.gaussian_process import correlation_models as correlation from sklearn.datasets import make_regression from sklearn.utils.testing import assert_greater f = lambda x: x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() def test_1d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a one-dimensional Gaussian Process model. # Check random start optimization. # Test the interpolating property. gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=random_start, verbose=False).fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) y2_pred, MSE2 = gp.predict(X2, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.) and np.allclose(MSE2, 0., atol=10)) def test_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the interpolating property. b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = g(X).ravel() thetaL = [1e-4] * 2 thetaU = [1e-1] * 2 gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=thetaL, thetaU=thetaU, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) eps = np.finfo(gp.theta_.dtype).eps assert_true(np.all(gp.theta_ >= thetaL - eps)) # Lower bounds of hyperparameters assert_true(np.all(gp.theta_ <= thetaU + eps)) # Upper bounds of hyperparameters def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential, random_start=10, beta0=None): # MLE estimation of a two-dimensional Gaussian Process model accounting for # anisotropy. Check random start optimization. # Test the GP interpolation for 2D output b, kappa, e = 5., .5, .1 g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2. f = lambda x: np.vstack((g(x), g(x))).T X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) y = f(X) gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0, theta0=[1e-2] * 2, thetaL=[1e-4] * 2, thetaU=[1e-1] * 2, random_start=random_start, verbose=False) gp.fit(X, y) y_pred, MSE = gp.predict(X, eval_MSE=True) assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)) @raises(ValueError) def test_wrong_number_of_outputs(): gp = GaussianProcess() gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3]) def test_more_builtin_correlation_models(random_start=1): # Repeat test_1d and test_2d for several built-in correlation # models specified as strings. all_corr = ['absolute_exponential', 'squared_exponential', 'cubic', 'linear'] for corr in all_corr: test_1d(regr='constant', corr=corr, random_start=random_start) test_2d(regr='constant', corr=corr, random_start=random_start) test_2d_2d(regr='constant', corr=corr, random_start=random_start) def test_ordinary_kriging(): # Repeat test_1d and test_2d with given regression weights (beta0) for # different regression models (Ordinary Kriging). test_1d(regr='linear', beta0=[0., 0.5]) test_1d(regr='quadratic', beta0=[0., 0.5, 0.5]) test_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) test_2d_2d(regr='linear', beta0=[0., 0.5, 0.5]) test_2d_2d(regr='quadratic', beta0=[0., 0.5, 0.5, 0.5, 0.5, 0.5]) def test_no_normalize(): gp = GaussianProcess(normalize=False).fit(X, y) y_pred = gp.predict(X) assert_true(np.allclose(y_pred, y)) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the reduced likelihood function of the optimal theta. n_samples, n_features = 50, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) best_likelihood = -np.inf for random_start in range(1, 5): gp = GaussianProcess(regr="constant", corr="squared_exponential", theta0=[1e-0] * n_features, thetaL=[1e-4] * n_features, thetaU=[1e+1] * n_features, random_start=random_start, random_state=0, verbose=False).fit(X, y) rlf = gp.reduced_likelihood_function()[0] assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps) best_likelihood = rlf def test_mse_solving(): # test the MSE estimate to be sane. # non-regression test for ignoring off-diagonals of feature covariance, # testing with nugget that renders covariance useless, only # using the mean function, with low effective rank of data gp = GaussianProcess(corr='absolute_exponential', theta0=1e-4, thetaL=1e-12, thetaU=1e-2, nugget=1e-2, optimizer='Welch', regr="linear", random_state=0) X, y = make_regression(n_informative=3, n_features=60, noise=50, random_state=0, effective_rank=1) gp.fit(X, y) assert_greater(1000, gp.predict(X, eval_MSE=True)[1].mean())
bsd-3-clause
xya/sms-tools
lectures/06-Harmonic-model/plots-code/harmonic-inharmonic-sines.py
24
2256
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import sineModel as SM import stft as STFT import utilFunctions as UF plt.figure(1, figsize=(9, 7)) plt.subplot(211) (fs, x) = UF.wavread(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../sounds/vibraphone-C6.wav')) w = np.blackman(401) N = 512 H = 100 t = -100 minSineDur = .02 maxnSines = 150 freqDevOffset = 20 freqDevSlope = 0.01 mX, pX = STFT.stftAnal(x, fs, w, N, H) tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) maxplotfreq = 10000.0 maxplotbin = int(N*maxplotfreq/fs) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(maxplotbin+1)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:maxplotbin+1])) plt.autoscale(tight=True) tracks = tfreq*np.less(tfreq, maxplotfreq) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('mX + sine frequencies (vibraphone-C6.wav)') plt.subplot(212) (fs, x) = UF.wavread(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../sounds/vignesh.wav')) w = np.blackman(1101) N = 2048 H = 250 t = -90 minSineDur = .1 maxnSines = 200 freqDevOffset = 20 freqDevSlope = 0.02 mX, pX = STFT.stftAnal(x, fs, w, N, H) tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) maxplotfreq = 5000.0 maxplotbin = int(N*maxplotfreq/fs) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(maxplotbin+1)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:maxplotbin+1])) plt.autoscale(tight=True) tracks = tfreq*np.less(tfreq, maxplotfreq) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks, color='k', lw=1.5) plt.autoscale(tight=True) plt.title('mX + sine frequencies (vignesh.wav)') plt.tight_layout() plt.savefig('harmonic-inharmonic-sines.png') plt.show()
agpl-3.0
akhilaananthram/nupic.research
vehicle-control/agent/run_q.py
2
5501
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import operator import time import numpy from unity_client.server import Server from sensorimotor.encoders.one_d_depth import OneDDepthEncoder from sensorimotor.q_learner import QLearner ACTIIONS = ["-1", "0", "1"] class Agent(object): def __init__(self, position): self.encoder = OneDDepthEncoder(positions=positions, radius=5, wrapAround=True, nPerPosition=28, wPerPosition=3, minVal=0, maxVal=1) self.plotter = Plotter(self.encoder) self.learner = QLearner(ACTIIONS, n=1008) self.lastState = None self.lastAction = None def sync(self, outputData): if not ("ForwardsSweepSensor" in outputData and "steer" in outputData): print "Warning: Missing data:", outputData return if outputData.get("reset"): print "Reset." sensor = outputData["ForwardsSweepSensor"] steer = outputData["steer"] reward = outputData.get("reward") or 0 encoding = self.encoder.encode(numpy.array(sensor)) if self.lastState is not None: self.learner.update(self.lastState, str(self.lastAction), encoding, str(steer), reward) value = self.learner.value(encoding) qValues = {} for action in ACTIIONS: qValues[action] = self.learner.qValue(encoding, action) inputData = {} inputData["qValues"] = qValues inputData["bestAction"] = self.learner.bestAction(encoding) self.plotter.update(sensor, encoding, steer, reward, value, qValues) if outputData.get("reset"): self.plotter.render() self.lastState = encoding self.lastAction = steer return inputData class Plotter(object): def __init__(self, encoder): self.encoder = encoder self.sensor = [] self.encoding = [] self.steer = [] self.reward = [] self.value = [] self.qValues = defaultdict(lambda: []) self.bestAction = [] import matplotlib.pyplot as plt self.plt = plt import matplotlib.cm as cm self.cm = cm from pylab import rcParams rcParams.update({'figure.figsize': (6, 9)}) # rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) def update(self, sensor, encoding, steer, reward, value, qValues): self.sensor.append(sensor) self.encoding.append(encoding) self.steer.append(steer) self.reward.append(reward) self.value.append(value) for key, value in qValues.iteritems(): self.qValues[key].append(value) bestAction = int(max(qValues.iteritems(), key=operator.itemgetter(1))[0]) self.bestAction.append(bestAction) def render(self): self.plt.figure(1) self.plt.clf() n = 7 self.plt.subplot(n,1,1) self._plot(self.steer, "Steer over time") self.plt.subplot(n,1,2) self._plot(self.reward, "Reward over time") self.plt.subplot(n,1,3) self._plot(self.value, "Value over time") self.plt.subplot(n,1,4) shape = len(self.encoder.positions), self.encoder.scalarEncoder.getWidth() encoding = numpy.array(self.encoding[-1]).reshape(shape).transpose() self._imshow(encoding, "Encoding at time t") self.plt.subplot(n,1,5) data = self.encoding w = self.encoder.w overlaps = [sum(a & b) / float(w) for a, b in zip(data[:-1], data[1:])] self._plot(overlaps, "Encoding overlaps between consecutive times") # for i, action in enumerate(ACTIIONS): # self.plt.subplot(n,1,4+i) # self._plot(self.qValues[action], "Q value: {0}".format(action)) # self.plt.subplot(n,1,7) # self._plot(self.bestAction, "Best action") self.plt.draw() self.plt.savefig("q-{0}.png".format(time.time())) def _plot(self, data, title): self.plt.title(title) self.plt.xlim(0, len(data)) self.plt.plot(range(len(data)), data) def _imshow(self, data, title): self.plt.title(title) self.plt.imshow(data, cmap=self.cm.Greys, interpolation="nearest", aspect='auto', vmin=0, vmax=1) if __name__ == "__main__": # complete uniform # positions = [i*20 for i in range(36)] # forward uniform positions = [i*10 for i in range(-18, 18)] agent = Agent(positions) Server(agent)
gpl-3.0
PatrickOReilly/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
ianatpn/nupictest
external/linux32/lib/python2.6/site-packages/matplotlib/offsetbox.py
69
17728
""" The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. The [VH]Packer, DrawingArea and TextArea are derived from the OffsetBox. The [VH]Packer automatically adjust the relative postisions of their children, which should be instances of the OffsetBox. This is used to align similar artists together, e.g., in legend. The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The TextArea is contains a single Text instance. The width and height of the TextArea instance is the width and height of the its child text. """ import matplotlib.transforms as mtransforms import matplotlib.artist as martist import matplotlib.text as mtext import numpy as np from matplotlib.patches import bbox_artist as mbbox_artist DEBUG=False # for debuging use def bbox_artist(*args, **kwargs): if DEBUG: mbbox_artist(*args, **kwargs) # _get_packed_offsets() and _get_aligned_offsets() are coded assuming # that we are packing boxes horizontally. But same function will be # used with vertical packing. def _get_packed_offsets(wd_list, total, sep, mode="fixed"): """ Geiven a list of (width, xdescent) of each boxes, calculate the total width and the x-offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *wd_list* : list of (width, xdescent) of boxes to be packed. *sep* : spacing between boxes *total* : Intended total length. None if not used. *mode* : packing mode. 'fixed', 'expand', or 'equal'. """ w_list, d_list = zip(*wd_list) # d_list is currently not used. if mode == "fixed": offsets_ = np.add.accumulate([0]+[w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": sep = (total - sum(w_list))/(len(w_list)-1.) offsets_ = np.add.accumulate([0]+[w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: total = (maxh+sep)*len(w_list) else: sep = float(total)/(len(w_list)) - maxh offsets = np.array([(maxh+sep)*i for i in range(len(w_list))]) return total, offsets else: raise ValueError("Unknown mode : %s" % (mode,)) def _get_aligned_offsets(hd_list, height, align="baseline"): """ Geiven a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max([h for h, d in hd_list]) if align == "baseline": height_descent = max([h-d for h, d in hd_list]) descent = max([d for h, d in hd_list]) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left","top"]: descent=0. offsets = [d for h, d in hd_list] elif align in ["right","bottom"]: descent=0. offsets = [height-h+d for h, d in hd_list] elif align == "center": descent=0. offsets = [(height-h)*.5+d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets class OffsetBox(martist.Artist): """ The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. """ def __init__(self, *args, **kwargs): super(OffsetBox, self).__init__(*args, **kwargs) self._children = [] self._offset = (0, 0) def set_figure(self, fig): """ Set the figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) for c in self.get_children(): c.set_figure(fig) def set_offset(self, xy): """ Set the offset accepts x, y, tuple, or a callable object. """ self._offset = xy def get_offset(self, width, height, xdescent, ydescent): """ Get the offset accepts extent of the box """ if callable(self._offset): return self._offset(width, height, xdescent, ydescent) else: return self._offset def set_width(self, width): """ Set the width accepts float """ self.width = width def set_height(self, height): """ Set the height accepts float """ self.height = height def get_children(self): """ Return a list of artists it contains. """ return self._children def get_extent_offsets(self, renderer): raise Exception("") def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ w, h, xd, yd, offsets = self.get_extent_offsets(renderer) return w, h, xd, yd def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(w, h, xd, yd) return mtransforms.Bbox.from_bounds(px-xd, py-yd, w, h) def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(width, height, xdescent, ydescent) for c, (ox, oy) in zip(self.get_children(), offsets): c.set_offset((px+ox, py+oy)) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class PackerBase(OffsetBox): def __init__(self, pad=None, sep=None, width=None, height=None, align=None, mode=None, children=None): """ *pad* : boundary pad *sep* : spacing between items *width*, *height* : width and height of the container box. calculated if None. *align* : alignment of boxes *mode* : packing mode """ super(PackerBase, self).__init__() self.height = height self.width = width self.sep = sep self.pad = pad self.mode = mode self.align = align self._children = children class VPacker(PackerBase): """ The VPacker has its children packed vertically. It automatically adjust the relative postisions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ *pad* : boundary pad *sep* : spacing between items *width*, *height* : width and height of the container box. calculated if None. *align* : alignment of boxes *mode* : packing mode """ super(VPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ whd_list = [c.get_extent(renderer) for c in self.get_children()] whd_list = [(w, h, xd, (h-yd)) for w, h, xd, yd in whd_list] wd_list = [(w, xd) for w, h, xd, yd in whd_list] width, xdescent, xoffsets = _get_aligned_offsets(wd_list, self.width, self.align) pack_list = [(h, yd) for w,h,xd,yd in whd_list] height, yoffsets_ = _get_packed_offsets(pack_list, self.height, self.sep, self.mode) yoffsets = yoffsets_ + [yd for w,h,xd,yd in whd_list] ydescent = height - yoffsets[0] yoffsets = height - yoffsets #w, h, xd, h_yd = whd_list[-1] yoffsets = yoffsets - ydescent return width + 2*self.pad, height + 2*self.pad, \ xdescent+self.pad, ydescent+self.pad, \ zip(xoffsets, yoffsets) class HPacker(PackerBase): """ The HPacker has its children packed horizontally. It automatically adjust the relative postisions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ *pad* : boundary pad *sep* : spacing between items *width*, *height* : width and height of the container box. calculated if None. *align* : alignment of boxes *mode* : packing mode """ super(HPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ whd_list = [c.get_extent(renderer) for c in self.get_children()] if self.height is None: height_descent = max([h-yd for w,h,xd,yd in whd_list]) ydescent = max([yd for w,h,xd,yd in whd_list]) height = height_descent + ydescent else: height = self.height - 2*self._pad # width w/o pad hd_list = [(h, yd) for w, h, xd, yd in whd_list] height, ydescent, yoffsets = _get_aligned_offsets(hd_list, self.height, self.align) pack_list = [(w, xd) for w,h,xd,yd in whd_list] width, xoffsets_ = _get_packed_offsets(pack_list, self.width, self.sep, self.mode) xoffsets = xoffsets_ + [xd for w,h,xd,yd in whd_list] xdescent=whd_list[0][2] xoffsets = xoffsets - xdescent return width + 2*self.pad, height + 2*self.pad, \ xdescent + self.pad, ydescent + self.pad, \ zip(xoffsets, yoffsets) class DrawingArea(OffsetBox): """ The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. """ def __init__(self, width, height, xdescent=0., ydescent=0., clip=True): """ *width*, *height* : width and height of the container box. *xdescent*, *ydescent* : descent of the box in x- and y-direction. """ super(DrawingArea, self).__init__() self.width = width self.height = height self.xdescent = xdescent self.ydescent = ydescent self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y cooridnate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() #w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox-xd, oy-yd, w, h) def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ return self.width, self.height, self.xdescent, self.ydescent def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) a.set_transform(self.get_transform()) def draw(self, renderer): """ Draw the children """ for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class TextArea(OffsetBox): """ The TextArea is contains a single Text instance. The text is placed at (0,0) with baseline+left alignment. The width and height of the TextArea instance is the width and height of the its child text. """ def __init__(self, s, textprops=None, multilinebaseline=None, minimumdescent=True, ): """ *s* : a string to be displayed. *textprops* : property dictionary for the text *multilinebaseline* : If True, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. *minimumdescent* : If True, the box has a minimum descent of "p". """ if textprops is None: textprops = {} if not textprops.has_key("va"): textprops["va"]="baseline" self._text = mtext.Text(0, 0, s, **textprops) OffsetBox.__init__(self) self._children = [self._text] self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self._baseline_transform = mtransforms.Affine2D() self._text.set_transform(self.offset_transform+self._baseline_transform) self._multilinebaseline = multilinebaseline self._minimumdescent = minimumdescent def set_multilinebaseline(self, t): """ Set multilinebaseline . If True, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. """ self._multilinebaseline = t def get_multilinebaseline(self): """ get multilinebaseline . """ return self._multilinebaseline def set_minimumdescent(self, t): """ Set minimumdescent . If True, extent of the single line text is adjusted so that it has minimum descent of "p" """ self._minimumdescent = t def get_minimumdescent(self): """ get minimumdescent. """ return self._minimumdescent def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y cooridnate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() #w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox-xd, oy-yd, w, h) def get_extent(self, renderer): clean_line, ismath = self._text.is_math_text(self._text._text) _, h_, d_ = renderer.get_text_width_height_descent( "lp", self._text._fontproperties, ismath=False) bbox, info = self._text._get_layout(renderer) w, h = bbox.width, bbox.height line = info[0][0] # first line _, hh, dd = renderer.get_text_width_height_descent( clean_line, self._text._fontproperties, ismath=ismath) self._baseline_transform.clear() if len(info) > 1 and self._multilinebaseline: # multi line d = h-(hh-dd) # the baseline of the first line d_new = 0.5 * h - 0.5 * (h_ - d_) self._baseline_transform.translate(0, d - d_new) d = d_new else: # single line h_d = max(h_ - d_, h-dd) if self.get_minimumdescent(): ## to have a minimum descent, #i.e., "l" and "p" have same ## descents. d = max(dd, d_) else: d = dd h = h_d + d return w, h, 0., d def draw(self, renderer): """ Draw the children """ self._text.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.))
gpl-3.0
juanitopereza/Metodos_vacaciones
Lab/electron/electron.py
1
2329
# coding=utf-8 import numpy as np import matplotlib.pyplot as plt #%% def f(x,y,yp): return q_m * B_z * yp + (q_m * Lambda * x)/(2 * np.pi * epsilon_0 * (x**2 + y**2)) def g(x,y,xp): return -q_m * B_z * xp + (q_m * Lambda * y)/(2 * np.pi * epsilon_0 * (x**2 + y**2)) def RK_step(delta_t, x_old, y_old, xp_old, yp_old): k_x1 = xp_old * delta_t k_y1 = yp_old * delta_t k_xp1 = f(x_old, y_old, yp_old) * delta_t k_yp1 = g(x_old, y_old, xp_old) * delta_t #print (k_x1, k_y1, k_xp1, k_yp1) k_x2 = (xp_old + k_xp1/2.0) * delta_t k_y2 = (yp_old + k_yp1/2.0) * delta_t k_xp2 = f(x_old + k_x1/2.0, y_old + k_y1/2.0, yp_old + k_yp1/2.0) * delta_t k_yp2 = g(x_old + k_x1/2.0, y_old + k_y1/2.0, xp_old + k_xp1/2.0) * delta_t #print (k_x2, k_y2, k_xp2, k_yp2) k_x3 = (xp_old + k_xp2/2.0) * delta_t k_y3 = (yp_old + k_yp2/2.0) * delta_t k_xp3 = f(x_old + k_x2/2.0, y_old + k_y2/2.0, yp_old + k_yp2/2.0) * delta_t k_yp3 = g(x_old + k_x2/2.0, y_old + k_y2/2.0, xp_old + k_xp2/2.0) * delta_t #print (k_x3, k_y3, k_xp3, k_yp3) k_x4 = (xp_old + k_xp3) * delta_t k_y4 = (yp_old + k_yp3) * delta_t k_xp4 = f(x_old + k_x3, y_old + k_y3, yp_old + k_yp3) * delta_t k_yp4 = g(x_old + k_x3, y_old + k_y3, xp_old + k_xp3) * delta_t #print (k_x4, k_y4, k_xp4, k_yp4) x_new = x_old + (1.0/6.0)*(k_x1 + 2.0*k_x2 + 2.0*k_x3 + k_x4) y_new = y_old + (1.0/6.0)*(k_y1 + 2.0*k_y2 + 2.0*k_y3 + k_y4) xp_new = xp_old + (1.0/6.0)*(k_xp1 + 2.0*k_xp2 + 2.0*k_xp3 + k_xp4) yp_new = yp_old + (1.0/6.0)*(k_yp1 + 2.0*k_yp2 + 2.0*k_yp3 + k_yp4) return x_new, y_new, xp_new, yp_new #%% q_m = -1.76e11 Lambda = -1e-12 B_z = 1e-5 epsilon_0 = 9e-12 N_points = 2000 t_final = 2e-5 delta_t = t_final/N_points delta_t t = np.zeros(N_points) X = np.zeros(N_points) Y = np.zeros(N_points) XP = np.zeros(N_points) YP = np.zeros(N_points) t[0] = 0.0 X[0] = 2.0 Y[0] = 2.0 XP[0] = 0.0 YP[0] =-3000.0 for i in range(1,N_points): X[i], Y[i], XP[i], YP[i] = RK_step(delta_t, X[i-1], Y[i-1], XP[i-1], YP[i-1]) t[i] = t[i-1] + delta_t #print (t[i], X[i], Y[i], XP[i], YP[i]) #%% plt.plot(X,Y, label= "$RK4$") plt.legend() plt.xlabel("$x\ [m]$") plt.ylabel("$y\ [m]$") plt.title(u"$Trayectoria\ electrón$") plt.savefig("electron.pdf") #plt.show()
mit
glouppe/scikit-learn
examples/svm/plot_weighted_samples.py
95
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
piskuliche/Python-Code-Collection
CP2K_Util/stupid_pmf/calculate_pmf.py
1
1704
import numpy as np import itertools import matplotlib.pyplot as plt class distances: def __init__(self,nframes): self.r = np.zeros((3,2,nframes)) self.dr = np.zeros((3,nframes)) self.drmag = np.zeros(nframes) def read_frames(self, nframes, infile): rx, ry, rz = np.genfromtxt(infile, usecols = (1,2,3), unpack=True,max_rows=nframes*2) self.r[0,0] = rx[::2] self.r[1,0] = ry[::2] self.r[2,0] = rz[::2] self.r[0,1] = rx[1::2] self.r[1,1] = ry[1::2] self.r[2,1] = rz[1::2] def calc_dist(self,nframes, L): for frame in range(nframes): self.dr[0,frame]=self.r[0,0,frame]-self.r[0,1,frame] self.dr[1,frame]=self.r[1,0,frame]-self.r[1,1,frame] self.dr[2,frame]=self.r[2,0,frame]-self.r[2,1,frame] self.dr[0,frame]=self.dr[0,frame]-L*int(round(self.dr[0,frame]/L)) self.dr[1,frame]=self.dr[1,frame]-L*int(round(self.dr[1,frame]/L)) self.dr[2,frame]=self.dr[2,frame]-L*int(round(self.dr[2,frame]/L)) self.drmag[frame] = np.sqrt(self.dr[0,frame]**2 + self.dr[1,frame]**2 + self.dr[2,frame]**2) print frame, self.drmag[frame], self.dr[0,frame], self.dr[1,frame], self.dr[2,frame] def bin_dist(self,nframes, L): dr = 0.1 rcut = L/2.0 self.hist = np.histogram(self.drmag,range=(0.0,rcut), bins = int(rcut)*100,density=True) np.savetxt('out.hist', np.c_[self.hist[1][1:], self.hist[0]*(L**3/(4*np.pi*self.hist[1][1:]**2))]) nframes = 100001 infile = 'lif.xyz' v = distances(nframes) L = 14.219066 v.read_frames(nframes,infile) v.calc_dist(nframes,L) v.bin_dist(nframes, L)
gpl-3.0
waltervh/BornAgain-tutorial
old/bornagain-python/fitting/advanced-tutorial/step3_basicfit.py
2
3341
""" Fitting example: 4 parameters fit with simple output. Example explains: * How to define fit parameters (start values, limits, steps) * How to invoke drawing of fit progress * How to change another minimizer, and set its properties """ import bornagain as ba from bornagain import deg, angstrom, nm, AttLimits from matplotlib import pyplot as plt def get_sample(): """ Returns a sample with uncorrelated cylinders and prisms on a substrate. """ # defining materials m_air = ba.HomogeneousMaterial("Air", 0.0, 0.0) m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8) m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8) # collection of particles cylinder_ff = ba.FormFactorCylinder(1.0*nm, 1.0*nm) cylinder = ba.Particle(m_particle, cylinder_ff) prism_ff = ba.FormFactorPrism3(1.0*nm, 1.0*nm) prism = ba.Particle(m_particle, prism_ff) particle_layout = ba.ParticleLayout() particle_layout.addParticle(cylinder, 0.5) particle_layout.addParticle(prism, 0.5) interference = ba.InterferenceFunctionNone() particle_layout.addInterferenceFunction(interference) # air layer with particles and substrate form multi layer air_layer = ba.Layer(m_air) air_layer.addLayout(particle_layout) substrate_layer = ba.Layer(m_substrate, 0) multi_layer = ba.MultiLayer() multi_layer.addLayer(air_layer) multi_layer.addLayer(substrate_layer) return multi_layer def get_simulation(): """ Returns a GISAXS simulation with beam and detector defined """ simulation = ba.GISASSimulation() simulation.setDetectorParameters(100, -1.0*deg, 1.0*deg, 100, 0.0*deg, 2.0*deg) simulation.setBeamParameters(1.0*angstrom, 0.2*deg, 0.0*deg) return simulation def run_fitting(): """ run fitting """ sample = get_sample() simulation = get_simulation() simulation.setSample(sample) real_data = ba.IntensityDataIOFactory.readIntensityData( 'refdata_fitcylinderprisms.int.gz') fit_suite = ba.FitSuite() fit_suite.addSimulationAndRealData(simulation, real_data) fit_suite.initPrint(10) # setting fitting parameters with starting values and limits fit_suite.addFitParameter("*Cylinder/Height", 4.*nm).setLowerLimited(0.01).setStep(0.02) fit_suite.addFitParameter("*Cylinder/Radius", 6.*nm).setLimited(3.0, 8.0) fit_suite.addFitParameter("*Prism3/Height", 4.*nm).setUpperLimited(10.0) fit_suite.addFitParameter("*Prism3/BaseEdge", 5.*nm).setFixed() # > Changing minimization algorithm # catalogue = ba.MinimizerCatalogue() # print(catalogue.toString()) # fit_suite.setMinimizer("Minuit2", "Migrad") # ba.Default # fit_suite.setMinimizer("Minuit2", "Fumili") # fit_suite.setMinimizer("Minuit2", "Fumili", "MaxFunctionCalls=20") # fit_suite.setMinimizer("GSLLMA") # > Drawing fit progress evey 10'th iteration # draw_observer = ba.DefaultFitObserver(draw_every_nth=10) # fit_suite.attachObserver(draw_observer) # running fit fit_suite.runFit() print("Fitting completed.") print("chi2:", fit_suite.getChi2()) for par in fit_suite.fitParameters(): print(par.name(), par.value(), par.error()) if __name__ == '__main__': run_fitting() plt.show()
gpl-3.0
sangwook236/SWDT
sw_dev/python/rnd/test/language_processing/aru_net_test.py
2
4071
#!/usr/bin/env python from __future__ import print_function, division import os, time import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import imageio from PIL import Image from pix_lab.util.util import load_graph, read_image_list #from pix_lab.util.inference_pb import Inference_pb import cv2 def load_image(path, scale, mode): aImg = imageio.imread(path, pilmode=mode) sImg = np.array(Image.fromarray(aImg).resize((round(aImg.shape[1] * scale), round(aImg.shape[0] * scale)), resample=Image.BICUBIC)) fImg = sImg if len(sImg.shape) == 2: fImg = np.expand_dims(fImg, 2) fImg = np.expand_dims(fImg, 0) return fImg # REF [file] >> ${ARU-Net_HOME}/pix_lab/util/inference_pb.py def inference(path_to_pb, img_list, scale=1.0, mode='L', print_result=True, gpu_device='0'): graph = load_graph(path_to_pb) val_size = len(img_list) if val_size is None: print('No Inference Data available. Skip Inference.') return output_dir_path = './prediction' os.makedirs(output_dir_path, exist_ok=False) session_conf = tf.ConfigProto() session_conf.gpu_options.visible_device_list = gpu_device with tf.Session(graph=graph, config=session_conf) as sess: x = graph.get_tensor_by_name('inImg:0') predictor = graph.get_tensor_by_name('output:0') print('Start Inference...') timeSum = 0.0 for step in range(0, val_size): aTime = time.time() aImgPath = img_list[step] print('Image: {:} '.format(aImgPath)) batch_x = load_image(aImgPath, scale, mode) print('Resolution: h {:}, w {:} '.format(batch_x.shape[1],batch_x.shape[2])) # Run validation. aPred = sess.run(predictor, feed_dict={x: batch_x}) curTime = (time.time() - aTime) * 1000.0 timeSum += curTime print('Update time: {:.2f} ms'.format(curTime)) if print_result: n_class = aPred.shape[3] channels = batch_x.shape[3] """ fig = plt.figure() for aI in range(0, n_class+1): if aI == 0: a = fig.add_subplot(1, n_class+1, 1) if channels == 1: plt.imshow(batch_x[0, :, :, 0], cmap=plt.cm.gray) else: plt.imshow(batch_x[0, :, :, :]) a.set_title('input') else: a = fig.add_subplot(1, n_class+1, aI+1) plt.imshow(aPred[0,:, :,aI-1], cmap=plt.cm.gray, vmin=0.0, vmax=1.0) #misc.imsave('out' + str(aI) + '.jpg', aPred[0,:, :,aI-1]) a.set_title('Channel: ' + str(aI-1)) print('To go on just CLOSE the current plot.') plt.show() """ """ for cls in range(0, n_class): print('***', np.min(aPred[0,:, :,cls]), np.max(aPred[0,:, :,cls])) pred = aPred[0,:, :,cls] if cls < 2: pred[pred > 0.5] = 1 else: pred[pred < 0.5] = 0.0 cv2.imshow('Class ' + str(cls), pred) """ if 1 == channels: rgb = cv2.cvtColor(batch_x[0, :, :, 0], cv2.COLOR_GRAY2BGR) else: rgb = batch_x[0, :, :, :] cls = 0 pred = aPred[0,:, :,cls] if 0 == cls: rgb[pred > 0.1] = (0, 0, 255) elif 1 == cls: rgb[pred > 0.2] = (0, 0, 255) else: rgb[pred < 0.5] = (0, 0, 255) cv2.imwrite(os.path.join(output_dir_path, 'prediction{}_{}.tif'.format(cls, step)), rgb) #cv2.imshow('Prediction', pred) #cv2.imshow('Overlay', rgb) #cv2.waitKey(0) print('Inference avg update time: {:.2f} ms'.format(timeSum / val_size)) print('Inference Finished!') def main(): if 'posix' == os.name: aru_net_dir_path = '/home/sangwook/lib_repo/python/ARU-Net_github' else: aru_net_dir_path = 'D:/lib_repo/python/rnd/ARU-Net_github' path_to_pb = os.path.join(aru_net_dir_path, 'demo_nets/model100_ema.pb') # ${ARU-Net_HOME}/demo_nets/model100_ema.pb #path_list_imgs = os.path.join(aru_net_dir_path, 'demo_images/imgs.lst') # ${ARU-Net_HOME}/demo_images/imgs.lst path_list_imgs = './epapyrus_images.lst' #path_list_imgs = './keit_images.lst' img_list = read_image_list(path_list_imgs) inference(path_to_pb, img_list, scale=1.0, mode='L', print_result=True, gpu_device='0') #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-3.0
daodaoliang/neural-network-animation
matplotlib/colors.py
10
57606
""" A module for converting numbers or color arguments to *RGB* or *RGBA* *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of :class:`Normalize` or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which is used to generate all the built-in colormap instances, but is also useful for making custom colormaps, and :class:`ListedColormap`, which is used for generating a custom colormap from a list of color specifications. The module also provides a single instance, *colorConverter*, of the :class:`ColorConverter` class providing methods for converting single color specifications or sequences of them to *RGB* or *RGBA*. Commands which take color arguments can use several formats to specify the colors. For the basic built-in colors, you can use a single letter - b: blue - g: green - r: red - c: cyan - m: magenta - y: yellow - k: black - w: white Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:: color = '0.75' For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B* are in the range [0,1]. Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse' are supported. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip import warnings import re import numpy as np from numpy import ma import matplotlib.cbook as cbook cnames = { 'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF', 'beige': '#F5F5DC', 'bisque': '#FFE4C4', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', 'burlywood': '#DEB887', 'cadetblue': '#5F9EA0', 'chartreuse': '#7FFF00', 'chocolate': '#D2691E', 'coral': '#FF7F50', 'cornflowerblue': '#6495ED', 'cornsilk': '#FFF8DC', 'crimson': '#DC143C', 'cyan': '#00FFFF', 'darkblue': '#00008B', 'darkcyan': '#008B8B', 'darkgoldenrod': '#B8860B', 'darkgray': '#A9A9A9', 'darkgreen': '#006400', 'darkkhaki': '#BDB76B', 'darkmagenta': '#8B008B', 'darkolivegreen': '#556B2F', 'darkorange': '#FF8C00', 'darkorchid': '#9932CC', 'darkred': '#8B0000', 'darksage': '#598556', 'darksalmon': '#E9967A', 'darkseagreen': '#8FBC8F', 'darkslateblue': '#483D8B', 'darkslategray': '#2F4F4F', 'darkturquoise': '#00CED1', 'darkviolet': '#9400D3', 'deeppink': '#FF1493', 'deepskyblue': '#00BFFF', 'dimgray': '#696969', 'dodgerblue': '#1E90FF', 'firebrick': '#B22222', 'floralwhite': '#FFFAF0', 'forestgreen': '#228B22', 'fuchsia': '#FF00FF', 'gainsboro': '#DCDCDC', 'ghostwhite': '#F8F8FF', 'gold': '#FFD700', 'goldenrod': '#DAA520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#ADFF2F', 'honeydew': '#F0FFF0', 'hotpink': '#FF69B4', 'indianred': '#CD5C5C', 'indigo': '#4B0082', 'ivory': '#FFFFF0', 'khaki': '#F0E68C', 'lavender': '#E6E6FA', 'lavenderblush': '#FFF0F5', 'lawngreen': '#7CFC00', 'lemonchiffon': '#FFFACD', 'lightblue': '#ADD8E6', 'lightcoral': '#F08080', 'lightcyan': '#E0FFFF', 'lightgoldenrodyellow': '#FAFAD2', 'lightgreen': '#90EE90', 'lightgray': '#D3D3D3', 'lightpink': '#FFB6C1', 'lightsage': '#BCECAC', 'lightsalmon': '#FFA07A', 'lightseagreen': '#20B2AA', 'lightskyblue': '#87CEFA', 'lightslategray': '#778899', 'lightsteelblue': '#B0C4DE', 'lightyellow': '#FFFFE0', 'lime': '#00FF00', 'limegreen': '#32CD32', 'linen': '#FAF0E6', 'magenta': '#FF00FF', 'maroon': '#800000', 'mediumaquamarine': '#66CDAA', 'mediumblue': '#0000CD', 'mediumorchid': '#BA55D3', 'mediumpurple': '#9370DB', 'mediumseagreen': '#3CB371', 'mediumslateblue': '#7B68EE', 'mediumspringgreen': '#00FA9A', 'mediumturquoise': '#48D1CC', 'mediumvioletred': '#C71585', 'midnightblue': '#191970', 'mintcream': '#F5FFFA', 'mistyrose': '#FFE4E1', 'moccasin': '#FFE4B5', 'navajowhite': '#FFDEAD', 'navy': '#000080', 'oldlace': '#FDF5E6', 'olive': '#808000', 'olivedrab': '#6B8E23', 'orange': '#FFA500', 'orangered': '#FF4500', 'orchid': '#DA70D6', 'palegoldenrod': '#EEE8AA', 'palegreen': '#98FB98', 'paleturquoise': '#AFEEEE', 'palevioletred': '#DB7093', 'papayawhip': '#FFEFD5', 'peachpuff': '#FFDAB9', 'peru': '#CD853F', 'pink': '#FFC0CB', 'plum': '#DDA0DD', 'powderblue': '#B0E0E6', 'purple': '#800080', 'red': '#FF0000', 'rosybrown': '#BC8F8F', 'royalblue': '#4169E1', 'saddlebrown': '#8B4513', 'salmon': '#FA8072', 'sage': '#87AE73', 'sandybrown': '#FAA460', 'seagreen': '#2E8B57', 'seashell': '#FFF5EE', 'sienna': '#A0522D', 'silver': '#C0C0C0', 'skyblue': '#87CEEB', 'slateblue': '#6A5ACD', 'slategray': '#708090', 'snow': '#FFFAFA', 'springgreen': '#00FF7F', 'steelblue': '#4682B4', 'tan': '#D2B48C', 'teal': '#008080', 'thistle': '#D8BFD8', 'tomato': '#FF6347', 'turquoise': '#40E0D0', 'violet': '#EE82EE', 'wheat': '#F5DEB3', 'white': '#FFFFFF', 'whitesmoke': '#F5F5F5', 'yellow': '#FFFF00', 'yellowgreen': '#9ACD32'} # add british equivs for k, v in list(six.iteritems(cnames)): if k.find('gray') >= 0: k = k.replace('gray', 'grey') cnames[k] = v def is_color_like(c): 'Return *True* if *c* can be converted to *RGB*' try: colorConverter.to_rgb(c) return True except ValueError: return False def rgb2hex(rgb): 'Given an rgb or rgba sequence of 0-1 floats, return the hex string' a = '#%02x%02x%02x' % tuple([int(np.round(val * 255)) for val in rgb[:3]]) return a hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z") def hex2color(s): """ Take a hex string *s* and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725, 0.93725) """ if not isinstance(s, six.string_types): raise TypeError('hex2color requires a string argument') if hexColorPattern.match(s) is None: raise ValueError('invalid hex color string "%s"' % s) return tuple([int(n, 16) / 255.0 for n in (s[1:3], s[3:5], s[5:7])]) class ColorConverter(object): """ Provides methods for converting color specifications to *RGB* or *RGBA* Caching is used for more efficient conversion upon repeated calls with the same argument. Ordinarily only the single instance instantiated in this module, *colorConverter*, is needed. """ colors = { 'b': (0.0, 0.0, 1.0), 'g': (0.0, 0.5, 0.0), 'r': (1.0, 0.0, 0.0), 'c': (0.0, 0.75, 0.75), 'm': (0.75, 0, 0.75), 'y': (0.75, 0.75, 0), 'k': (0.0, 0.0, 0.0), 'w': (1.0, 1.0, 1.0), } cache = {} def to_rgb(self, arg): """ Returns an *RGB* tuple of three floats from 0-1. *arg* can be an *RGB* or *RGBA* sequence or a string in any of several forms: 1) a letter from the set 'rgbcmykw' 2) a hex color string, like '#00FFFF' 3) a standard name, like 'aqua' 4) a string representation of a float, like '0.4', indicating gray on a 0-1 scale if *arg* is *RGBA*, the *A* will simply be discarded. """ # Gray must be a string to distinguish 3-4 grays from RGB or RGBA. try: return self.cache[arg] except KeyError: pass except TypeError: # could be unhashable rgb seq arg = tuple(arg) try: return self.cache[arg] except KeyError: pass except TypeError: raise ValueError( 'to_rgb: arg "%s" is unhashable even inside a tuple' % (str(arg),)) try: if cbook.is_string_like(arg): argl = arg.lower() color = self.colors.get(argl, None) if color is None: str1 = cnames.get(argl, argl) if str1.startswith('#'): color = hex2color(str1) else: fl = float(argl) if fl < 0 or fl > 1: raise ValueError( 'gray (string) must be in range 0-1') color = (fl,)*3 elif cbook.iterable(arg): if len(arg) > 4 or len(arg) < 3: raise ValueError( 'sequence length is %d; must be 3 or 4' % len(arg)) color = tuple(arg[:3]) if [x for x in color if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError( 'number in rbg sequence outside 0-1 range') else: raise ValueError( 'cannot convert argument to rgb sequence') self.cache[arg] = color except (KeyError, ValueError, TypeError) as exc: raise ValueError( 'to_rgb: Invalid rgb arg "%s"\n%s' % (str(arg), exc)) # Error messages could be improved by handling TypeError # separately; but this should be rare and not too hard # for the user to figure out as-is. return color def to_rgba(self, arg, alpha=None): """ Returns an *RGBA* tuple of four floats from 0-1. For acceptable values of *arg*, see :meth:`to_rgb`. In addition, if *arg* is "none" (case-insensitive), then (0,0,0,0) will be returned. If *arg* is an *RGBA* sequence and *alpha* is not *None*, *alpha* will replace the original *A*. """ try: if arg.lower() == 'none': return (0.0, 0.0, 0.0, 0.0) except AttributeError: pass try: if not cbook.is_string_like(arg) and cbook.iterable(arg): if len(arg) == 4: if any(float(x) < 0 or x > 1 for x in arg): raise ValueError( 'number in rbga sequence outside 0-1 range') if alpha is None: return tuple(arg) if alpha < 0.0 or alpha > 1.0: raise ValueError("alpha must be in range 0-1") return arg[0], arg[1], arg[2], alpha if len(arg) == 3: r, g, b = arg if any(float(x) < 0 or x > 1 for x in arg): raise ValueError( 'number in rbg sequence outside 0-1 range') else: raise ValueError( 'length of rgba sequence should be either 3 or 4') else: r, g, b = self.to_rgb(arg) if alpha is None: alpha = 1.0 return r, g, b, alpha except (TypeError, ValueError) as exc: raise ValueError( 'to_rgba: Invalid rgba arg "%s"\n%s' % (str(arg), exc)) def to_rgba_array(self, c, alpha=None): """ Returns a numpy array of *RGBA* tuples. Accepts a single mpl color spec or a sequence of specs. Special case to handle "no color": if *c* is "none" (case-insensitive), then an empty array will be returned. Same for an empty list. """ try: nc = len(c) except TypeError: raise ValueError( "Cannot convert argument type %s to rgba array" % type(c)) try: if nc == 0 or c.lower() == 'none': return np.zeros((0, 4), dtype=np.float) except AttributeError: pass try: # Single value? Put it in an array with a single row. return np.array([self.to_rgba(c, alpha)], dtype=np.float) except ValueError: if isinstance(c, np.ndarray): if c.ndim != 2 and c.dtype.kind not in 'SU': raise ValueError("Color array must be two-dimensional") if (c.ndim == 2 and c.shape[1] == 4 and c.dtype.kind == 'f'): if (c.ravel() > 1).any() or (c.ravel() < 0).any(): raise ValueError( "number in rgba sequence is outside 0-1 range") result = np.asarray(c, np.float) if alpha is not None: if alpha > 1 or alpha < 0: raise ValueError("alpha must be in 0-1 range") result[:, 3] = alpha return result # This alpha operation above is new, and depends # on higher levels to refrain from setting alpha # to values other than None unless there is # intent to override any existing alpha values. # It must be some other sequence of color specs. result = np.zeros((nc, 4), dtype=np.float) for i, cc in enumerate(c): result[i] = self.to_rgba(cc, alpha) return result colorConverter = ColorConverter() def makeMappingArray(N, data, gamma=1.0): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. Alternatively, data can be a function mapping values between 0 - 1 to 0 - 1. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ if six.callable(data): xind = np.linspace(0, 1, N) ** gamma lut = np.clip(np.array(data(xind), dtype=np.float), 0, 1) return lut try: adata = np.array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:, 0] y0 = adata[:, 1] y1 = adata[:, 2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if np.sometrue(np.sort(x) - x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N - 1) lut = np.zeros((N,), np.float) xind = (N - 1) * np.linspace(0, 1, N) ** gamma ind = np.searchsorted(x, xind)[1:-1] lut[1:-1] = (((xind[1:-1] - x[ind - 1]) / (x[ind] - x[ind - 1])) * (y0[ind] - y1[ind - 1]) + y1[ind - 1]) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it np.clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut class Colormap(object): """ Baseclass for all scalar to RGBA mappings. Typically Colormap instances are used to convert data values (floats) from the interval ``[0, 1]`` to the RGBA color that the respective Colormap represents. For scaling of data into the ``[0, 1]`` interval see :class:`matplotlib.colors.Normalize`. It is worth noting that :class:`matplotlib.cm.ScalarMappable` subclasses make heavy use of this ``data->normalize->map-to-color`` processing chain. """ def __init__(self, name, N=256): r""" Parameters ---------- name : str The name of the colormap. N : int The number of rgb quantization levels. """ self.name = name self.N = int(N) # ensure that N is always int self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = self.N self._i_over = self.N + 1 self._i_bad = self.N + 2 self._isinit = False #: When this colormap exists on a scalar mappable and colorbar_extend #: is not False, colorbar creation will pick up ``colorbar_extend`` as #: the default value for the ``extend`` keyword in the #: :class:`matplotlib.colorbar.Colorbar` constructor. self.colorbar_extend = False def __call__(self, X, alpha=None, bytes=False): """ Parameters ---------- X : scalar, ndarray The data value(s) to convert to RGBA. For floats, X should be in the interval ``[0.0, 1.0]`` to return the RGBA values ``X*100`` percent along the Colormap line. For integers, X should be in the interval ``[0, Colormap.N)`` to return RGBA values *indexed* from the Colormap with index ``X``. alpha : float, None Alpha must be a scalar between 0 and 1, or None. bytes : bool If False (default), the returned RGBA values will be floats in the interval ``[0, 1]`` otherwise they will be uint8s in the interval ``[0, 255]``. Returns ------- Tuple of RGBA values if X is scalar, othewise an array of RGBA values with a shape of ``X.shape + (4, )``. """ # See class docstring for arg/kwarg documentation. if not self._isinit: self._init() mask_bad = None if not cbook.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = ma.array(X, copy=True) # Copy here to avoid side effects. mask_bad = xma.mask # Mask will be used below. xa = xma.filled() # Fill to avoid infs, etc. del xma # Calculations with native byteorder are faster, and avoid a # bug that otherwise can occur with putmask when the last # argument is a numpy scalar. if not xa.dtype.isnative: xa = xa.byteswap().newbyteorder() if xa.dtype.kind == "f": # Treat 1.0 as slightly less than 1. vals = np.array([1, 0], dtype=xa.dtype) almost_one = np.nextafter(*vals) cbook._putmask(xa, xa == 1.0, almost_one) # The following clip is fast, and prevents possible # conversion of large positive values to negative integers. xa *= self.N np.clip(xa, -1, self.N, out=xa) # ensure that all 'under' values will still have negative # value after casting to int cbook._putmask(xa, xa < 0.0, -1) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. cbook._putmask(xa, xa > self.N - 1, self._i_over) cbook._putmask(xa, xa < 0, self._i_under) if mask_bad is not None: if mask_bad.shape == xa.shape: cbook._putmask(xa, mask_bad, self._i_bad) elif mask_bad: xa.fill(self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut.copy() # Don't let alpha modify original _lut. if alpha is not None: alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) if bytes: alpha = int(alpha * 255) if (lut[-1] == 0).all(): lut[:-1, -1] = alpha # All zeros is taken as a flag for the default bad # color, which is no color--fully transparent. We # don't want to override this. else: lut[:, -1] = alpha # If the bad value is set to have a color, then we # override its alpha just as for any other value. rgba = np.empty(shape=xa.shape + (4,), dtype=lut.dtype) lut.take(xa, axis=0, mode='clip', out=rgba) # twice as fast as lut[xa]; # using the clip or wrap mode and providing an # output array speeds it up a little more. if vtype == 'scalar': rgba = tuple(rgba[0, :]) return rgba def set_bad(self, color='k', alpha=None): """Set color to be used for masked values. """ self._rgba_bad = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color='k', alpha=None): """Set color to be used for low out-of-range values. Requires norm.clip = False """ self._rgba_under = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color='k', alpha=None): """Set color to be used for high out-of-range values. Requires norm.clip = False """ self._rgba_over = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N - 1] self._lut[self._i_bad] = self._rgba_bad def _init(self): """Generate the lookup table, self._lut""" raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.alltrue(self._lut[:, 0] == self._lut[:, 1]) and np.alltrue(self._lut[:, 0] == self._lut[:, 2])) class LinearSegmentedColormap(Colormap): """Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256, gamma=1.0): """Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Entries for alpha are optional. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. .. seealso:: :meth:`LinearSegmentedColormap.from_list` Static method; factory function for generating a smoothly-varying LinearSegmentedColormap. :func:`makeMappingArray` For information about making a mapping array. """ # True only if all colors in map are identical; needed for contouring. self.monochrome = False Colormap.__init__(self, name, N) self._segmentdata = segmentdata self._gamma = gamma def _init(self): self._lut = np.ones((self.N + 3, 4), np.float) self._lut[:-3, 0] = makeMappingArray( self.N, self._segmentdata['red'], self._gamma) self._lut[:-3, 1] = makeMappingArray( self.N, self._segmentdata['green'], self._gamma) self._lut[:-3, 2] = makeMappingArray( self.N, self._segmentdata['blue'], self._gamma) if 'alpha' in self._segmentdata: self._lut[:-3, 3] = makeMappingArray( self.N, self._segmentdata['alpha'], 1) self._isinit = True self._set_extremes() def set_gamma(self, gamma): """ Set a new gamma value and regenerate color map. """ self._gamma = gamma self._init() @staticmethod def from_list(name, colors, N=256, gamma=1.0): """ Make a linear segmented colormap with *name* from a sequence of *colors* which evenly transitions from colors[0] at val=0 to colors[-1] at val=1. *N* is the number of rgb quantization levels. Alternatively, a list of (value, color) tuples can be given to divide the range unevenly. """ if not cbook.iterable(colors): raise ValueError('colors must be iterable') if cbook.iterable(colors[0]) and len(colors[0]) == 2 and \ not cbook.is_string_like(colors[0]): # List of value, color pairs vals, colors = list(zip(*colors)) else: vals = np.linspace(0., 1., len(colors)) cdict = dict(red=[], green=[], blue=[], alpha=[]) for val, color in zip(vals, colors): r, g, b, a = colorConverter.to_rgba(color) cdict['red'].append((val, r, r)) cdict['green'].append((val, g, g)) cdict['blue'].append((val, b, b)) cdict['alpha'].append((val, a, a)) return LinearSegmentedColormap(name, cdict, N, gamma) class ListedColormap(Colormap): """Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. """ def __init__(self, colors, name='from_list', N=None): """ Make a colormap from a list of colors. *colors* a list of matplotlib color specifications, or an equivalent Nx3 or Nx4 floating point array (*N* rgb or rgba values) *name* a string to identify the colormap *N* the number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ self.colors = colors self.monochrome = False # True only if all colors in map are # identical; needed for contouring. if N is None: N = len(self.colors) else: if cbook.is_string_like(self.colors): self.colors = [self.colors] * N self.monochrome = True elif cbook.iterable(self.colors): self.colors = list(self.colors) # in case it was a tuple if len(self.colors) == 1: self.monochrome = True if len(self.colors) < N: self.colors = list(self.colors) * N del(self.colors[N:]) else: try: gray = float(self.colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): rgba = colorConverter.to_rgba_array(self.colors) self._lut = np.zeros((self.N + 3, 4), np.float) self._lut[:-3] = rgba self._isinit = True self._set_extremes() class Normalize(object): """ A class which, when called, can normalize data into the ``[0.0, 1.0]`` interval. """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = vmin self.vmax = vmax self.clip = clip @staticmethod def process_value(value): """ Homogenize the input *value* for easy and efficient normalization. *value* can be a scalar or sequence. Returns *result*, *is_scalar*, where *result* is a masked array matching *value*. Float dtypes are preserved; integer types with two bytes or smaller are converted to np.float32, and larger types are converted to np.float. Preserving float32 when possible, and using in-place operations, can greatly improve speed for large arrays. Experimental; we may want to add an option to force the use of float32. """ if cbook.iterable(value): is_scalar = False result = ma.asarray(value) if result.dtype.kind == 'f': if isinstance(value, np.ndarray): result = result.copy() elif result.dtype.itemsize > 2: result = result.astype(np.float) else: result = result.astype(np.float32) else: is_scalar = True result = ma.array([value]).astype(np.float) return result, is_scalar def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin == vmax: result.fill(0) # Or should it be all masked? Or 0.5? elif vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") else: vmin = float(vmin) vmax = float(vmax) if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # ma division is very slow; we can take a shortcut resdat = result.data resdat -= vmin resdat /= (vmax - vmin) result = np.ma.array(resdat, mask=result.mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin = float(self.vmin) vmax = float(self.vmax) if cbook.iterable(value): val = ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): """ Set *vmin*, *vmax* to min, max of *A*. """ self.vmin = ma.min(A) self.vmax = ma.max(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None and np.size(A) > 0: self.vmin = ma.min(A) if self.vmax is None and np.size(A) > 0: self.vmax = ma.max(A) def scaled(self): 'return true if vmin and vmax set' return (self.vmin is not None and self.vmax is not None) class LogNorm(Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) result = ma.masked_less_equal(result, 0, copy=False) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin <= 0: raise ValueError("values must all be positive") elif vmin == vmax: result.fill(0) else: if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = result.data mask = result.mask if mask is np.ma.nomask: mask = (resdat <= 0) else: mask |= resdat <= 0 cbook._putmask(resdat, mask, 1) np.log(resdat, resdat) resdat -= np.log(vmin) resdat /= (np.log(vmax) - np.log(vmin)) result = np.ma.array(resdat, mask=mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin * ma.power((vmax / vmin), val) else: return vmin * pow((vmax / vmin), value) def autoscale(self, A): """ Set *vmin*, *vmax* to min, max of *A*. """ A = ma.masked_less_equal(A, 0, copy=False) self.vmin = ma.min(A) self.vmax = ma.max(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is not None and self.vmax is not None: return A = ma.masked_less_equal(A, 0, copy=False) if self.vmin is None: self.vmin = ma.min(A) if self.vmax is None: self.vmax = ma.max(A) class SymLogNorm(Normalize): """ The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter *linthresh* allows the user to specify the size of this range (-*linthresh*, *linthresh*). """ def __init__(self, linthresh, linscale=1.0, vmin=None, vmax=None, clip=False): """ *linthresh*: The range within which the plot is linear (to avoid having the plot go to infinity around zero). *linscale*: This allows the linear range (-*linthresh* to *linthresh*) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when *linscale* == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range. Defaults to 1. """ Normalize.__init__(self, vmin, vmax, clip) self.linthresh = float(linthresh) self._linscale_adj = (linscale / (1.0 - np.e ** -1)) def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = self._transform(result.data) resdat -= self._lower resdat /= (self._upper - self._lower) if is_scalar: result = result[0] return result def _transform(self, a): """ Inplace transformation. """ masked = np.abs(a) > self.linthresh sign = np.sign(a[masked]) log = (self._linscale_adj + np.log(np.abs(a[masked]) / self.linthresh)) log *= sign * self.linthresh a[masked] = log a[~masked] *= self._linscale_adj return a def _inv_transform(self, a): """ Inverse inplace Transformation. """ masked = np.abs(a) > (self.linthresh * self._linscale_adj) sign = np.sign(a[masked]) exp = np.exp(sign * a[masked] / self.linthresh - self._linscale_adj) exp *= sign * self.linthresh a[masked] = exp a[~masked] /= self._linscale_adj return a def _transform_vmin_vmax(self): """ Calculates vmin and vmax in the transformed system. """ vmin, vmax = self.vmin, self.vmax arr = np.array([vmax, vmin]).astype(np.float) self._upper, self._lower = self._transform(arr) def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") val = ma.asarray(value) val = val * (self._upper - self._lower) + self._lower return self._inv_transform(val) def autoscale(self, A): """ Set *vmin*, *vmax* to min, max of *A*. """ self.vmin = ma.min(A) self.vmax = ma.max(A) self._transform_vmin_vmax() def autoscale_None(self, A): """ autoscale only None-valued vmin or vmax """ if self.vmin is not None and self.vmax is not None: pass if self.vmin is None: self.vmin = ma.min(A) if self.vmax is None: self.vmax = ma.max(A) self._transform_vmin_vmax() class PowerNorm(Normalize): """ Normalize a given value to the ``[0, 1]`` interval with a power-law scaling. This will clip any negative data points to 0. """ def __init__(self, gamma, vmin=None, vmax=None, clip=False): Normalize.__init__(self, vmin, vmax, clip) self.gamma = gamma def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) gamma = self.gamma vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: res_mask = result.data < 0 if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) resdat = result.data resdat -= vmin np.power(resdat, gamma, resdat) resdat /= (vmax - vmin) ** gamma result = np.ma.array(resdat, mask=result.mask, copy=False) result[res_mask] = 0 if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") gamma = self.gamma vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return ma.power(value, 1. / gamma) * (vmax - vmin) + vmin else: return pow(value, 1. / gamma) * (vmax - vmin) + vmin def autoscale(self, A): """ Set *vmin*, *vmax* to min, max of *A*. """ self.vmin = ma.min(A) if self.vmin < 0: self.vmin = 0 warnings.warn("Power-law scaling on negative values is " "ill-defined, clamping to 0.") self.vmax = ma.max(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None and np.size(A) > 0: self.vmin = ma.min(A) if self.vmin < 0: self.vmin = 0 warnings.warn("Power-law scaling on negative values is " "ill-defined, clamping to 0.") if self.vmax is None and np.size(A) > 0: self.vmax = ma.max(A) class BoundaryNorm(Normalize): """ Generate a colormap index based on discrete intervals. Unlike :class:`Normalize` or :class:`LogNorm`, :class:`BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. """ def __init__(self, boundaries, ncolors, clip=False): """ *boundaries* a monotonically increasing sequence *ncolors* number of colors in the colormap to be used If:: b[i] <= v < b[i+1] then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1. Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices by :meth:`Colormap.__call__` . """ self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N - 1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax + 1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx >= b] = i if self._interp: scalefac = float(self.Ncmap - 1) / (self.N - 2) iret = (iret * scalefac).astype(np.int16) iret[xx < self.vmin] = -1 iret[xx >= self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret def inverse(self, value): return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): """ Dummy replacement for Normalize, for the case where we want to use indices directly in a :class:`~matplotlib.cm.ScalarMappable` . """ def __call__(self, value, clip=None): return value def inverse(self, value): return value # compatibility with earlier class names that violated convention: normalize = cbook.deprecated('1.3', alternative='Normalize', name='normalize', obj_type='class alias')(Normalize) no_norm = cbook.deprecated('1.3', alternative='NoNorm', name='no_norm', obj_type='class alias')(NoNorm) def rgb_to_hsv(arr): """ convert float rgb values (in the range [0, 1]), in a numpy array to hsv values. Parameters ---------- arr : (..., 3) array-like All values must be in the range [0, 1] Returns ------- hsv : (..., 3) ndarray Colors converted to hsv values in range [0, 1] """ # make sure it is an ndarray arr = np.asarray(arr) # check length of the last dimension, should be _some_ sort of rgb if arr.shape[-1] != 3: raise ValueError("Last dimension of input array must be 3; " "shape {shp} was found.".format(shp=arr.shape)) in_ndim = arr.ndim if arr.ndim == 1: arr = np.array(arr, ndmin=2) # make sure we don't have an int image if arr.dtype.kind in ('iu'): arr = arr.astype(np.float32) out = np.zeros_like(arr) arr_max = arr.max(-1) ipos = arr_max > 0 delta = arr.ptp(-1) s = np.zeros_like(delta) s[ipos] = delta[ipos] / arr_max[ipos] ipos = delta > 0 # red is max idx = (arr[..., 0] == arr_max) & ipos out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] # green is max idx = (arr[..., 1] == arr_max) & ipos out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx] # blue is max idx = (arr[..., 2] == arr_max) & ipos out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx] out[..., 0] = (out[..., 0] / 6.0) % 1.0 out[..., 1] = s out[..., 2] = arr_max if in_ndim == 1: out.shape = (3,) return out def hsv_to_rgb(hsv): """ convert hsv values in a numpy array to rgb values all values assumed to be in range [0, 1] Parameters ---------- hsv : (..., 3) array-like All values assumed to be in range [0, 1] Returns ------- rgb : (..., 3) ndarray Colors converted to RGB values in range [0, 1] """ # make sure it is an ndarray hsv = np.asarray(hsv) # check length of the last dimension, should be _some_ sort of rgb if hsv.shape[-1] != 3: raise ValueError("Last dimension of input array must be 3; " "shape {shp} was found.".format(shp=hsv.shape)) # if we got pased a 1D array, try to treat as # a single color and reshape as needed in_ndim = hsv.ndim if in_ndim == 1: hsv = np.array(hsv, ndmin=2) # make sure we don't have an int image if hsv.dtype.kind in ('iu'): hsv = hsv.astype(np.float32) h = hsv[..., 0] s = hsv[..., 1] v = hsv[..., 2] r = np.empty_like(h) g = np.empty_like(h) b = np.empty_like(h) i = (h * 6.0).astype(np.int) f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) idx = i % 6 == 0 r[idx] = v[idx] g[idx] = t[idx] b[idx] = p[idx] idx = i == 1 r[idx] = q[idx] g[idx] = v[idx] b[idx] = p[idx] idx = i == 2 r[idx] = p[idx] g[idx] = v[idx] b[idx] = t[idx] idx = i == 3 r[idx] = p[idx] g[idx] = q[idx] b[idx] = v[idx] idx = i == 4 r[idx] = t[idx] g[idx] = p[idx] b[idx] = v[idx] idx = i == 5 r[idx] = v[idx] g[idx] = p[idx] b[idx] = q[idx] idx = s == 0 r[idx] = v[idx] g[idx] = v[idx] b[idx] = v[idx] rgb = np.empty_like(hsv) rgb[..., 0] = r rgb[..., 1] = g rgb[..., 2] = b if in_ndim == 1: rgb.shape = (3, ) return rgb class LightSource(object): """ Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with the azimuth measured clockwise from north and elevation up from the zero plane of the surface. The :meth:`shade` is used to produce rgb values for a shaded relief image given a data array. """ def __init__(self, azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0): """ Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of the surface) of the light source in degrees. The color of the resulting image will be darkened by moving the (s,v) values (in hsv colorspace) toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s,v) toward (hsv_max_sat hsv_max_val) in regions that are illuminated. The default extremes are chose so that completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points are nearly white (s = 0, v = 1). """ self.azdeg = azdeg self.altdeg = altdeg self.hsv_min_val = hsv_min_val self.hsv_max_val = hsv_max_val self.hsv_min_sat = hsv_min_sat self.hsv_max_sat = hsv_max_sat def shade(self, data, cmap, norm=None): """ Take the input data array, convert to HSV values in the given colormap, then adjust those color values to give the impression of a shaded relief map with a specified light source. RGBA values are returned, which can then be used to plot the shaded image with imshow. """ if norm is None: norm = Normalize(vmin=data.min(), vmax=data.max()) rgb0 = cmap(norm(data)) rgb1 = self.shade_rgb(rgb0, elevation=data) rgb0[:, :, 0:3] = rgb1 return rgb0 def shade_rgb(self, rgb, elevation, fraction=1.): """ Take the input RGB array (ny*nx*3) adjust their color values to given the impression of a shaded relief map with a specified light source using the elevation (ny*nx). A new RGB array ((ny*nx*3)) is returned. """ # imagine an artificial sun placed at infinity in some azimuth and # elevation position illuminating our surface. The parts of the # surface that slope toward the sun should brighten while those sides # facing away should become darker. convert alt, az to radians az = self.azdeg * np.pi / 180.0 alt = self.altdeg * np.pi / 180.0 # gradient in x and y directions dx, dy = np.gradient(elevation) slope = 0.5 * np.pi - np.arctan(np.hypot(dx, dy)) aspect = np.arctan2(dx, dy) intensity = (np.sin(alt) * np.sin(slope) + np.cos(alt) * np.cos(slope) * np.cos(-az - aspect - 0.5 * np.pi)) # rescale to interval -1,1 # +1 means maximum sun exposure and -1 means complete shade. intensity = (intensity - intensity.min()) / \ (intensity.max() - intensity.min()) intensity = (2. * intensity - 1.) * fraction # convert to rgb, then rgb to hsv #rgb = cmap((data-data.min())/(data.max()-data.min())) hsv = rgb_to_hsv(rgb[:, :, 0:3]) # modify hsv values to simulate illumination. hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10, intensity > 0), ((1. - intensity) * hsv[:, :, 1] + intensity * self.hsv_max_sat), hsv[:, :, 1]) hsv[:, :, 2] = np.where(intensity > 0, ((1. - intensity) * hsv[:, :, 2] + intensity * self.hsv_max_val), hsv[:, :, 2]) hsv[:, :, 1] = np.where(np.logical_and(np.abs(hsv[:, :, 1]) > 1.e-10, intensity < 0), ((1. + intensity) * hsv[:, :, 1] - intensity * self.hsv_min_sat), hsv[:, :, 1]) hsv[:, :, 2] = np.where(intensity < 0, ((1. + intensity) * hsv[:, :, 2] - intensity * self.hsv_min_val), hsv[:, :, 2]) hsv[:, :, 1:] = np.where(hsv[:, :, 1:] < 0., 0, hsv[:, :, 1:]) hsv[:, :, 1:] = np.where(hsv[:, :, 1:] > 1., 1, hsv[:, :, 1:]) # convert modified hsv back to rgb. return hsv_to_rgb(hsv) def from_levels_and_colors(levels, colors, extend='neither'): """ A helper routine to generate a cmap and a norm instance which behave similar to contourf's levels and colors arguments. Parameters ---------- levels : sequence of numbers The quantization levels used to construct the :class:`BoundaryNorm`. Values ``v`` are quantizized to level ``i`` if ``lev[i] <= v < lev[i+1]``. colors : sequence of colors The fill color to use for each level. If `extend` is "neither" there must be ``n_level - 1`` colors. For an `extend` of "min" or "max" add one extra color, and for an `extend` of "both" add two colors. extend : {'neither', 'min', 'max', 'both'}, optional The behaviour when a value falls out of range of the given levels. See :func:`~matplotlib.pyplot.contourf` for details. Returns ------- (cmap, norm) : tuple containing a :class:`Colormap` and a \ :class:`Normalize` instance """ colors_i0 = 0 colors_i1 = None if extend == 'both': colors_i0 = 1 colors_i1 = -1 extra_colors = 2 elif extend == 'min': colors_i0 = 1 extra_colors = 1 elif extend == 'max': colors_i1 = -1 extra_colors = 1 elif extend == 'neither': extra_colors = 0 else: raise ValueError('Unexpected value for extend: {0!r}'.format(extend)) n_data_colors = len(levels) - 1 n_expected_colors = n_data_colors + extra_colors if len(colors) != n_expected_colors: raise ValueError('With extend == {0!r} and n_levels == {1!r} expected' ' n_colors == {2!r}. Got {3!r}.' ''.format(extend, len(levels), n_expected_colors, len(colors))) cmap = ListedColormap(colors[colors_i0:colors_i1], N=n_data_colors) if extend in ['min', 'both']: cmap.set_under(colors[0]) else: cmap.set_under('none') if extend in ['max', 'both']: cmap.set_over(colors[-1]) else: cmap.set_over('none') cmap.colorbar_extend = extend norm = BoundaryNorm(levels, ncolors=n_data_colors) return cmap, norm
mit
jenshnielsen/basemap
examples/contour_demo.py
4
4103
from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt import sys # examples of filled contour plots on map projections. # read in data on lat/lon grid. hgt = np.loadtxt('500hgtdata.gz') lons = np.loadtxt('500hgtlons.gz') lats = np.loadtxt('500hgtlats.gz') lons, lats = np.meshgrid(lons, lats) # create new figure fig=plt.figure() # setup of sinusoidal basemap m = Basemap(resolution='c',projection='sinu',lon_0=0) # make a filled contour plot. # create contour lines CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) # fill between contour lines. CS2 =\ m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,30.) m.drawmeridians(meridians) plt.title('Sinusoidal Filled Contour Demo') sys.stdout.write('plotting with sinusoidal basemap ...\n') # create new figure fig=plt.figure() # setup of mollweide basemap m = Basemap(resolution='c',projection='moll',lon_0=0) # make a filled contour plot. CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) CS2 =\ m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,30.) m.drawmeridians(meridians) plt.title('Mollweide Filled Contour Demo') sys.stdout.write('plotting with mollweide basemap ...\n') # create new figure fig=plt.figure() # set up Robinson map projection. m = Basemap(resolution='c',projection='robin',lon_0=0) # make a filled contour plot. CS1 = m.contour(lons,lats,hgt,15,linewidths=0.5,colors='k',latlon=True) CS2 = m.contourf(lons,lats,hgt,CS1.levels,cmap=plt.cm.jet,extend='both',latlon=True) m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(-60.,90,30.) m.drawparallels(parallels,labels=[1,0,0,0]) meridians = np.arange(-360.,360.,60.) m.drawmeridians(meridians,labels=[0,0,0,1]) plt.title('Robinson Filled Contour Demo') sys.stdout.write('plotting with robinson basemap ...\n') # create new figure fig=plt.figure() # set up map projection (azimuthal equidistant). m = Basemap(projection='npaeqd',lon_0=-90,boundinglat=15.,resolution='c') # make a filled contour plot. x, y = m(lons, lats) CS1 = m.contour(x,y,hgt,15,linewidths=0.5,colors='k') CS2 = m.contourf(x,y,hgt,CS2.levels,cmap=plt.cm.jet,extend='both') m.colorbar(CS2,pad='12%') # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.drawmapboundary() m.fillcontinents() # draw parallels and meridians. parallels = np.arange(0.,80,20.) m.drawparallels(parallels,labels=[0,0,1,1]) meridians = np.arange(10.,360.,20.) m.drawmeridians(meridians,labels=[1,1,1,1]) plt.title('Azimuthal Equidistant Filled Contour Demo',y=1.075) sys.stdout.write('plotting with azimuthal equidistant basemap ...\n') # create new figure fig=plt.figure() # setup of orthographic basemap m = Basemap(resolution='c',projection='ortho',\ lat_0=45.,lon_0=-120.) # make a filled contour plot. x, y = m(lons, lats) CS1 = m.contour(x,y,hgt,15,linewidths=0.5,colors='k') CS2 = m.contourf(x,y,hgt,CS1.levels,cmap=plt.cm.jet,extend='both') m.colorbar(CS2) # draw colorbar # draw coastlines and political boundaries. m.drawcoastlines() m.fillcontinents() m.drawmapboundary() # draw parallels and meridians. parallels = np.arange(-80.,90,20.) m.drawparallels(parallels) meridians = np.arange(-360.,360.,20.) m.drawmeridians(meridians) plt.title('Orthographic Filled Contour Demo') sys.stdout.write('plotting with orthographic basemap ..\n') plt.show()
gpl-2.0
mayblue9/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
0asa/scikit-learn
examples/linear_model/plot_ridge_path.py
254
1655
""" =========================================================== Plot Ridge coefficients as a function of the regularization =========================================================== Shows the effect of collinearity in the coefficients of an estimator. .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares, coefficients exhibit big oscillations. """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # X is the 10x10 Hilbert matrix X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis]) y = np.ones(10) ############################################################################### # Compute paths n_alphas = 200 alphas = np.logspace(-10, -2, n_alphas) clf = linear_model.Ridge(fit_intercept=False) coefs = [] for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) ############################################################################### # Display results ax = plt.gca() ax.set_color_cycle(['b', 'r', 'g', 'c', 'k', 'y', 'm']) ax.plot(alphas, coefs) ax.set_xscale('log') ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
oliverlee/sympy
doc/ext/docscrape_sphinx.py
51
9709
from __future__ import division, absolute_import, print_function import sys import re import inspect import textwrap import pydoc import sphinx import collections from docscrape import NumpyDocString, FunctionDoc, ClassDoc if sys.version_info[0] >= 3: sixu = lambda s: s else: sixu = lambda s: unicode(s, 'unicode_escape') class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.class_members_toctree = config.get('class_members_toctree', True) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self, name='Returns'): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent([param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: if param_type: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) else: out += self._str_indent(['**%s**' % param.strip()]) if desc: out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix # Lines that are commented out are used to make the # autosummary:: table. Since SymPy does not use the # autosummary:: functionality, it is easiest to just comment it # out. # autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj)): param_obj = None # if param_obj and (pydoc.getdoc(param_obj) or not desc): # # Referenced object has a docstring # autosum += [" %s%s" % (prefix, param)] # else: others.append((param, param_type, desc)) # if autosum: # out += ['.. autosummary::'] # if self.class_members_toctree: # out += [' :toctree:'] # out += [''] + autosum if others: maxlen_0 = max(3, max([len(x[0]) for x in others])) hdr = sixu("=")*maxlen_0 + sixu(" ") + sixu("=")*10 fmt = sixu('%%%ds %%s ') % (maxlen_0,) out += ['', '', hdr] for param, param_type, desc in others: desc = sixu(" ").join(x.strip() for x in desc).strip() if param_type: desc = "(%s) %s" % (param_type, desc) out += [fmt % (param.strip(), desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() out += self._str_param_list('Parameters') out += self._str_returns('Returns') out += self._str_returns('Yields') for param_list in ('Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for s in self._other_keys: out += self._str_section(s) out += self._str_member_list('Attributes') out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj self.load_config(config) SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause