repo_name
stringlengths
7
90
path
stringlengths
4
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
762
838k
license
stringclasses
15 values
koverholt/bayes-fire
Example_Cases/Evac_Stairs/Scripts/run_evac_flow_effective_width.py
1
5235
#!/usr/bin/env python """ PyMC Bayesian Inference on Evacuation Data Stage 0: Plot evac data. Stage 1: Fit evac data with linear model. Stage 2: Fit evac data with power law model. """ import matplotlib matplotlib.use("Agg") import pylab as pl import evac_flow_effective_width_graphics as graphics import pymc as mc import evac_flow_effective_width_models as models import data_evac # ============ # = Settings = # ============ mcmc_iterations = 1000000 burn_iterations = 800000 thinning_parameter = 200 case_name = 'effective_width' independent_var = data_evac.effective_width # ============================ # = Stage 0 (plot exp. data) = # ============================ # Plot evac data pl.figure(figsize=(12,9)) graphics.plot_all_data() pl.savefig('../Figures/Data_Models/flow_' + case_name + '_evac_data.pdf') # ========================== # = Stage 1 (linear model) = # ========================== # Generate model vars1 = models.linear() # Fit model with MAP estimates map = mc.MAP(vars1) map.fit(method='fmin_powell', verbose=2) ### Initilaize posterior predictive check ### # Add a data posterior prediction deterministic @mc.deterministic def y_pred1(mu=vars1['y_mean'], sigma=vars1['sigma']): return mc.rnormal(mu, sigma**-2) vars1['y_pred1'] = y_pred1 ### End initialize posterior predictive check ### # Import model variables and set database options m1 = mc.MCMC(vars1, db='sqlite', dbname='../Figures/Data_Models/flow_' + case_name + '_evac_linear.sqlite') # Use adaptive Metropolis-Hastings step method m1.use_step_method(mc.AdaptiveMetropolis, [m1.theta]) # Configure and run MCMC simulation m1.sample(iter=mcmc_iterations, burn=burn_iterations, thin=thinning_parameter) # Plot traces and model with mean values pl.figure(figsize=(12,9)) graphics.plot_evac_data() graphics.plot_linear_model(m1) pl.savefig('../Figures/Data_Models/flow_' + case_name + '_evac_linear.pdf') # Plot resulting distributions and convergence diagnostics mc.Matplot.plot(m1, format='pdf', path='../Figures/Data_Models/flow_' + case_name + '_evac_linear', common_scale=False) ### Posterior predictive check ### # Plot residuals pl.figure(figsize=(12,9)) y_err1 = m1.y_obs.value - m1.y_mean.stats()['mean'] pl.hlines([0], 0.6, 1.3, linewidth=3, linestyle='dashed') pl.plot(independent_var, y_err1, 'gs', mew=0, ms=10) graphics.decorate_plot() pl.ylabel("Residual (observed - expected)", fontsize=24) pl.axis([0.6, 1.3, -3, 3]) pl.savefig('../Figures/Data_Models/PPC/flow_' + case_name + '_evac_linear_residuals.pdf') # Generate a posterior predictive check pl.figure(figsize=(12,9)) graphics.plot_predicted_data(y_pred1) pl.savefig('../Figures/Data_Models/PPC/flow_' + case_name + '_evac_linear_ppc.pdf') ### End posterior predictive check ### # ============================= # = Stage 2 (power law model) = # ============================= # Generate model vars2 = models.power_law() # Fit model with MAP estimates map = mc.MAP(vars2) map.fit(method='fmin_powell', verbose=2) ### Initilaize posterior predictive check ### # Add a data posterior prediction deterministic @mc.deterministic def y_pred2(mu=vars2['y_mean'], sigma=vars2['sigma']): return mc.rnormal(mu, sigma**-2) vars2['y_pred2'] = y_pred2 ### End initialize posterior predictive check ### # Import model variables and set database options m2 = mc.MCMC(vars2, db='sqlite', dbname='../Figures/Data_Models/flow_' + case_name + '_evac_power_law.sqlite') # Use adaptive Metropolis-Hastings step method m2.use_step_method(mc.AdaptiveMetropolis, [m2.theta]) # Configure and run MCMC simulation m2.sample(iter=mcmc_iterations, burn=burn_iterations, thin=thinning_parameter) # Plot traces and model with mean values pl.figure(figsize=(12,9)) graphics.plot_evac_data() graphics.plot_power_law_model(m2) pl.savefig('../Figures/Data_Models/flow_' + case_name + '_evac_power_law.pdf') # Plot resulting distributions and convergence diagnostics mc.Matplot.plot(m2, format='pdf', path='../Figures/Data_Models/flow_' + case_name + '_evac_power_law', common_scale=False) ### Posterior predictive check ### # Plot residuals pl.figure(figsize=(12,9)) y_err2 = m2.y_obs.value - m2.y_mean.stats()['mean'] pl.hlines([0], 0.6, 1.3, linewidth=3, linestyle='dashed') pl.plot(independent_var, y_err2, 'gs', mew=0, ms=10) graphics.decorate_plot() pl.ylabel("Residual (observed - expected)", fontsize=24) pl.axis([0.6, 1.3, -3, 3]) pl.savefig('../Figures/Data_Models/PPC/flow_' + case_name + '_evac_power_law_residuals.pdf') # Generate a posterior predictive check pl.figure(figsize=(12,9)) graphics.plot_predicted_data(y_pred2) pl.savefig('../Figures/Data_Models/PPC/flow_' + case_name + '_evac_power_law_ppc.pdf') ### End posterior predictive check ### # ================= # = Print results = # ================= # Display results print "Results for Linear Model" m1.theta.summary() print "Results for Power Law Model" m2.theta.summary() # Write results to file m1.write_csv('../Figures/Data_Models/flow_' + case_name + '_evac_linear.csv') m2.write_csv('../Figures/Data_Models/flow_' + case_name + '_evac_power_law.csv') # Find DIC print 'DIC (Linear Model) = %f' % m1.dic print 'DIC (Power Law Model) = %f' % m2.dic
bsd-3-clause
khkaminska/scikit-learn
sklearn/linear_model/randomized_l1.py
68
23405
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc'], y_numeric=True, ensure_min_samples=2) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
andyh616/mne-python
mne/time_frequency/tfr.py
1
51516
"""A module which implements the time frequency estimation. Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM """ # Authors : Alexandre Gramfort <[email protected]> # Hari Bharadwaj <[email protected]> # # License : BSD (3-clause) import warnings from math import sqrt from copy import deepcopy import numpy as np from scipy import linalg from scipy.fftpack import fftn, ifftn from ..fixes import partial from ..baseline import rescale from ..parallel import parallel_func from ..utils import logger, verbose, _time_mask from ..channels.channels import ContainsMixin, UpdateChannelsMixin from ..io.pick import pick_info, pick_types from ..io.meas_info import Info from ..utils import check_fname from .multitaper import dpss_windows from ..viz.utils import figure_nobar from ..externals.h5io import write_hdf5, read_hdf5 def _get_data(inst, return_itc): """Get data from Epochs or Evoked instance as epochs x ch x time""" from ..epochs import _BaseEpochs from ..evoked import Evoked if not isinstance(inst, (_BaseEpochs, Evoked)): raise TypeError('inst must be Epochs or Evoked') if isinstance(inst, _BaseEpochs): data = inst.get_data() else: if return_itc: raise ValueError('return_itc must be False for evoked data') data = inst.data[np.newaxis, ...].copy() return data def morlet(sfreq, freqs, n_cycles=7, sigma=None, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency freqs : array frequency range of interest (1 x Frequencies) n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. sigma : float, (optional) It controls the width of the wavelet ie its temporal resolution. If sigma is None the temporal resolution is adapted with the frequency like for all wavelet transform. The higher the frequency the shorter is the wavelet. If sigma is fixed the temporal resolution is fixed like for the short time Fourier transform and the number of oscillations increases with the frequency. zero_mean : bool Make sure the wavelet is zero mean Returns ------- Ws : list of array Wavelets time series See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ Ws = list() n_cycles = np.atleast_1d(n_cycles) if (n_cycles.size != 1) and (n_cycles.size != len(freqs)): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] # fixed or scale-dependent window if sigma is None: sigma_t = this_n_cycles / (2.0 * np.pi * f) else: sigma_t = this_n_cycles / (2.0 * np.pi * sigma) # this scaling factor is proportional to (Tallon-Baudry 98): # (sigma_t*sqrt(pi))^(-1/2); t = np.arange(0., 5. * sigma_t, 1.0 / sfreq) t = np.r_[-t[::-1], t[1:]] oscillation = np.exp(2.0 * 1j * np.pi * f * t) gaussian_enveloppe = np.exp(-t ** 2 / (2.0 * sigma_t ** 2)) if zero_mean: # to make it zero mean real_offset = np.exp(- 2 * (np.pi * f * sigma_t) ** 2) oscillation -= real_offset W = oscillation * gaussian_enveloppe W /= sqrt(0.5) * linalg.norm(W.ravel()) Ws.append(W) return Ws def _dpss_wavelet(sfreq, freqs, n_cycles=7, time_bandwidth=4.0, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. Defaults to 7. time_bandwidth : float, (optional) Time x Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0, giving 3 good tapers. Returns ------- Ws : list of array Wavelets time series """ Ws = list() if time_bandwidth < 2.0: raise ValueError("time_bandwidth should be >= 2.0 for good tapers") n_taps = int(np.floor(time_bandwidth - 1)) n_cycles = np.atleast_1d(n_cycles) if n_cycles.size != 1 and n_cycles.size != len(freqs): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for m in range(n_taps): Wm = list() for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] t_win = this_n_cycles / float(f) t = np.arange(0., t_win, 1.0 / sfreq) # Making sure wavelets are centered before tapering oscillation = np.exp(2.0 * 1j * np.pi * f * (t - t_win / 2.)) # Get dpss tapers tapers, conc = dpss_windows(t.shape[0], time_bandwidth / 2., n_taps) Wk = oscillation * tapers[m] if zero_mean: # to make it zero mean real_offset = Wk.mean() Wk -= real_offset Wk /= sqrt(0.5) * linalg.norm(Wk.ravel()) Wm.append(Wk) Ws.append(Wm) return Ws def _centered(arr, newsize): """Aux Function to center data""" # Return the center newsize portion of the array. newsize = np.asarray(newsize) currsize = np.array(arr.shape) startind = (currsize - newsize) // 2 endind = startind + newsize myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def _cwt_fft(X, Ws, mode="same"): """Compute cwt with fft based convolutions Return a generator over signals. """ X = np.asarray(X) # Precompute wavelets for given frequency range to save time n_signals, n_times = X.shape n_freqs = len(Ws) Ws_max_size = max(W.size for W in Ws) size = n_times + Ws_max_size - 1 # Always use 2**n-sized FFT fsize = 2 ** int(np.ceil(np.log2(size))) # precompute FFTs of Ws fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128) for i, W in enumerate(Ws): if len(W) > n_times: raise ValueError('Wavelet is too long for such a short signal. ' 'Reduce the number of cycles.') fft_Ws[i] = fftn(W, [fsize]) for k, x in enumerate(X): if mode == "full": tfr = np.zeros((n_freqs, fsize), dtype=np.complex128) elif mode == "same" or mode == "valid": tfr = np.zeros((n_freqs, n_times), dtype=np.complex128) fft_x = fftn(x, [fsize]) for i, W in enumerate(Ws): ret = ifftn(fft_x * fft_Ws[i])[:n_times + W.size - 1] if mode == "valid": sz = abs(W.size - n_times) + 1 offset = (n_times - sz) / 2 tfr[i, offset:(offset + sz)] = _centered(ret, sz) else: tfr[i, :] = _centered(ret, n_times) yield tfr def _cwt_convolve(X, Ws, mode='same'): """Compute time freq decomposition with temporal convolutions Return a generator over signals. """ X = np.asarray(X) n_signals, n_times = X.shape n_freqs = len(Ws) # Compute convolutions for x in X: tfr = np.zeros((n_freqs, n_times), dtype=np.complex128) for i, W in enumerate(Ws): ret = np.convolve(x, W, mode=mode) if len(W) > len(x): raise ValueError('Wavelet is too long for such a short ' 'signal. Reduce the number of cycles.') if mode == "valid": sz = abs(W.size - n_times) + 1 offset = (n_times - sz) / 2 tfr[i, offset:(offset + sz)] = ret else: tfr[i] = ret yield tfr def cwt_morlet(X, sfreq, freqs, use_fft=True, n_cycles=7.0, zero_mean=False): """Compute time freq decomposition with Morlet wavelets This function operates directly on numpy arrays. Consider using `tfr_morlet` to process `Epochs` or `Evoked` instances. Parameters ---------- X : array of shape [n_signals, n_times] signals (one per line) sfreq : float sampling Frequency freqs : array Array of frequencies of interest use_fft : bool Compute convolution with FFT or temoral convolution. n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. zero_mean : bool Make sure the wavelets are zero mean. Returns ------- tfr : 3D array Time Frequency Decompositions (n_signals x n_frequencies x n_times) See Also -------- tfr.cwt : Compute time-frequency decomposition with user-provided wavelets """ mode = 'same' # mode = "valid" n_signals, n_times = X.shape n_frequencies = len(freqs) # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, freqs, n_cycles=n_cycles, zero_mean=zero_mean) if use_fft: coefs = _cwt_fft(X, Ws, mode) else: coefs = _cwt_convolve(X, Ws, mode) tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr return tfrs def cwt(X, Ws, use_fft=True, mode='same', decim=1): """Compute time freq decomposition with continuous wavelet transform Parameters ---------- X : array of shape [n_signals, n_times] signals (one per line) Ws : list of array Wavelets time series use_fft : bool Use FFT for convolutions mode : 'same' | 'valid' | 'full' Convention for convolution decim : int Temporal decimation factor Returns ------- tfr : 3D array Time Frequency Decompositions (n_signals x n_frequencies x n_times) See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ n_signals, n_times = X[:, ::decim].shape n_frequencies = len(Ws) if use_fft: coefs = _cwt_fft(X, Ws, mode) else: coefs = _cwt_convolve(X, Ws, mode) tfrs = np.empty((n_signals, n_frequencies, n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr[..., ::decim] return tfrs def _time_frequency(X, Ws, use_fft, decim): """Aux of time_frequency for parallel computing over channels """ n_epochs, n_times = X.shape n_times = n_times // decim + bool(n_times % decim) n_frequencies = len(Ws) psd = np.zeros((n_frequencies, n_times)) # PSD plf = np.zeros((n_frequencies, n_times), np.complex) # phase lock mode = 'same' if use_fft: tfrs = _cwt_fft(X, Ws, mode) else: tfrs = _cwt_convolve(X, Ws, mode) for tfr in tfrs: tfr = tfr[:, ::decim] tfr_abs = np.abs(tfr) psd += tfr_abs ** 2 plf += tfr / tfr_abs psd /= n_epochs plf = np.abs(plf) / n_epochs return psd, plf @verbose def single_trial_power(data, sfreq, frequencies, use_fft=True, n_cycles=7, baseline=None, baseline_mode='ratio', times=None, decim=1, n_jobs=1, zero_mean=False, verbose=None): """Compute time-frequency power on single epochs Parameters ---------- data : array of shape [n_epochs, n_channels, n_times] The epochs sfreq : float Sampling rate frequencies : array-like The frequencies use_fft : bool Use the FFT for convolutions or not. n_cycles : float | array of float Number of cycles in the Morlet wavelet. Fixed number or one per frequency. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. baseline_mode : None | 'ratio' | 'zscore' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) times : array Required to define baseline decim : int Temporal decimation factor n_jobs : int The number of epochs to process at the same time zero_mean : bool Make sure the wavelets are zero mean. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : 4D array Power estimate (Epochs x Channels x Frequencies x Timepoints). """ mode = 'same' n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, ::decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) parallel, my_cwt, _ = parallel_func(cwt, n_jobs) logger.info("Computing time-frequency power on single epochs...") power = np.empty((n_epochs, n_channels, n_frequencies, n_times), dtype=np.float) # Package arguments for `cwt` here to minimize omissions where only one of # the two calls below is updated with new function arguments. cwt_kw = dict(Ws=Ws, use_fft=use_fft, mode=mode, decim=decim) if n_jobs == 1: for k, e in enumerate(data): x = cwt(e, **cwt_kw) power[k] = (x * x.conj()).real else: # Precompute tf decompositions in parallel tfrs = parallel(my_cwt(e, **cwt_kw) for e in data) for k, tfr in enumerate(tfrs): power[k] = (tfr * tfr.conj()).real # Run baseline correction. Be sure to decimate the times array as well if # needed. if times is not None: times = times[::decim] power = rescale(power, times, baseline, baseline_mode, copy=False) return power def _induced_power_cwt(data, sfreq, frequencies, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=False): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with Morlet wavelets Parameters ---------- data : array 3D array of shape [n_epochs, n_channels, n_times] sfreq : float sampling Frequency frequencies : array Array of frequencies of interest use_fft : bool Compute transform with fft based convolutions or temporal convolutions. n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. decim: int Temporal decimation factor n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. zero_mean : bool Make sure the wavelets are zero mean. Returns ------- power : 2D array Induced power (Channels x Frequencies x Timepoints). Squared amplitude of time-frequency coefficients. phase_lock : 2D array Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints) """ n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, ::decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) psd = np.empty((n_channels, n_frequencies, n_times)) plf = np.empty((n_channels, n_frequencies, n_times)) # Separate to save memory for n_jobs=1 parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) psd_plf = parallel(my_time_frequency(data[:, c, :], Ws, use_fft, decim) for c in range(n_channels)) for c, (psd_c, plf_c) in enumerate(psd_plf): psd[c, :, :], plf[c, :, :] = psd_c, plf_c return psd, plf def _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB): """Aux Function to prepare tfr computation""" from ..viz.utils import _setup_vmin_vmax if mode is not None and baseline is not None: logger.info("Applying baseline correction '%s' during %s" % (mode, baseline)) data = rescale(data.copy(), times, baseline, mode) # crop time itmin, itmax = None, None idx = np.where(_time_mask(times, tmin, tmax))[0] if tmin is not None: itmin = idx[0] if tmax is not None: itmax = idx[-1] + 1 times = times[itmin:itmax] # crop freqs ifmin, ifmax = None, None idx = np.where(_time_mask(freqs, fmin, fmax))[0] if fmin is not None: ifmin = idx[0] if fmax is not None: ifmax = idx[-1] + 1 freqs = freqs[ifmin:ifmax] # crop data data = data[:, ifmin:ifmax, itmin:itmax] times *= 1e3 if dB: data = 10 * np.log10((data * data.conj()).real) vmin, vmax = _setup_vmin_vmax(data, vmin, vmax) return data, times, freqs, vmin, vmax class AverageTFR(ContainsMixin, UpdateChannelsMixin): """Container for Time-Frequency data Can for example store induced power at sensor level or intertrial coherence. Parameters ---------- info : Info The measurement info. data : ndarray, shape (n_channels, n_freqs, n_times) The data. times : ndarray, shape (n_times,) The time values in seconds. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. nave : int The number of averaged TFRs. comment : str | None Comment on the data, e.g., the experimental condition. Defaults to None. method : str | None Comment on the method used to compute the data, e.g., morlet wavelet. Defaults to None. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- ch_names : list The names of the channels. """ @verbose def __init__(self, info, data, times, freqs, nave, comment=None, method=None, verbose=None): self.info = info if data.ndim != 3: raise ValueError('data should be 3d. Got %d.' % data.ndim) n_channels, n_freqs, n_times = data.shape if n_channels != len(info['chs']): raise ValueError("Number of channels and data size don't match" " (%d != %d)." % (n_channels, len(info['chs']))) if n_freqs != len(freqs): raise ValueError("Number of frequencies and data size don't match" " (%d != %d)." % (n_freqs, len(freqs))) if n_times != len(times): raise ValueError("Number of times and data size don't match" " (%d != %d)." % (n_times, len(times))) self.data = data self.times = times self.freqs = freqs self.nave = nave self.comment = comment self.method = method @property def ch_names(self): return self.info['ch_names'] def crop(self, tmin=None, tmax=None, copy=False): """Crop data to a given time interval Parameters ---------- tmin : float | None Start time of selection in seconds. tmax : float | None End time of selection in seconds. copy : bool If False epochs is cropped in place. """ inst = self if not copy else self.copy() mask = _time_mask(inst.times, tmin, tmax) inst.times = inst.times[mask] inst.data = inst.data[..., mask] return inst @verbose def plot(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, cmap='RdBu_r', dB=False, colorbar=True, show=True, title=None, axes=None, layout=None, verbose=None): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot. For user defined axes, the colorbar cannot be drawn. Defaults to True. show : bool Call pyplot.show() at the end. title : str | None String for title. Defaults to None (blank/no title). axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channels. If instance of Axes, there must be only one channel plotted. layout : Layout | None Layout instance specifying sensor positions. Used for interactive plotting of topographies on rectangle selection. If possible, the correct layout is inferred from the data. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr import matplotlib.pyplot as plt times, freqs = self.times.copy(), self.freqs.copy() data = self.data[picks] data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB) tmin, tmax = times[0], times[-1] if isinstance(axes, plt.Axes): axes = [axes] if isinstance(axes, list) or isinstance(axes, np.ndarray): if len(axes) != len(picks): raise RuntimeError('There must be an axes for each picked ' 'channel.') for idx in range(len(data)): if axes is None: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes[idx] fig = ax.get_figure() onselect_callback = partial(self._onselect, baseline=baseline, mode=mode, layout=layout) _imshow_tfr(ax, 0, tmin, tmax, vmin, vmax, onselect_callback, ylim=None, tfr=data[idx: idx + 1], freq=freqs, x_label='Time (ms)', y_label='Frequency (Hz)', colorbar=colorbar, picker=False, cmap=cmap) if title: fig.suptitle(title) colorbar = False # only one colorbar for multiple axes if show: plt.show() return fig def _onselect(self, eclick, erelease, baseline, mode, layout): """Callback function called by rubber band selector in channel tfr.""" import matplotlib.pyplot as plt from ..viz import plot_tfr_topomap if abs(eclick.x - erelease.x) < .1 or abs(eclick.y - erelease.y) < .1: return plt.ion() # turn interactive mode on tmin = round(min(eclick.xdata, erelease.xdata) / 1000., 5) # ms to s tmax = round(max(eclick.xdata, erelease.xdata) / 1000., 5) fmin = round(min(eclick.ydata, erelease.ydata), 5) # Hz fmax = round(max(eclick.ydata, erelease.ydata), 5) tmin = min(self.times, key=lambda x: abs(x - tmin)) # find closest tmax = min(self.times, key=lambda x: abs(x - tmax)) fmin = min(self.freqs, key=lambda x: abs(x - fmin)) fmax = min(self.freqs, key=lambda x: abs(x - fmax)) if tmin == tmax or fmin == fmax: logger.info('The selected area is too small. ' 'Select a larger time-frequency window.') return types = list() if 'eeg' in self: types.append('eeg') if 'mag' in self: types.append('mag') if 'grad' in self: types.append('grad') fig = figure_nobar() fig.suptitle('{:.2f} s - {:.2f} s, {:.2f} Hz - {:.2f} Hz'.format(tmin, tmax, fmin, fmax), y=0.04) for idx, ch_type in enumerate(types): ax = plt.subplot(1, len(types), idx + 1) plot_tfr_topomap(self, ch_type=ch_type, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, layout=layout, baseline=baseline, mode=mode, cmap=None, title=ch_type, vmin=None, vmax=None, axes=ax) def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, layout=None, cmap='RdBu_r', title=None, dB=False, colorbar=True, layout_scale=0.945, show=True, border='none', fig_facecolor='k', font_color='w'): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. If None all available channels are displayed. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. layout : Layout | None Layout instance specifying sensor positions. If possible, the correct layout is inferred from the data. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. title : str Title of the figure. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot layout_scale : float Scaling factor for adjusting the relative size of the layout on the canvas. show : bool Call pyplot.show() at the end. border : str matplotlib borders style to be used for each sensor plot. fig_facecolor : str | obj The figure face color. Defaults to black. font_color: str | obj The color of tick labels in the colorbar. Defaults to white. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr, _plot_topo import matplotlib.pyplot as plt times = self.times.copy() freqs = self.freqs data = self.data info = self.info if picks is not None: data = data[picks] info = pick_info(info, picks) data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB) if layout is None: from mne import find_layout layout = find_layout(self.info) onselect_callback = partial(self._onselect, baseline=baseline, mode=mode, layout=layout) imshow = partial(_imshow_tfr, tfr=data, freq=freqs, cmap=cmap, onselect=onselect_callback) fig = _plot_topo(info=info, times=times, show_func=imshow, layout=layout, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, layout_scale=layout_scale, title=title, border=border, x_label='Time (ms)', y_label='Frequency (Hz)', fig_facecolor=fig_facecolor, font_color=font_color) if show: plt.show() return fig def _check_compat(self, tfr): """checks that self and tfr have the same time-frequency ranges""" assert np.all(tfr.times == self.times) assert np.all(tfr.freqs == self.freqs) def __add__(self, tfr): self._check_compat(tfr) out = self.copy() out.data += tfr.data return out def __iadd__(self, tfr): self._check_compat(tfr) self.data += tfr.data return self def __sub__(self, tfr): self._check_compat(tfr) out = self.copy() out.data -= tfr.data return out def __isub__(self, tfr): self._check_compat(tfr) self.data -= tfr.data return self def copy(self): """Return a copy of the instance.""" return deepcopy(self) def __repr__(self): s = "time : [%f, %f]" % (self.times[0], self.times[-1]) s += ", freq : [%f, %f]" % (self.freqs[0], self.freqs[-1]) s += ", nave : %d" % self.nave s += ', channels : %d' % self.data.shape[0] return "<AverageTFR | %s>" % s def apply_baseline(self, baseline, mode='mean'): """Baseline correct the data Parameters ---------- baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. """ self.data = rescale(self.data, self.times, baseline, mode, copy=False) def plot_topomap(self, tmin=None, tmax=None, fmin=None, fmax=None, ch_type=None, baseline=None, mode='mean', layout=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, unit=None, res=64, size=2, cbar_fmt='%1.1e', show_names=False, title=None, axes=None, show=True, outlines='head', head_pos=None): """Plot topographic maps of time-frequency intervals of TFR data Parameters ---------- tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. layout : None | Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data) or in case data contains only positive values 0. If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | None Colormap. If None and the plotted data is all positive, defaults to 'Reds'. If None and data contains also negative values, defaults to 'RdBu_r'. Defaults to None. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. unit : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If `mask` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. axes : instance of Axes | None The axes to plot to. If None the axes is defined automatically. show : bool Call pyplot.show() at the end. outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask, and the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. head_pos : dict | None If None (default), the sensors are positioned such that they span the head circle. If dict, can have entries 'center' (tuple) and 'scale' (tuple) for what the center and scale of the head should be relative to the electrode locations. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz import plot_tfr_topomap return plot_tfr_topomap(self, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, ch_type=ch_type, baseline=baseline, mode=mode, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, unit=unit, res=res, size=size, cbar_fmt=cbar_fmt, show_names=show_names, title=title, axes=axes, show=show, outlines=outlines, head_pos=head_pos) def save(self, fname, overwrite=False): """Save TFR object to hdf5 file Parameters ---------- fname : str The file name, which should end with -tfr.h5 . overwrite : bool If True, overwrite file (if it exists). Defaults to false """ write_tfrs(fname, self, overwrite=overwrite) def _prepare_write_tfr(tfr, condition): """Aux function""" return (condition, dict(times=tfr.times, freqs=tfr.freqs, data=tfr.data, info=tfr.info, nave=tfr.nave, comment=tfr.comment, method=tfr.method)) def write_tfrs(fname, tfr, overwrite=False): """Write a TFR dataset to hdf5. Parameters ---------- fname : string The file name, which should end with -tfr.h5 tfr : AverageTFR instance, or list of AverageTFR instances The TFR dataset, or list of TFR datasets, to save in one file. Note. If .comment is not None, a name will be generated on the fly, based on the order in which the TFR objects are passed overwrite : bool If True, overwrite file (if it exists). Defaults to False. See Also -------- read_tfrs Notes ----- .. versionadded:: 0.9.0 """ out = [] if not isinstance(tfr, (list, tuple)): tfr = [tfr] for ii, tfr_ in enumerate(tfr): comment = ii if tfr_.comment is None else tfr_.comment out.append(_prepare_write_tfr(tfr_, condition=comment)) write_hdf5(fname, out, overwrite=overwrite, title='mnepython') def read_tfrs(fname, condition=None): """ Read TFR datasets from hdf5 file. Parameters ---------- fname : string The file name, which should end with -tfr.h5 . condition : int or str | list of int or str | None The condition to load. If None, all conditions will be returned. Defaults to None. See Also -------- write_tfrs Returns ------- tfrs : list of instances of AverageTFR | instance of AverageTFR Depending on `condition` either the TFR object or a list of multiple TFR objects. Notes ----- .. versionadded:: 0.9.0 """ check_fname(fname, 'tfr', ('-tfr.h5',)) logger.info('Reading %s ...' % fname) tfr_data = read_hdf5(fname, title='mnepython') for k, tfr in tfr_data: tfr['info'] = Info(tfr['info']) if condition is not None: tfr_dict = dict(tfr_data) if condition not in tfr_dict: keys = ['%s' % k for k in tfr_dict] raise ValueError('Cannot find condition ("{0}") in this file. ' 'I can give you "{1}""' .format(condition, " or ".join(keys))) out = AverageTFR(**tfr_dict[condition]) else: out = [AverageTFR(**d) for d in list(zip(*tfr_data))[1]] return out def tfr_morlet(inst, freqs, n_cycles, use_fft=False, return_itc=True, decim=1, n_jobs=1): """Compute Time-Frequency Representation (TFR) using Morlet wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. use_fft : bool The fft based convolution or not. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Must be ``False`` for evoked data. decim : int The decimation factor on the time axis. To reduce memory usage. n_jobs : int The number of jobs to run in parallel. Returns ------- power : instance of AverageTFR The averaged power. itc : instance of AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell """ data = _get_data(inst, return_itc) picks = pick_types(inst.info, meg=True, eeg=True) info = pick_info(inst.info, picks) data = data[:, picks, :] power, itc = _induced_power_cwt(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, n_jobs=n_jobs, use_fft=use_fft, decim=decim, zero_mean=True) times = inst.times[::decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='morlet-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='morlet-itc')) return out @verbose def _induced_power_mtm(data, sfreq, frequencies, time_bandwidth=4.0, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=True, verbose=None): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with DPSS wavelets Parameters ---------- data : np.ndarray, shape (n_epochs, n_channels, n_times) The input data. sfreq : float sampling Frequency frequencies : np.ndarray, shape (n_frequencies,) Array of frequencies of interest time_bandwidth : float Time x (Full) Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0 (3 tapers). use_fft : bool Compute transform with fft based convolutions or temporal convolutions. Defaults to True. n_cycles : float | np.ndarray shape (n_frequencies,) Number of cycles. Fixed number or one per frequency. Defaults to 7. decim: int Temporal decimation factor. Defaults to 1. n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. Defaults to 1. zero_mean : bool Make sure the wavelets are zero mean. Defaults to True. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : np.ndarray, shape (n_channels, n_frequencies, n_times) Induced power. Squared amplitude of time-frequency coefficients. itc : np.ndarray, shape (n_channels, n_frequencies, n_times) Phase locking value. """ n_epochs, n_channels, n_times = data[:, :, ::decim].shape logger.info('Data is %d trials and %d channels', n_epochs, n_channels) n_frequencies = len(frequencies) logger.info('Multitaper time-frequency analysis for %d frequencies', n_frequencies) # Precompute wavelets for given frequency range to save time Ws = _dpss_wavelet(sfreq, frequencies, n_cycles=n_cycles, time_bandwidth=time_bandwidth, zero_mean=zero_mean) n_taps = len(Ws) logger.info('Using %d tapers', n_taps) n_times_wavelets = Ws[0][0].shape[0] if n_times <= n_times_wavelets: warnings.warn("Time windows are as long or longer than the epoch. " "Consider reducing n_cycles.") psd = np.zeros((n_channels, n_frequencies, n_times)) itc = np.zeros((n_channels, n_frequencies, n_times)) parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) for m in range(n_taps): psd_itc = parallel(my_time_frequency(data[:, c, :], Ws[m], use_fft, decim) for c in range(n_channels)) for c, (psd_c, itc_c) in enumerate(psd_itc): psd[c, :, :] += psd_c itc[c, :, :] += itc_c psd /= n_taps itc /= n_taps return psd, itc def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0, use_fft=True, return_itc=True, decim=1, n_jobs=1): """Compute Time-Frequency Representation (TFR) using DPSS wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. The time-window length is thus T = n_cycles / freq. time_bandwidth : float, (optional) Time x (Full) Bandwidth product. Should be >= 2.0. Choose this along with n_cycles to get desired frequency resolution. The number of good tapers (least leakage from far away frequencies) is chosen automatically based on this to floor(time_bandwidth - 1). Default is 4.0 (3 good tapers). E.g., With freq = 20 Hz and n_cycles = 10, we get time = 0.5 s. If time_bandwidth = 4., then frequency smoothing is (4 / time) = 8 Hz. use_fft : bool The fft based convolution or not. Defaults to True. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Defaults to True. decim : int The decimation factor on the time axis. To reduce memory usage. Note than this is brute force decimation, no anti-aliasing is done. Defaults to 1. n_jobs : int The number of jobs to run in parallel. Defaults to 1. Returns ------- power : AverageTFR The averaged power. itc : AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell Notes ----- .. versionadded:: 0.9.0 """ data = _get_data(inst, return_itc) picks = pick_types(inst.info, meg=True, eeg=True) info = pick_info(inst.info, picks) data = data[:, picks, :] power, itc = _induced_power_mtm(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, use_fft=use_fft, decim=decim, n_jobs=n_jobs, zero_mean=True, verbose='INFO') times = inst.times[::decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='mutlitaper-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='mutlitaper-itc')) return out
bsd-3-clause
sanketloke/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
SoluMilken/xgboostwithwarmstart
xgboostwithwarmstart/xgboost_with_warm_start.py
1
15366
# coding: utf-8 # pylint: disable=too-many-arguments, too-many-locals, invalid-name, fixme, E0012, R0912 """Scikit-Learn Wrapper interface for XGBoost.""" from __future__ import absolute_import import numpy as np from xgboost import XGBRegressor from xgboost.core import Booster, DMatrix, XGBoostError from xgboost.training import train # Do not use class names on scikit-learn directly. # Re-define the classes on .compat to guarantee the behavior without scikit-learn from xgboost.compat import (SKLEARN_INSTALLED, XGBModelBase, XGBClassifierBase, XGBRegressorBase, XGBLabelEncoder) from xgboost.sklearn import _objective_decorator, XGBModel class XGBRegressorWithWarmStart(XGBRegressor): def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="reg:linear", nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, seed=0, missing=None, warm_start=False): super(XGBRegressorWithWarmStart, self).__init__( max_depth, learning_rate, n_estimators, silent, objective, nthread, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, base_score, seed, missing) self.warm_start = warm_start self.n_trained_estimators = 0 def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True): # pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init """ Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like Weight for each instance eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.md. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. """ if sample_weight is not None: trainDmatrix = DMatrix(X, label=y, weight=sample_weight, missing=self.missing) else: trainDmatrix = DMatrix(X, label=y, missing=self.missing) evals_result = {} if eval_set is not None: evals = list(DMatrix(x[0], label=x[1], missing=self.missing) for x in eval_set) evals = list(zip(evals, ["validation_{}".format(i) for i in range(len(evals))])) else: evals = () params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) params["objective"] = "reg:linear" else: obj = None feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({'eval_metric': eval_metric}) if self.warm_start: n_estimators = self.n_estimators - self.n_trained_estimators self._Booster = train(params, trainDmatrix, n_estimators, evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=self._Booster) else: self._Booster = train(params, trainDmatrix, self.n_estimators, evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose) self.n_trained_estimators = self.n_estimators if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result_ = evals_result if early_stopping_rounds is not None: self.best_score = self._Booster.best_score self.best_iteration = self._Booster.best_iteration self.best_ntree_limit = self._Booster.best_ntree_limit return self @property def feature_importances_(self): """ Returns ------- feature_importances_ : array of shape = [n_features] """ b = self.booster() fs = b.get_fscore() all_features = [fs.get(f, 0.) for f in b.feature_names] all_features = np.array(all_features, dtype=np.float32) return all_features / all_features.sum() class XGBClassifierWithWarmStart(XGBModel, XGBClassifierBase): # pylint: disable=missing-docstring,too-many-arguments,invalid-name __doc__ = """Implementation of the scikit-learn API for XGBoost classification. """ + '\n'.join(XGBModel.__doc__.split('\n')[2:]) def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective="binary:logistic", nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, seed=0, missing=None, warm_start=False): super(XGBClassifierWithWarmStart, self).__init__( max_depth, learning_rate, n_estimators, silent, objective, nthread, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, base_score, seed, missing) self.warm_start = warm_start self.n_trained_estimators = 0 def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True): # pylint: disable = attribute-defined-outside-init,arguments-differ """ Fit gradient boosting classifier Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like Weight for each instance eval_set : list, optional A list of (X, y) pairs to use as a validation set for early-stopping eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.md. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int, optional Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. """ evals_result = {} self.classes_ = np.unique(y) self.n_classes_ = len(self.classes_) params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) # Use default value. Is it really not used ? params["objective"] = "binary:logistic" else: obj = None if self.n_classes_ > 2: # Switch to using a multiclass objective in the underlying XGB instance params["objective"] = "multi:softprob" params['num_class'] = self.n_classes_ feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({"eval_metric": eval_metric}) self._le = XGBLabelEncoder().fit(y) training_labels = self._le.transform(y) if eval_set is not None: # TODO: use sample_weight if given? evals = list( DMatrix(x[0], label=self._le.transform(x[1]), missing=self.missing) for x in eval_set ) nevals = len(evals) eval_names = ["validation_{}".format(i) for i in range(nevals)] evals = list(zip(evals, eval_names)) else: evals = () self._features_count = X.shape[1] if sample_weight is not None: trainDmatrix = DMatrix(X, label=training_labels, weight=sample_weight, missing=self.missing) else: trainDmatrix = DMatrix(X, label=training_labels, missing=self.missing) if self.warm_start: n_estimators = self.n_estimators - self.n_trained_estimators self._Booster = train(params, trainDmatrix, n_estimators, evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=self._Booster) else: self._Booster = train(params, trainDmatrix, self.n_estimators, evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose) self.n_trained_estimators = self.n_estimators self.objective = params["objective"] if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result_ = evals_result if early_stopping_rounds is not None: self.best_score = self._Booster.best_score self.best_iteration = self._Booster.best_iteration self.best_ntree_limit = self._Booster.best_ntree_limit return self def predict(self, data, output_margin=False, ntree_limit=0): test_dmatrix = DMatrix(data, missing=self.missing) class_probs = self.booster().predict(test_dmatrix, output_margin=output_margin, ntree_limit=ntree_limit) if len(class_probs.shape) > 1: column_indexes = np.argmax(class_probs, axis=1) else: column_indexes = np.repeat(0, class_probs.shape[0]) column_indexes[class_probs > 0.5] = 1 return self._le.inverse_transform(column_indexes) def predict_proba(self, data, output_margin=False, ntree_limit=0): test_dmatrix = DMatrix(data, missing=self.missing) class_probs = self.booster().predict(test_dmatrix, output_margin=output_margin, ntree_limit=ntree_limit) if self.objective == "multi:softprob": return class_probs else: classone_probs = class_probs classzero_probs = 1.0 - classone_probs return np.vstack((classzero_probs, classone_probs)).transpose() def evals_result(self): """Return the evaluation results. If eval_set is passed to the `fit` function, you can call evals_result() to get evaluation results for all passed eval_sets. When eval_metric is also passed to the `fit` function, the evals_result will contain the eval_metrics passed to the `fit` function Returns ------- evals_result : dictionary Example ------- param_dist = {'objective':'binary:logistic', 'n_estimators':2} clf = xgb.XGBClassifier(**param_dist) clf.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], eval_metric='logloss', verbose=True) evals_result = clf.evals_result() The variable evals_result will contain: {'validation_0': {'logloss': ['0.604835', '0.531479']}, 'validation_1': {'logloss': ['0.41965', '0.17686']}} """ if self.evals_result_: evals_result = self.evals_result_ else: raise XGBoostError('No results.') return evals_result @property def feature_importances_(self): """ Returns ------- feature_importances_ : array of shape = [n_features] """ b = self.booster() fs = b.get_fscore() all_features = [fs.get(f, 0.) for f in b.feature_names] all_features = np.array(all_features, dtype=np.float32) return all_features / all_features.sum()
bsd-2-clause
ArteliaTelemac/PostTelemac
PostTelemac/meshlayerrenderer/post_telemac_opengl_get_qimage_qt5.py
1
78234
# -*- coding: utf-8 -*- """ /*************************************************************************** PostTelemac A QGIS plugin Post Traitment or Telemac ------------------- begin : 2015-07-07 git sha : $Format:%H$ copyright : (C) 2015 by Artelia email : [email protected] ***************************************************************************/ ***************************************************************************/ get Image class Generate a Qimage from selafin file to be displayed in map canvas with tht draw method of posttelemacpluginlayer Versions : 0.0 : debut ***************************************************************************/ """ # import qgis import qgis.core # import PyQT # import matplotlib # import matplotlib # matplotlib.use('Agg') # import matplotlib.pyplot as plt # from matplotlib import tri # from matplotlib.backends.backend_agg import FigureCanvasAgg # import numpy import numpy as np # other imports from time import ctime # import cStringIO import gc import time from OpenGL.GL import * from OpenGL.GL import shaders # from PyQt4 import QtGui, QtCore from qgis.PyQt import QtGui, QtCore try: from qgis.PyQt.QtGui import QApplication except: from qgis.PyQt.QtWidgets import QApplication try: from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.QtOpenGL import QGLPixelBuffer, QGLFormat, QGLContext except: from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtOpenGL import QGLFormat, QGLContext import numpy from math import log, ceil, exp # from utilities import complete_filename, format_ from .post_telemac_pluginlayer_colormanager import * from .post_telemac_abstract_get_qimage import * PRECISION = 0.01 def roundUpSize(size): """return size roudup to the nearest power of 2""" if False: return QSize(pow(2, ceil(log(size.width()) / log(2))), pow(2, ceil(log(size.height()) / log(2)))) else: return size class MeshRenderer(AbstractMeshRenderer): # __imageChangeRequested = QtCore.pyqtSignal(qgis.core.QgsRenderContext) __imageChangeRequested = QtCore.pyqtSignal() RENDERER_TYPE = "OpenGL" def __init__(self, meshlayer, integertemp, vtx=[[0.0, 0.0, 0.0]], idx=[0]): AbstractMeshRenderer.__init__(self, meshlayer, integertemp, vtx=[[0.0, 0.0, 0.0]], idx=[0]) # self.fig = plt.figure(int) # self.canvas = FigureCanvasAgg(self.fig) # self.meshlayer = meshlayer # self.ax = self.fig.add_subplot(111) # Reprojected things # self.meshxreprojected, self.meshyreprojected = None, None self.goodpointindex = None self.arraypoints = None # Opengl self.__vtxfacetodraw = numpy.require(vtx, numpy.float32, "F") self.__idxfacetodraw = numpy.require(idx, numpy.int32, "F") self.__vtxcanvas = numpy.require(vtx, numpy.float32, "F") self.__idxcanvas = numpy.require(idx, numpy.int32, "F") self.__vtxfacetotal = numpy.require(vtx, numpy.float32, "F") self.__idxfacetotal = numpy.require(idx, numpy.int32, "F") self.__pixBuf = None # self.__legend = legend # self.__legend.symbologyChanged.connect(self.__recompileNeeded) self.__colorPerElement = False self.__recompileShader = False self.__vtxfacetotal[:, 2] = 0 self.meshlayer = meshlayer self.__imageChangedMutex = QtCore.QMutex() self.__rendererContext = None self.__size = None self.__img = None self.__imageChangeRequested.connect(self.__drawInMainThread) self.__pixelColor = "" self.__pixelColorVelocity = "" self.__graduation = [] self.__graduationvelocity = [] self.timemax = 1000 self.timestart = None # ************************************************************************************ # *************************************** Display behaviour****************************** # ************************************************************************************ def CrsChanged(self): # ikle = self.meshlayer.hydrauparser.getIkle() # mesh = self.meshlayer.hydrauparser.getElemFaces() # nodecoords = np.array( [[self.meshxreprojected[i], self.meshyreprojected[i], 0.0] for i in range(len(self.meshxreprojected)) ] ) # nodecoords = np.array( [[self.facenodereprojected[0][i], self.facenodereprojected[1][i], 0.0] for i in range(len(self.facenodereprojected[0])) ] ) # reset : facenode elemnode self.resetFaceNodeCoord() # self.resetIdx() self.resetMesh() def resetFaceNodeCoord(self, vtx=None): # __vtx if False: if vtx != None: self.__vtxfacetotal = numpy.require(vtx, numpy.float32, "F") else: # self.__vtxfacetotal = np.array( [[self.meshxreprojected[i], self.meshyreprojected[i], 0.0] for i in range(len(self.meshxreprojected)) ] ) self.__vtxfacetotal = np.array( [ [self.facenodereprojected[0][i], self.facenodereprojected[1][i], 0.0] for i in range(len(self.facenodereprojected[0])) ] ) if True: try: self.__vtxfacetotal = np.array( [ [self.facenodereprojected[0][i], self.facenodereprojected[1][i], 0.0] for i in range(len(self.facenodereprojected[0])) ] ) self.__idxfacetotal = self.meshlayer.hydrauparser.getElemFaces() self.__idxfaceonlytotal = self.meshlayer.hydrauparser.getFaces() # wherebegin polygon self.__idxfacetotalcountidx = [0] self.__idxfacetotalcountlen = [] for elem in self.__idxfacetotal: self.__idxfacetotalcountidx.append((self.__idxfacetotalcountidx[-1]) + len(elem)) # self.__idxfacetotalcountlen.append(len(elem)) self.__idxfacetotalcountidx = np.array(self.__idxfacetotalcountidx) self.__idxfacetotalcountlen = np.array([len(elem) for elem in self.__idxfacetotal]) except Exception as e: print("resetFaceNodeCoord " + str(e)) self.__vtxfacetodraw = self.__vtxfacetotal self.__idxfacetodraw = self.__idxfacetotal self.__idxfaceonlytodraw = self.__idxfaceonlytotal if False: self.__idxfacetodraw1Darray = np.concatenate(self.__idxfacetodraw) self.__idxfaceonlytodraw1Darray = np.concatenate(self.__idxfaceonlytodraw) if True: """ self.__idxfacetodraw1Darray = self.__idxfacetodraw.ravel() self.__idxfaceonlytodraw1Darray = self.__idxfaceonlytodraw.ravel() print ( self.__idxfacetodraw1Darray) """ self.__idxfacetodraw1Darray = np.array([idx for idxs in self.__idxfacetodraw for idx in idxs]) self.__idxfaceonlytodraw1Darray = np.array([idx for idxs in self.__idxfaceonlytodraw for idx in idxs]) if False: def resetIdx(self, idx=None): # __idx if False: if idx != None: if False: try: self.__idxfacetotal = numpy.require(idx, numpy.int32, "F") except Exception as e: self.__idxfacetotal = idx else: self.__idxfacetotal = numpy.require(idx, numpy.int32, "F") else: # self.__idxfacetotal = self.meshlayer.hydrauparser.getIkle() self.__idxfacetotal = self.meshlayer.hydrauparser.getElemFaces() if True: self.__idxfacetotal = self.meshlayer.hydrauparser.getElemFaces() self.__idxfacetotal = self.meshlayer.hydrauparser.getElemFaces() self.__idxfacetodraw = self.__idxfacetotal def resetMesh(self): self.__vtxmesh = np.array( [ [self.facenodereprojected[0][i], self.facenodereprojected[1][i], 0.0] for i in range(len(self.facenodereprojected[0])) ] ) self.__idxmesh = self.meshlayer.hydrauparser.getFaces() def CrsChanged2(self): ikle = self.meshlayer.hydrauparser.getIkle() nodecoords = np.array( [[self.meshxreprojected[i], self.meshyreprojected[i], 0.0] for i in range(len(self.meshxreprojected))] ) self.resetFaceNodeCoord(nodecoords) self.resetIdx(ikle) def change_cm_contour(self, cm_raw): """ change the color map and layer symbology """ self.cmap_contour_leveled = self.colormanager.fromColorrampAndLevels(self.lvl_contour, cm_raw) if qgis.utils.iface is not None: try: qgis.utils.iface.legendInterface().refreshLayerSymbology(self.meshlayer) except Exception as e: # print('openglgetimage -change_cm_contour ' + str(e)) # self.meshlayer.propertiesdialog.errorMessage( 'openglgetimage -change_cm_contour ' + str(e) ) qgis.utils.iface.layerTreeView().refreshLayerSymbology(self.meshlayer.id()) # transparency - alpha changed # if self.cmap_contour_leveled != None and len(self.lvl_contour) > 0: if isinstance(self.cmap_contour_leveled, list) and len(self.lvl_contour) > 0: colortemp = np.array(self.cmap_contour_leveled) for i in range(len(colortemp)): colortemp[i][3] = min(colortemp[i][3], self.alpha_displayed / 100.0) # opengl try: gradudation = [] tempun = [] if len(self.lvl_contour) >= 3: for i, color in enumerate(colortemp): gradudation.append( ( QtGui.QColor.fromRgbF(color[0], color[1], color[2], color[3]), self.lvl_contour[i], self.lvl_contour[i + 1], ) ) else: color = colortemp[0] gradudation.append( ( QtGui.QColor.fromRgbF(color[0], color[1], color[2], color[3]), self.lvl_contour[0], self.lvl_contour[1], ) ) self.setGraduation(gradudation) except Exception as e: self.meshlayer.propertiesdialog.errorMessage("toggle graduation " + str(e)) if self.meshlayer.draw: self.meshlayer.triggerRepaint() def change_cm_vel(self, cm_raw): """ change_cm_vel change the color map and layer symbology """ if False: cm = self.colormanager.arrayStepRGBAToCmap(cm_raw) self.cmap_mpl_vel, self.norm_mpl_vel, self.color_mpl_vel = self.colormanager.changeColorMap( cm, self.lvl_vel ) try: qgis.utils.iface.legendInterface().refreshLayerSymbology(self.meshlayer) except Exception as e: # print('openglgetimage -change_cm_contour ' + str(e)) # self.meshlayer.propertiesdialog.errorMessage( 'openglgetimage -change_cm_contour ' + str(e) ) qgis.utils.iface.layerTreeView().refreshLayerSymbology(self.meshlayer.id()) # transparency - alpha changed if self.color_mpl_vel != None: colortemp = np.array(self.color_mpl_vel.tolist()) for i in range(len(colortemp)): colortemp[i][3] = min(colortemp[i][3], self.alpha_displayed / 100.0) # redefine cmap_mpl_contour and norm_mpl_contour : self.cmap_mpl_vel, self.norm_mpl_vel = matplotlib.colors.from_levels_and_colors(self.lvl_vel, colortemp) # repaint if self.meshlayer.draw: self.meshlayer.triggerRepaint() else: # print 'change vl' self.cmap_vel_leveled = self.colormanager.fromColorrampAndLevels(self.lvl_vel, cm_raw) if qgis.utils.iface is not None: try: qgis.utils.iface.legendInterface().refreshLayerSymbology(self.meshlayer) except Exception as e: # print('openglgetimage -change_cm_contour ' + str(e)) # self.meshlayer.propertiesdialog.errorMessage( 'openglgetimage -change_cm_contour ' + str(e) ) qgis.utils.iface.layerTreeView().refreshLayerSymbology(self.meshlayer.id()) # transparency - alpha changed # if self.cmap_vel_leveled != None and len(self.lvl_vel) > 0: if isinstance(self.cmap_vel_leveled, list) and len(self.lvl_vel) > 0: colortemp = np.array(self.cmap_vel_leveled) if False: for i in range(len(colortemp)): colortemp[i][3] = min(colortemp[i][3], self.alpha_displayed / 100.0) # opengl try: gradudation = [] tempun = [] if len(self.lvl_vel) >= 3: for i, color in enumerate(colortemp): gradudation.append( ( QtGui.QColor.fromRgbF(color[0], color[1], color[2], color[3]), self.lvl_vel[i], self.lvl_vel[i + 1], ) ) else: color = colortemp[0] gradudation.append( ( QtGui.QColor.fromRgbF(color[0], color[1], color[2], color[3]), self.lvl_vel[0], self.lvl_vel[1], ) ) self.setGraduationVelocity(gradudation) except Exception as e: self.meshlayer.propertiesdialog.errorMessage("toggle graduation " + str(e)) if self.meshlayer.draw: self.meshlayer.triggerRepaint() # ************************************************************************************ # *************************************** Main func : getimage ****************************** # ************************************************************************************ def canvasPaned(self): if QApplication.instance().thread() != QtCore.QThread.currentThread(): self.__img = None # self.__imageChangeRequested.emit(rendererContext) self.__imageChangeRequested.emit() i = 0 while not self.__img and not self.rendererContext.renderingStopped() and i < self.timemax: # active wait to avoid deadlocking if event loop is stopped # this happens when a render job is cancellled i += 1 # active wait to avoid deadlocking if event loop is stopped # this happens when a render job is cancellled QtCore.QThread.msleep(1) if not self.rendererContext.renderingStopped(): # if not self.showmesh: # painter.drawImage(0, 0, self.__img) return (self.__img, None) else: self.__drawInMainThread() # self.rendererContext.painter().drawImage(0, 0, self.__img) return (self.__img, None) def canvasChangedWithSameBBox(self): if False and self.__vtxcanvas == None: xMeshcanvas, yMeshcanvas, goodiklecanvas, self.goodpointindex = self.getCoordsIndexInCanvas( self.meshlayer, self.rendererContext ) # self.resetIdx(goodiklecanvas) nodecoords = np.array([[xMeshcanvas[i], yMeshcanvas[i], 0.0] for i in range(len(xMeshcanvas))]) self.__vtxcanvas = numpy.require(nodecoords, numpy.float32, "F") self.__idxcanvas = numpy.require(goodiklecanvas, numpy.int32, "F") # self.resetFaceNodeCoord(nodecoords) # self.meshadaptedtocanvas = True # self.__vtxfacetodraw = self.__vtxcanvas # self.__idxfacetodraw = self.__idxcanvas if QApplication.instance().thread() != QtCore.QThread.currentThread(): self.__img = None # self.__imageChangeRequested.emit(rendererContext) self.__imageChangeRequested.emit() i = 0 while not self.__img and not self.rendererContext.renderingStopped() and i < self.timemax: # active wait to avoid deadlocking if event loop is stopped # this happens when a render job is cancellled i += 1 # active wait to avoid deadlocking if event loop is stopped # this happens when a render job is cancellled QtCore.QThread.msleep(1) if not self.rendererContext.renderingStopped(): # if not self.showmesh: # painter.drawImage(0, 0, self.__img) return (self.__img, None) else: self.__drawInMainThread() # self.rendererContext.painter().drawImage(0, 0, self.__img) return (self.__img, None) def canvasCreation(self): # self.meshadaptedtocanvas = False # self.resetFaceNodeCoord() # self.resetIdx() self.__vtxcanvas = None self.__idxcanvas = None self.goodpointindex = None self.__vtxfacetodraw = self.__vtxfacetotal self.__idxfacetodraw = self.__idxfacetotal if QApplication.instance().thread() != QtCore.QThread.currentThread(): try: self.__img = None # self.__imageChangeRequested.emit(rendererContext) self.__imageChangeRequested.emit() i = 0 while not self.__img and not self.rendererContext.renderingStopped() and i < self.timemax: # active wait to avoid deadlocking if event loop is stopped # this happens when a render job is cancellled i += 1 QtCore.QThread.msleep(1) if not self.rendererContext.renderingStopped(): # if not self.showmesh: # painter.drawImage(0, 0, self.__img) # self.debugtext += ['img done : ' + str(round(time.clock()-self.timestart,3)) ] return (self.__img, None) except Exception as e: print(str(e)) else: self.__drawInMainThread() # self.rendererContext.painter().drawImage(0, 0, self.__img) return (self.__img, None) def __drawInMainThread(self): # print rendererContext try: self.__imageChangedMutex.lock() includevel = True if self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 0: list1 = self.meshlayer.value if self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 1: if self.meshlayer.hydrauparser.parametrevx != None and self.meshlayer.hydrauparser.parametrevy != None: list1 = np.stack( ( self.meshlayer.value, self.meshlayer.values[self.meshlayer.hydrauparser.parametrevx], self.meshlayer.values[self.meshlayer.hydrauparser.parametrevy], ), axis=-1, ) else: list1 = np.stack( ( self.meshlayer.value, np.array([0] * self.meshlayer.hydrauparser.facesnodescount), np.array([0] * self.meshlayer.hydrauparser.facesnodescount), ), axis=-1, ) if True: if self.goodpointindex != None: list1 = list1[self.goodpointindex] if self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 2: list1 = self.meshlayer.value self.__img = self.image( list1, self.sizepx, # size, (0.5 * (self.ext.xMinimum() + self.ext.xMaximum()), 0.5 * (self.ext.yMinimum() + self.ext.yMaximum())), ( self.rendererContext.mapToPixel().mapUnitsPerPixel(), self.rendererContext.mapToPixel().mapUnitsPerPixel(), ), self.rendererContext.mapToPixel().mapRotation(), ) self.__imageChangedMutex.unlock() except Exception as e: print("draw " + str(e)) # ************************************************************************************ # *************************************** Secondary func ****************************** # ************************************************************************************ def getVelocity(self, selafin, rendererContext): tabx = [] taby = [] tabvx = [] tabvy = [] recttemp = rendererContext.extent() rect = [ float(recttemp.xMinimum()), float(recttemp.xMaximum()), float(recttemp.yMinimum()), float(recttemp.yMaximum()), ] # print str(selafin.showvelocityparams) if selafin.showvelocityparams["type"] in [0, 1]: if selafin.showvelocityparams["type"] == 0: nombrecalcul = selafin.showvelocityparams["step"] pasespace = int((rect[1] - rect[0]) / nombrecalcul) pasx = pasespace pasy = pasespace rect[0] = int(rect[0] / pasespace) * pasespace rect[2] = int(rect[2] / pasespace) * pasespace rangex = nombrecalcul + 3 rangey = nombrecalcul + 3 pasy = int((rect[3] - rect[2]) / nombrecalcul) elif selafin.showvelocityparams["type"] == 1: pasespace = selafin.showvelocityparams["step"] pasx = pasespace pasy = pasespace rect[0] = int(rect[0] / pasespace) * pasespace rect[2] = int(rect[2] / pasespace) * pasespace rangex = int((rect[1] - rect[0]) / pasespace) + 3 rangey = int((rect[3] - rect[2]) / pasespace) + 3 x = np.arange(rect[0], rect[0] + rangex * pasx, pasx) y = np.arange(rect[2], rect[2] + rangey * pasy, pasy) mesh = np.meshgrid(x, y) tabx = np.ravel(mesh[0].tolist()) taby = np.ravel(mesh[1].tolist()) if not selafin.triinterp: selafin.initTriinterpolator() """ tabvx = selafin.triinterp[selafin.parametrevx].__call__(tabx,taby) tabvy = selafin.triinterp[selafin.parametrevy].__call__(tabx,taby) """ tempx1, tempy1 = self.getTransformedCoords(tabx, taby, False) tabvx = selafin.triinterp[selafin.hydrauparser.parametrevx].__call__(tempx1, tempy1) tabvy = selafin.triinterp[selafin.hydrauparser.parametrevy].__call__(tempx1, tempy1) elif selafin.showvelocityparams["type"] == 2: if not self.goodpointindex == None: # tabx, taby = selafin.hydrauparser.getMesh() """ tabx = self.meshxreprojected taby = self.meshyreprojected """ tabx = self.facenodereprojected[0] taby = self.facenodereprojected[1] goodnum = self.goodpointindex tabx = tabx[goodnum] taby = taby[goodnum] else: tabx, taby, goodnum = self.getxynuminrenderer(selafin, rendererContext) tabvx = selafin.values[selafin.hydrauparser.parametrevx][goodnum] tabvy = selafin.values[selafin.hydrauparser.parametrevy][goodnum] return np.array(tabx), np.array(taby), np.array(tabvx), np.array(tabvy) def getxynuminrenderer(self, selafin, rendererContext): """ Return index of selafin points in the visible canvas with corresponding x and y value """ recttemp = rendererContext.extent() rect = [ float(recttemp.xMinimum()), float(recttemp.xMaximum()), float(recttemp.yMinimum()), float(recttemp.yMaximum()), ] """ tabx, taby = selafin.hydrauparser.getMesh() tabx, taby = self.getTransformedCoords(tabx,taby) """ """ tabx = self.meshxreprojected taby = self.meshyreprojected """ tabx = self.facenodereprojected[0] taby = self.facenodereprojected[1] valtabx = np.where(np.logical_and(tabx > rect[0], tabx < rect[1])) valtaby = np.where(np.logical_and(taby > rect[2], taby < rect[3])) goodnum = np.intersect1d(valtabx[0], valtaby[0]) tabx = tabx[goodnum] taby = taby[goodnum] # badnum = np.setxor1d(valtabx[0],valtaby[0]) return tabx, taby, goodnum # ********************************************************************************************** # ********************************************************************************************** # ********************************************************************************************** # OPENGL # ********************************************************************************************** # ********************************************************************************************** def __recompileNeeded(self): self.__recompileShader = True def __compileShaders(self): vertex_shader = shaders.compileShader( """ varying float value; varying float w; varying vec3 normal; varying vec4 ecPos; void main() { ecPos = gl_ModelViewMatrix * gl_Vertex; normal = normalize(gl_NormalMatrix * gl_Normal); value = gl_MultiTexCoord0.st.x; w = value > 0.0 ? 1.0 : 0.0; gl_Position = ftransform();; } """, GL_VERTEX_SHADER, ) fragment_shader = shaders.compileShader(self._fragmentShader(), GL_FRAGMENT_SHADER) self.__shaders = shaders.compileProgram(vertex_shader, fragment_shader) # self.__legend._setUniformsLocation(self.__shaders) self.__recompileShader = False def toggleGraduation(self): # self.__graduated = bool(flag) self.__graduated = True # print self.__graduation if self.__graduated: self.__pixelColor = "vec4 pixelColor(float value)\n{\n" for c, min_, max_ in self.__graduation: """ self.__pixelColor += " if (float(%g) < value && value <= float(%g)) return vec4(%g, %g, %g, 1.);\n"%( min_, max_, c.redF(), c.greenF(), c.blueF()) """ self.__pixelColor += ( " if (float(%g) < value && value <= float(%g)) return vec4(%g, %g, %g, %g);\n" % (min_, max_, c.redF(), c.greenF(), c.blueF(), c.alphaF()) ) self.__pixelColor += " return vec4(0., 0., 0., 0.);\n" self.__pixelColor += "}\n" else: self.__pixelColor = ColorLegend.__pixelColorContinuous # self.symbologyChanged.emit() self.__recompileNeeded() def toggleGraduationVelocity(self): # self.__graduated = bool(flag) self.__graduated = True # print self.__graduation if self.__graduated: self.__pixelColorVelocity = "vec4 pixelColor(float value)\n{\n" for c, min_, max_ in self.__graduationvelocity: """ self.__pixelColor += " if (float(%g) < value && value <= float(%g)) return vec4(%g, %g, %g, 1.);\n"%( min_, max_, c.redF(), c.greenF(), c.blueF()) """ self.__pixelColorVelocity += ( " if (float(%g) < value && value <= float(%g)) return vec4(%g, %g, %g, %g);\n" % (min_, max_, c.redF(), c.greenF(), c.blueF(), c.alphaF()) ) self.__pixelColorVelocity += " return vec4(0., 0., 0., 0.);\n" self.__pixelColorVelocity += "}\n" # print self.__pixelColorVelocity else: self.__pixelColorVelocity = ColorLegend.__pixelColorContinuous # self.symbologyChanged.emit() # self.__recompileNeeded() def setGraduation(self, graduation): """graduation is a list of tuple (color, min, max) the alpha componant is not considered""" self.__graduation = graduation # print self.__graduation self.toggleGraduation() def setGraduationVelocity(self, graduation): """graduation is a list of tuple (color, min, max) the alpha componant is not considered""" self.__graduationvelocity = graduation # print self.__graduation self.toggleGraduationVelocity() def _fragmentShader(self): """Return a string containing the definition of the GLSL pixel shader vec4 pixelColor(float value) This may contain global shader variables and should therefore be included in the fragment shader between the global variables definition and the main() declaration. Note that: varying float value must be defined by the vertex shader """ return ( """ varying float value; varying float w; varying vec3 normal; varying vec4 ecPos; uniform float transparency; uniform float minValue; uniform float maxValue; uniform bool logscale; uniform bool withNormals; uniform sampler2D tex; """ + self.__pixelColor + """ void main() { gl_FragColor = pixelColor(value); } """ ) def __resize(self, roundupImageSize): # QGLPixelBuffer size must be power of 2 assert roundupImageSize == roundUpSize(roundupImageSize) # force alpha format, it should be the default, # but isn't all the time (uninitialized) if False: fmt = QGLFormat() fmt.setAlpha(True) self.__pixBuf = QGLPixelBuffer(roundupImageSize, fmt) assert self.__pixBuf.format().alpha() self.__pixBuf.makeCurrent() self.__pixBuf.bindToDynamicTexture(self.__pixBuf.generateDynamicTexture()) self.__compileShaders() self.__pixBuf.doneCurrent() self.__pixBufMesh = QGLPixelBuffer(roundupImageSize, fmt) assert self.__pixBufMesh.format().alpha() self.__pixBufMesh.makeCurrent() self.__pixBufMesh.bindToDynamicTexture(self.__pixBufMesh.generateDynamicTexture()) self.__compileShaders() self.__pixBufMesh.doneCurrent() if True: # self.surface = QOffscreenSurface() self.surfaceFormat = QSurfaceFormat() self.context = QOpenGLContext() self.context.setFormat(self.surfaceFormat) self.context.create() self.surface = QOffscreenSurface() self.surface.setFormat(self.surfaceFormat) self.surface.create() self.context.makeCurrent(self.surface) self.__compileShaders() if True: fmt1 = QOpenGLFramebufferObjectFormat() self.__pixBuf = QOpenGLFramebufferObject(roundupImageSize, fmt1) self.__pixBuf.takeTexture() self.__pixBuf.bind() else: self.__pixBuf = QOpenGLFramebufferObject(roundupImageSize) self.context.doneCurrent() def image(self, values, imageSize, center, mapUnitsPerPixel, rotation=0): """Return the rendered image of a given size for values defined at each vertex or at each element depending on setColorPerElement. Values are normalized using valueRange = (minValue, maxValue). transparency is in the range [0,1]""" DEBUGTIME = False if DEBUGTIME: self.debugtext = [] self.timestart = time.clock() if False: if QApplication.instance().thread() != QThread.currentThread(): raise RuntimeError("trying to use gl draw calls in a thread") try: if not len(values): img = QImage(imageSize, QImage.Format_ARGB32) img.fill(Qt.transparent) return img roundupSz = roundUpSize(imageSize) if ( not self.__pixBuf or roundupSz.width() != self.__pixBuf.size().width() or roundupSz.height() != self.__pixBuf.size().height() ): # print('resize') self.__resize(roundupSz) val = numpy.require(values, numpy.float32) if not isinstance(values, numpy.ndarray) else values if self.__colorPerElement: val = numpy.concatenate((val, val, val)) # try: # self.__pixBuf.makeCurrent() # self.context.makeCurrent() self.context.makeCurrent(self.surface) if True: # define current opengl drawing # self.__pixBuf.makeCurrent() # ? if self.__recompileShader: self.__compileShaders() # init gl client # glClearColor(1., 1., 1., 1.) # glClearColor(0., 0., 0., 1.) glClearColor(0.0, 0.0, 0.0, 0.0) # tell OpenGL that the VBO contains an array of vertices glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_TEXTURE_COORD_ARRAY) glEnable(GL_TEXTURE_2D) if True: # initialisation de la transparence glEnable(GL_BLEND) # la couleur de l'objet va etre (1-alpha_de_l_objet) * couleur du fond et (le_reste * couleur originale) # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE) else: glDisable(GL_BLEND) glEnable(GL_ALPHA_TEST) glAlphaFunc(GL_GREATER, 0.1) # Or some fitting threshold for your texture glShadeModel(GL_FLAT) # clear the buffer glClear(GL_COLOR_BUFFER_BIT) # set orthographic projection (2D only) glMatrixMode(GL_MODELVIEW) glLoadIdentity() # scale if True: glScalef( 2.0 / (roundupSz.width() * mapUnitsPerPixel[0]), 2.0 / (roundupSz.height() * mapUnitsPerPixel[1]), 1, ) else: glScalef( 2.0 / (roundupSz.height() * mapUnitsPerPixel[0]), 2.0 / (roundupSz.width() * mapUnitsPerPixel[1]), 1, ) # rotate glRotatef(-rotation, 0, 0, 1) ## translate glTranslatef(-center[0], -center[1], 0) glViewport(0, 0, roundupSz.width(), roundupSz.height()) if DEBUGTIME: self.debugtext += ["init done : " + str(round(time.clock() - self.timestart, 3))] if self.meshlayer.showmesh: # draw triangle contour but not inside # Draw the object here glDisable(GL_TEXTURE_2D) glUseProgram(0) if True: glColor4f(0.2, 0.2, 0.2, 0.2) glLineWidth(1) # or whatever glPolygonMode(GL_FRONT, GL_LINE) glPolygonMode(GL_BACK, GL_LINE) # Draw the object here glVertexPointerf(self.__vtxmesh) glDrawElementsui(GL_LINES, self.__idxmesh) # glPolygonMode(GL_FRONT_AND_BACK,GL_FILL) glPolygonMode(GL_FRONT, GL_FILL) glPolygonMode(GL_BACK, GL_FILL) if False: glPointSize(20.0) glBegin(GL_POINTS) glColor3f(1.0, 0, 0) glVertex3f(center[0], center[1], 0) glColor3f(0, 0, 1.0) glVertex3f(self.rect[0], self.rect[2], 0) glVertex3f(self.rect[1], self.rect[2], 0) glVertex3f(self.rect[0], self.rect[3], 0) glEnd() if DEBUGTIME: self.debugtext += ["mesh done : " + str(round(time.clock() - self.timestart, 3))] if True: if self.meshlayer.showvelocityparams["show"]: # glDisable(GL_TEXTURE_2D) glEnable(GL_PROGRAM_POINT_SIZE) glEnable(GL_TEXTURE_2D) # print self.__vtxfacetodraw if True: vertex_shader_vel = shaders.compileShader( """ #version 120 varying float valuev; varying vec2 valuevel; varying vec2 hw; varying vec3 normal; varying vec4 ecPos; //out vec2 valuevel; //out vec2 hw; //out vec3 normal; //out vec4 ecPos; //varying float value ; void main() { ecPos = gl_ModelViewMatrix * gl_Vertex; normal = normalize(gl_NormalMatrix * gl_Normal); //value = gl_MultiTexCoord0.st.x; //valuev = gl_MultiTexCoord0.x; valuevel = gl_MultiTexCoord0.yz; //w = valuev > 0.0 ? 1.0 : 0.0; //gl_Position = ftransform(); gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; //gl_PointSize = 10.0; } """, GL_VERTEX_SHADER, ) if True: """ https://www.opengl.org/wiki/Geometry_Shader_Examples """ geom_shader_vel = shaders.compileShader( """ #version 150 uniform float mapunitsperpixel; uniform float norm; uniform vec2 hw[]; //varying in vec2 valuevel[]; //varying vec2 valuevel[]; in vec2 valuevel[]; //varying in vec2 valuevel; out float value ; //out varying value ; //varying float value[] ; layout(points) in; //layout(line_strip, max_vertices = 2) out; layout(triangle_strip, max_vertices = 9) out; //layout(triangles, max_vertices = 6) out; void main() { float normfinal ; float valuedraw ; //float value ; //float normfinal = 1.0 ; float headsize = 2.0 ; //normfinal = norm ; value = sqrt( valuevel[0].x * valuevel[0].x + valuevel[0].y * valuevel[0].y ) ; if ( norm < 0.0 ) { normfinal = - 1.0 / norm ; valuedraw = value ; } else { normfinal = norm ; valuedraw = 1.0 ; } vec4 center = gl_in[0].gl_Position ; vec4 head = gl_in[0].gl_Position + vec4( valuevel[0].x / hw[0].x , valuevel[0].y / hw[0].y , 0.0, 0.0) / mapunitsperpixel / normfinal / valuedraw ; vec4 arrowr = gl_in[0].gl_Position + vec4( valuevel[0].y / headsize / hw[0].x , - valuevel[0].x / headsize / hw[0].y , 0.0, 0.0) / mapunitsperpixel / normfinal / valuedraw ; vec4 arrowl = gl_in[0].gl_Position + vec4(- valuevel[0].y / headsize / hw[0].x , valuevel[0].x / headsize / hw[0].y , 0.0, 0.0) / mapunitsperpixel / normfinal / valuedraw ; vec4 base = gl_in[0].gl_Position * 2 - ( head) ; vec4 baser = base + ( arrowr - head ) / 2 ; vec4 basel = base + ( arrowl - head ) / 2 ; gl_Position = arrowl ; EmitVertex(); gl_Position = arrowr ; EmitVertex(); gl_Position = head ; EmitVertex(); EndPrimitive(); gl_Position = head ; EmitVertex(); gl_Position = base ; EmitVertex(); gl_Position = baser ; EmitVertex(); EndPrimitive(); gl_Position = head ; EmitVertex(); gl_Position = base ; EmitVertex(); gl_Position = basel ; EmitVertex(); EndPrimitive(); } """, GL_GEOMETRY_SHADER, ) if True: fragment_shader_vel = shaders.compileShader( """ #version 150 //varying float value; //varying vec2 valuevel; in float value; in vec2 valuevel; """ + self.__pixelColorVelocity + """ void main() { //float valuetest ; //valuetest = sqrt( valuevel.x * valuevel.x + valuevel.y * valuevel.y ) ; //gl_FragColor = vec4( min( value ,1.0 ), 0.0, 0.0, 1.0); gl_FragColor = pixelColor(value); } """, GL_FRAGMENT_SHADER, ) self.__shadersvel = shaders.compileProgram( vertex_shader_vel, fragment_shader_vel, geom_shader_vel ) # glDisableClientState(GL_TEXTURE_COORD_ARRAY) # glClear(GL_COLOR_BUFFER_BIT) glUseProgram(self.__shadersvel) temp = glGetUniformLocation(self.__shadersvel, "mapunitsperpixel") glUniform1f(temp, float(mapUnitsPerPixel[0])) temp = glGetUniformLocation(self.__shadersvel, "norm") glUniform1f(temp, float(self.meshlayer.showvelocityparams["norm"])) temp = glGetUniformLocation(self.__shadersvel, "hw") # glUniform2f( temp , float( imageSize.height() ) , float( imageSize.width() ) ) # glUniform2f( temp , float( imageSize.width() ) , float( imageSize.height() ) ) glUniform2f(temp, float(roundupSz.width()), float(roundupSz.height())) # these vertices contain 2 single precision coordinates glVertexPointerf(self.__vtxfacetodraw) glTexCoordPointer(3, GL_FLOAT, 0, val) glDrawArrays(GL_POINTS, 0, len(self.__vtxfacetodraw)) if DEBUGTIME: self.debugtext += ["velocity done : " + str(round(time.clock() - self.timestart, 3))] if self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 0: try: if False: glEnable(GL_TEXTURE_2D) glColor4f(0.2, 0.2, 0.2, 0.2) glVertexPointerf(self.__vtxfacetodraw) temp = np.array(sum(self.__idxfacetodraw.tolist(), [])) # print self.__idxfacetodraw.shape # print self.__idxfacetodraw.flatten().shape # glDrawElementsui( GL_TRIANGLE_FAN, self.__idxfacetodraw) for elem in self.__idxfacetodraw: if len(elem) > 2: glDrawElementsui(GL_TRIANGLE_FAN, np.array(elem)) if False: glUseProgram(0) glDisable(GL_TEXTURE_2D) glEnableClientState(GL_VERTEX_ARRAY) # glEnable(GL_TEXTURE_2D) glColor4f(0.2, 0.2, 0.2, 0.2) # print self.__graduation glVertexPointerf(self.__vtxfacetodraw) print(len(self.__idxfacetodraw)) # print 'len ' + str( len(self.__idxfacetodraw) ) + ' ' + str(len(val)) # print self.__graduation for i, elem in enumerate(self.__idxfacetodraw): if len(elem) > 2: if val[i] > self.__graduation[-1][2]: continue j = 0 while j < len(self.__graduation) and val[i] > self.__graduation[j][1]: j += 1 j += -1 # print j glColor4f( self.__graduation[j][0].redF(), self.__graduation[j][0].greenF(), self.__graduation[j][0].blueF(), self.__graduation[j][0].alphaF(), ) # c.redF(), c.greenF(), c.blueF(), c.alphaF()) if True: try: # print str(i) + ' ' + str(elem) glDrawElements(GL_TRIANGLE_FAN, len(elem), GL_UNSIGNED_BYTE, elem) # print str(i) + ' ' + str(elem) except Exception as e: print(str(e)) if False: glBegin(GL_TRIANGLE_FAN) for id in elem: glVertex2f(self.__vtxfacetodraw[id][0], self.__vtxfacetodraw[id][1]) glEnd() if True: if DEBUGTIME: self.debugtext += [ "param render start : " + str(round(time.clock() - self.timestart, 3)) ] # glDisable(GL_TEXTURE_2D) # glEnableClientState( GL_VERTEX_ARRAY ) glColor4f(0.2, 0.2, 0.2, 0.2) if True: # print 'vertex' # vtx = self.__vtxfacetodraw[sum(self.__idxfacetodraw,[])] vtx = self.__vtxfacetodraw[self.__idxfacetodraw1Darray] if DEBUGTIME: self.debugtext += [ "param render vertex interm : " + str(round(time.clock() - self.timestart, 3)) ] # print vtx # print np.array(vtx).shape # print str( vtx[0:10] ) glVertexPointerf(vtx) if False: glVertexPointerf(self.__vtxfacetodraw) if DEBUGTIME: self.debugtext += [ "param render vertex done : " + str(round(time.clock() - self.timestart, 3)) ] if False: print(str(np.array(sum(self.__idxfacetodraw, [])).shape) + " " + str()) print( str(self.__idxfacetotalcountidx[0:10]) + " " + str(self.__idxfacetotalcountidx[-10:]) ) print( str(self.__idxfacetotalcountlen[0:10]) + " " + str(self.__idxfacetotalcountlen[-10:]) ) print(str(np.max(self.__idxfacetotalcountidx))) print(self.__idxfacetotalcountidx[0:2]) print(self.__idxfacetotalcountlen[0:2]) if True: # print 'render 1' glDisable(GL_TEXTURE_2D) glUseProgram(0) # glEnableClientState(GL_COLOR_ARRAY) glColor4f(0.2, 0.2, 0.2, 0.2) """ first = bounds[:-1] count = np.diff(bounds) primcount = len(bounds) - 1 gl.glMultiDrawArrays(primtype, first, count, primcount) """ # print 'render 2' if DEBUGTIME: self.debugtext += [ "param render color begin : " + str(round(time.clock() - self.timestart, 3)) ] colors = np.zeros((len(val), 4)) # colors = np.zeros((np.max(np.array(sum(self.__idxfacetodraw,[])))+1,4)) # print val.shape # print self.__idxfacetodraw.shape colors[:, :] = np.NAN # print colors for gradu in self.__graduation: # temp = np.where(val > gradu[1]) # print np.where(np.logical_and(val > gradu[1], val < gradu[2])) tempidx = np.where(np.logical_and(val > gradu[1], val < gradu[2])) if len(tempidx) > 0: # print np.array([gradu[0].redF() , gradu[0].greenF() , gradu[0].blueF() ,gradu[0].alphaF() ]) colors[tempidx] = [ gradu[0].redF(), gradu[0].greenF(), gradu[0].blueF(), gradu[0].alphaF(), ] # colors[np.logical_and(val > gradu[1], val < gradu[2])] = np.array([gradu[0].redF() , gradu[0].greenF() , gradu[0].blueF() ,gradu[0].alphaF() ]) # self.__graduation[j][0].redF(), self.__graduation[j][0].greenF(), self.__graduation[j][0].blueF() , self.__graduation[j][0].alphaF() # print colors colors[colors[:, 0] == np.NAN] = np.array([0.0, 0.0, 0.0, 0.0]) # print colors.shape # print np.max(np.array(sum(self.__idxfacetodraw,[]))) # colors2 = colors[sum(self.__idxfacetodraw,[])] if DEBUGTIME: self.debugtext += [ "param render color end : " + str(round(time.clock() - self.timestart, 3)) ] # print 'render 3' first = self.__idxfacetotalcountidx[:-1] count = np.diff(self.__idxfacetotalcountidx) primcount = len(self.__idxfacetotalcountidx) - 1 if DEBUGTIME: self.debugtext += [ "param render first count end : " + str(round(time.clock() - self.timestart, 3)) ] if False: trueidx = np.where(count > 2) first = first[trueidx] count = count[trueidx] primcount = len(first) # print '3bis' colors2 = np.repeat(colors, count, axis=0) # print colors2.shape # print vtx.shape if DEBUGTIME: self.debugtext += [ "param render first colorpointer begin : " + str(round(time.clock() - self.timestart, 3)) ] if True: glEnableClientState(GL_COLOR_ARRAY) # glColorPointerf(colors2) glColorPointer(4, GL_FLOAT, 0, colors2) if DEBUGTIME: self.debugtext += [ "param render first colorpointer end : " + str(round(time.clock() - self.timestart, 3)) ] # colors = colors[trueidx] # print colors # print str(first[0:10]) + ' ' +str(first[-10:]) + ' ' + str(len(first)) # print str(count[0:10])+ ' ' +str(count[-10:])+ ' ' + str(len(count)) # print str( primcount ) # print count[0] # print self.__idxfacetodraw[0:count] # idxtemp = np.array(sum(self.__idxfacetodraw,[]) ) # print idxtemp # print 'render 4' glMultiDrawArrays(GL_TRIANGLE_FAN, first, count, primcount) if DEBUGTIME: self.debugtext += [ "param render first draw array end : " + str(round(time.clock() - self.timestart, 3)) ] # glMultiDrawElements(GL_TRIANGLE_FAN, count[0], GL_UNSIGNED_BYTE, self.__idxfacetodraw, 1 ) # glMultiDrawElements(GL_TRIANGLE_FAN, count, GL_UNSIGNED_BYTE, idxtemp, 10 ) # print 'render 5' glDisableClientState(GL_COLOR_ARRAY) if False: glUseProgram(0) glEnable(GL_PRIMITIVE_RESTART) glPrimitiveRestartIndex(99999) if False and self.setprimitive: glPrimitiveRestartIndex(-1) self.setprimitive = False temp = [] for i, elem in enumerate(self.__idxfacetodraw): if len(elem) > 2: if i > 0: temp1 = np.array(elem).tolist() temp1.insert(0, 99999) temp.append(temp1) else: temp1 = np.array(elem).tolist() temp.append(temp1) idx1 = np.array(sum(temp, [])) print(self.__idxfacetodraw[0:20]) print(idx1[0:20]) print(self.__vtxfacetodraw[0:4]) # glDrawElements(GL_TRIANGLE_FAN, 20, GL_UNSIGNED_INT, idx1) glDrawElements(GL_TRIANGLE_FAN, 5, GL_UNSIGNED_BYTE, idx1) # glMultiDrawArrays(GL_TRIANGLE_FAN, self.__idxfacetotalcountidx[0:2], self.__idxfacetotalcountlen[0:2], 2) #; // 2 fans except Exception as e: print("face elem rendering " + str(e)) elif self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 1: glEnable(GL_TEXTURE_2D) glUseProgram(self.__shaders) # self.__legend._setUniforms(self.__pixBuf) # these vertices contain 2 single precision coordinates glVertexPointerf(self.__vtxfacetodraw) glTexCoordPointer(3, GL_FLOAT, 0, val) glDrawElementsui(GL_TRIANGLES, self.__idxfacetodraw) elif self.meshlayer.hydrauparser.parametres[self.meshlayer.param_displayed][2] == 2: try: if True: """ self.__vtxfacetodraw = self.__vtxfacetotal self.__idxfacetodraw = self.__idxfacetotal self.__idxfaceonlytodraw = self.__idxfaceonlytotal self.__idxfacetodraw1Darray = np.concatenate(self.__idxfacetodraw) self.__idxfaceonlytodraw1Darray = np.concatenate(self.__idxfaceonlytodraw) """ if DEBUGTIME: self.debugtext += [ "param render start : " + str(round(time.clock() - self.timestart, 3)) ] # glDisable(GL_TEXTURE_2D) # glEnableClientState( GL_VERTEX_ARRAY ) glColor4f(0.2, 0.2, 0.2, 0.2) if True: vtx = self.__vtxfacetodraw[self.__idxfaceonlytodraw1Darray] if DEBUGTIME: self.debugtext += [ "param render vertex interm : " + str(round(time.clock() - self.timestart, 3)) ] # print vtx # print np.array(vtx).shape # print str( vtx[0:10] ) glVertexPointerf(vtx) # print 'vtxshape ' + str(vtx.shape) if DEBUGTIME: self.debugtext += [ "param render vertex done : " + str(round(time.clock() - self.timestart, 3)) ] if False: print(str(np.array(sum(self.__idxfacetodraw, [])).shape) + " " + str()) print( str(self.__idxfacetotalcountidx[0:10]) + " " + str(self.__idxfacetotalcountidx[-10:]) ) print( str(self.__idxfacetotalcountlen[0:10]) + " " + str(self.__idxfacetotalcountlen[-10:]) ) print(str(np.max(self.__idxfacetotalcountidx))) print(self.__idxfacetotalcountidx[0:2]) print(self.__idxfacetotalcountlen[0:2]) if True: # print 'render 1' glDisable(GL_TEXTURE_2D) glUseProgram(0) # glEnableClientState(GL_COLOR_ARRAY) glColor4f(0.2, 0.2, 0.2, 0.2) """ first = bounds[:-1] count = np.diff(bounds) primcount = len(bounds) - 1 gl.glMultiDrawArrays(primtype, first, count, primcount) """ # print 'render 2' if DEBUGTIME: self.debugtext += [ "param render color begin : " + str(round(time.clock() - self.timestart, 3)) ] colors = np.zeros((len(val), 4)) # colors = np.zeros((np.max(np.array(sum(self.__idxfacetodraw,[])))+1,4)) # print val.shape # print self.__idxfacetodraw.shape colors[:, :] = np.NAN # print colors for gradu in self.__graduation: # temp = np.where(val > gradu[1]) # print np.where(np.logical_and(val > gradu[1], val < gradu[2])) tempidx = np.where(np.logical_and(val > gradu[1], val < gradu[2])) if len(tempidx) > 0: # print np.array([gradu[0].redF() , gradu[0].greenF() , gradu[0].blueF() ,gradu[0].alphaF() ]) colors[tempidx] = [ gradu[0].redF(), gradu[0].greenF(), gradu[0].blueF(), gradu[0].alphaF(), ] # colors[np.logical_and(val > gradu[1], val < gradu[2])] = np.array([gradu[0].redF() , gradu[0].greenF() , gradu[0].blueF() ,gradu[0].alphaF() ]) # self.__graduation[j][0].redF(), self.__graduation[j][0].greenF(), self.__graduation[j][0].blueF() , self.__graduation[j][0].alphaF() # print colors colors[colors[:, 0] == np.NAN] = np.array([0.0, 0.0, 0.0, 0.0]) # print colors.shape # print np.max(np.array(sum(self.__idxfacetodraw,[]))) # colors2 = colors[sum(self.__idxfacetodraw,[])] if DEBUGTIME: self.debugtext += [ "param render color end : " + str(round(time.clock() - self.timestart, 3)) ] # print 'render 3' # first = self.__idxfacetotalcountidx[:-1] # count = np.diff(self.__idxfacetotalcountidx) # primcount = len(self.__idxfacetotalcountidx) - 1 if DEBUGTIME: self.debugtext += [ "param render first count end : " + str(round(time.clock() - self.timestart, 3)) ] # print '3bis' colors2 = np.repeat(colors, 2, axis=0) # print colors2.shape # print vtx.shape if DEBUGTIME: self.debugtext += [ "param render first colorpointer begin : " + str(round(time.clock() - self.timestart, 3)) ] if True: glEnableClientState(GL_COLOR_ARRAY) # glColorPointerf(colors2) glColorPointer(4, GL_FLOAT, 0, colors2) if DEBUGTIME: self.debugtext += [ "param render first colorpointer end : " + str(round(time.clock() - self.timestart, 3)) ] # colors = colors[trueidx] # print colors # print str(first[0:10]) + ' ' +str(first[-10:]) + ' ' + str(len(first)) # print str(count[0:10])+ ' ' +str(count[-10:])+ ' ' + str(len(count)) # print str( primcount ) # print count[0] # print self.__idxfacetodraw[0:count] # idxtemp = np.array(sum(self.__idxfacetodraw,[]) ) # print idxtemp # print 'render 4' # print 'draw' glLineWidth(5) # or whatever glDrawArrays(GL_LINES, 0, len(vtx)) # print 'draw2' # glDrawArrays(GL_POINTS, 0, len(self.__vtxfacetodraw)) if DEBUGTIME: self.debugtext += [ "param render first draw array end : " + str(round(time.clock() - self.timestart, 3)) ] # glMultiDrawElements(GL_TRIANGLE_FAN, count[0], GL_UNSIGNED_BYTE, self.__idxfacetodraw, 1 ) # glMultiDrawElements(GL_TRIANGLE_FAN, count, GL_UNSIGNED_BYTE, idxtemp, 10 ) # print 'render 5' glDisableClientState(GL_COLOR_ARRAY) except Exception as e: print("face elem rendering " + str(e)) if DEBUGTIME: self.debugtext += ["param done : " + str(round(time.clock() - self.timestart, 3))] else: self.doRenderWork(val, imageSize, center, mapUnitsPerPixel, rotation) img = self.__pixBuf.toImage() # self.__pixBuf.doneCurrent() self.context.doneCurrent() if DEBUGTIME: self.debugtext += ["image done : " + str(round(time.clock() - self.timestart, 3))] if DEBUGTIME: self.meshlayer.propertiesdialog.textBrowser_2.append(str(self.debugtext)) """ if False: tempcopy = img.copy( 0, 0, imageSize.width(), imageSize.height()) if True: tempcopy = img.copy( .5*(roundupSz.width()-imageSize.width()), .5*(roundupSz.height()-imageSize.height()), imageSize.width(), imageSize.height()) if False: tempcopy = img.copy( -imageSize.width()/2., -imageSize.height()/2., imageSize.width(), imageSize.height()) if False: tempcopy = img.copy( 1.0*(roundupSz.width()-imageSize.width()), 1.0*(roundupSz.height()-imageSize.height()), imageSize.width(), imageSize.height()) if False: tempcopy.setDotsPerMeterX(int(self.dpi*39.3701)) tempcopy.setDotsPerMeterY(int(self.dpi*39.3701)) return img.copy( .5*(roundupSz.width()-imageSize.width()), .5*(roundupSz.height()-imageSize.height()), imageSize.width(), imageSize.height()) if False: self.meshlayer.propertiesdialog.textBrowser_2.append(str('Rendering report ***********************************')) self.meshlayer.propertiesdialog.textBrowser_2.append(str('raw image size px : ') + str(img.size())) self.meshlayer.propertiesdialog.textBrowser_2.append(str('image size px : ') + str(tempcopy.size())) self.meshlayer.propertiesdialog.textBrowser_2.append(str('pixbuff size px : ') + str(self.__pixBuf.size())) self.meshlayer.propertiesdialog.textBrowser_2.append(str('roundupSz size px : ') + str( roundupSz.width() ) +' ' +str(roundupSz.height()) ) self.meshlayer.propertiesdialog.textBrowser_2.append(str('decoup pixbuff : ') + str(.5*(roundupSz.width()-imageSize.width())) +' ' +str(.5*(roundupSz.height()-imageSize.height()) ) +' ' +str(imageSize.width()) +' ' +str(imageSize.height()) ) self.meshlayer.propertiesdialog.textBrowser_2.append(str('bbox : ') + str(self.rect)) """ if True: return img """ if False: return tempcopy if False: img = QImage(QSize(imageSize.width()-10, imageSize.height()-10), QImage.Format_ARGB32) img.fill(Qt.blue) print('sizepx',self.sizepx) print(img.size()) return img """ except Exception as e: print(str(e)) return QImage()
gpl-3.0
depet/scikit-learn
sklearn/externals/joblib/parallel.py
6
21763
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause import os import sys import warnings from collections import Sized from math import sqrt import functools import time import threading import itertools try: import cPickle as pickle except: import pickle # Obtain possible configuration from the environment, assuming 1 (on) # by default, upon 0 set to None. Should instructively fail if some non # 0/1 value is set. multiprocessing = int(os.environ.get('JOBLIB_MULTIPROCESSING', 1)) or None if multiprocessing: try: import multiprocessing except ImportError: multiprocessing = None # 2nd stage: validate that locking is available on the system and # issue a warning if not if multiprocessing: try: _sem = multiprocessing.Semaphore() del _sem # cleanup except (ImportError, OSError) as e: multiprocessing = None warnings.warn('%s. joblib will operate in serial mode' % (e,)) from .format_stack import format_exc, format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception ############################################################################### # CPU that works also when multiprocessing is not installed (python2.5) def cpu_count(): """ Return the number of CPUs. """ if multiprocessing is None: return 1 return multiprocessing.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### class WorkerInterrupt(Exception): """ An exception that is not KeyboardInterrupt to allow subprocesses to be interrupted. """ pass ############################################################################### class SafeFunction(object): """ Wraps a function to make it exception with full traceback in their representation. Useful for parallel computing with multiprocessing, for which exceptions cannot be captured. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) raise TransportableException(text, e_type) ############################################################################### def delayed(function): """ Decorator used to capture the arguments of a function. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class ImmediateApply(object): """ A non-delayed apply function. """ def __init__(self, func, args, kwargs): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = func(*args, **kwargs) def get(self): return self.results ############################################################################### class CallBack(object): """ Callback used by parallel: it is used for progress reporting, and to add data to be processed """ def __init__(self, index, parallel): self.parallel = parallel self.index = index def __call__(self, out): self.parallel.print_progress(self.index) if self.parallel._iterable: self.parallel.dispatch_next() ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The amount of jobs to be pre-dispatched. Default is 'all', but it may be memory consuming, for instance if each job involves a lot of a data. Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, verbose=0, pre_dispatch='all'): self.verbose = verbose self.n_jobs = n_jobs self.pre_dispatch = pre_dispatch self._pool = None # Not starting the pool in the __init__ is a design decision, to be # able to close it ASAP, and not burden the user with closing it. self._output = None self._jobs = list() # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False def dispatch(self, func, args, kwargs): """ Queue the function for computing, with or without multiprocessing """ if self._pool is None: job = ImmediateApply(func, args, kwargs) index = len(self._jobs) if not _verbosity_filter(index, self.verbose): self._print('Done %3i jobs | elapsed: %s', (index + 1, short_format_time(time.time() - self._start_time) )) self._jobs.append(job) self.n_dispatched += 1 else: # If job.get() catches an exception, it closes the queue: if self._aborting: return try: self._lock.acquire() job = self._pool.apply_async(SafeFunction(func), args, kwargs, callback=CallBack(self.n_dispatched, self)) self._jobs.append(job) self.n_dispatched += 1 except AssertionError: print('[Parallel] Pool seems closed') finally: self._lock.release() def dispatch_next(self): """ Dispatch more data for parallel processing """ self._dispatch_amount += 1 while self._dispatch_amount: try: # XXX: possible race condition shuffling the order of # dispatches in the next two lines. func, args, kwargs = next(self._iterable) self.dispatch(func, args, kwargs) self._dispatch_amount -= 1 except ValueError: """ Race condition in accessing a generator, we skip, the dispatch will be done later. """ except StopIteration: self._iterable = None return def _print(self, msg, msg_args): """ Display the message on stout or stderr depending on verbosity """ # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self, index): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # This is heuristic code to print only 'verbose' times a messages # The challenge is that we may not know the queue length if self._iterable: if _verbosity_filter(index, self.verbose): return self._print('Done %3i jobs | elapsed: %s', (index + 1, short_format_time(elapsed_time), )) else: # We are finished dispatching queue_length = self.n_dispatched # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (queue_length - index + 1 - self._pre_dispatch_amount) frequency = (queue_length // self.verbose) + 1 is_last_item = (index + 1 == queue_length) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / (index + 1) * (self.n_dispatched - index - 1.)) self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index + 1, queue_length, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._jobs: # We need to be careful: the job queue can be filling up as # we empty it if hasattr(self, '_lock'): self._lock.acquire() job = self._jobs.pop(0) if hasattr(self, '_lock'): self._lock.release() try: self._output.append(job.get()) except tuple(self.exceptions) as exception: try: self._aborting = True self._lock.acquire() if isinstance(exception, (KeyboardInterrupt, WorkerInterrupt)): # We have captured a user interruption, clean up # everything if hasattr(self, '_pool'): self._pool.close() self._pool.terminate() # We can now allow subprocesses again os.environ.pop('__JOBLIB_SPAWNED_PARALLEL__', 0) raise exception elif isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % ( this_report, exception.message, ) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] raise exception_type(report) raise exception finally: self._lock.release() def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') n_jobs = self.n_jobs if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') if n_jobs < 0 and multiprocessing is not None: n_jobs = max(multiprocessing.cpu_count() + 1 + n_jobs, 1) # The list of exceptions that we will capture self.exceptions = [TransportableException] if n_jobs is None or multiprocessing is None or n_jobs == 1: n_jobs = 1 self._pool = None else: if multiprocessing.current_process()._daemonic: # Daemonic processes cannot have children n_jobs = 1 self._pool = None warnings.warn( 'Parallel loops cannot be nested, setting n_jobs=1', stacklevel=2) else: already_forked = int(os.environ.get('__JOBLIB_SPAWNED_PARALLEL__', 0)) if already_forked: raise ImportError('[joblib] Attempting to do parallel computing' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect you main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information' ) # Set an environment variable to avoid infinite loops os.environ['__JOBLIB_SPAWNED_PARALLEL__'] = '1' self._pool = multiprocessing.Pool(n_jobs) self._lock = threading.Lock() # We are using multiprocessing, we also want to capture # KeyboardInterrupts self.exceptions.extend([KeyboardInterrupt, WorkerInterrupt]) pre_dispatch = self.pre_dispatch if isinstance(iterable, Sized): # We are given a sized (an object with len). No need to be lazy. pre_dispatch = 'all' if pre_dispatch == 'all' or n_jobs == 1: self._iterable = None self._pre_dispatch_amount = 0 else: self._iterable = iterable self._dispatch_amount = 0 if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) iterable = itertools.islice(iterable, pre_dispatch) self._start_time = time.time() self.n_dispatched = 0 try: for function, args, kwargs in iterable: self.dispatch(function, args, kwargs) self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time) )) finally: if n_jobs > 1: self._pool.close() self._pool.join() os.environ.pop('__JOBLIB_SPAWNED_PARALLEL__', 0) self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
TaxIPP-Life/Til
til/data/DataTil.py
1
26640
# -*- coding:utf-8 -*- ''' Created on 22 juil. 2013 Alexis Eidelman ''' #TODO: duppliquer la table avant le matching parent enfant pour ne pas se trimbaler les valeur de hod dans la duplication. import numpy as np import os import tables from pandas import merge, notnull, DataFrame, concat, HDFStore import pkg_resources import pdb from til.data.utils.utils import replicate, new_link_with_men, of_name_to_til, new_idmen, count_dup path_model = os.path.join( pkg_resources.get_distribution("Til-BaseModel").location, "til_base_model", ) # Dictionnaire des variables, cohérent avec les imports du modèle. # il faut que ce soit à jour. Le premier éléments est la liste des # entiers, le second celui des floats variables_til = {'ind': (['agem','sexe','men','quimen','foy','quifoy','tuteur', 'pere','mere','partner','civilstate','findet', 'workstate','xpr','anc'],['sali','rsti','choi', 'tauxprime']), 'men': (['pref'],[]), 'foy': (['vous','men'],[]), 'futur':(['agem','sexe','men','quimen','foy','quifoy', 'pere','mere','partner','civilstate','findet', 'workstate','xpr','anc', 'deces'],['sali','rsti','choi']), 'past': ([],[])} class DataTil(object): """ La classe qui permet de lancer le travail sur les données La structure de classe n'est peut-être pas nécessaire pour l'instant """ def __init__(self): self.name = None self.survey_date = None self.ind = None self.men = None self.foy = None self.futur = None self.past = None self.longitudinal = {} self.child_out_of_house = None self.seuil= None #TODO: Faire une fonction qui chexk où on en est, si les précédent on bien été fait, etc. self.done = [] self.order = [] def load(self): print "début de l'importation des données" raise NotImplementedError() print "fin de l'importation des données" #def rename_var(self, [pe1e, me1e]): # TODO : fonction qui renomme les variables pour qu'elles soient au format liam # period, id, agem, age, sexe, men, quimen, foy quifoy pere, mere, partner, dur_in_couple, civilstate, workstate, sali, findet def drop_variable(self, dict_to_drop=None, option='white'): ''' - Si on dict_to_drop is not None, il doit avoir la forme table: [liste de variables], on retire alors les variable de la liste de la table nommée. - Sinon, on se sert de cette méthode pour faire la première épuration des données, on a deux options: - passer par la liste blanche ce que l'on recommande pour l'instant - passer par liste noire. ''' if 'ind' in dict_to_drop.keys(): self.ind = self.ind.drop(dict_to_drop['ind'], axis=1) if 'men' in dict_to_drop.keys(): self.men = self.men.drop(dict_to_drop['men'], axis=1) if 'foy' in dict_to_drop.keys(): self.foy = self.foy.drop(dict_to_drop['foy'], axis=1) def format_initial(self): raise NotImplementedError() def enfants(self): ''' Calcule l'identifiant des parents ''' raise NotImplementedError() def table_initial(self): raise NotImplementedError() def creation_foy(self): ''' Créer les déclarations fiscale. Il s'agit principalement de regrouper certains individus entre eux. Ce n'est qu'ici qu'on s'occupe de verifier que les individus mariés ou pacsé ont le même statut matrimonial que leur partenaire légal. On ne peut pas le faire dès le début parce qu'on a besoin du numéro du partneroint. ''' ind = self.ind men = self.men survey_date = self.survey_date print ("Creation des declarations fiscales") # 0eme étape : création de la variable 'nb_enf' si elle n'existe pas + ajout 'lienpref' if 'nb_enf' not in ind.columns: ## nb d'enfant ind.index = ind['id'] nb_enf_mere = ind.groupby('mere').size() nb_enf_pere = ind.groupby('pere').size() # On assemble le nombre d'enfants pour les peres et meres en enlevant les manquantes ( = -1) enf_tot = concat([nb_enf_mere, nb_enf_pere], axis=0) enf_tot = enf_tot.drop([-1]) ind['nb_enf'] = 0 ind['nb_enf'][enf_tot.index] = enf_tot.values def _name_var(ind, men): if 'lienpref' in ind.columns : ind['quimen'] = ind['lienpref'] ind.loc[ind['quimen'] >1 , 'quimen'] = 2 # a changer avec values quand le probleme d'identifiant et résolu .values men['pref'] = ind.loc[ind['lienpref']==0,'id'].values return men, ind men, ind = _name_var(ind, men) # 1ere étape : Identification des personnes mariées/pacsées spouse = (ind['partner'] != -1) & ind['civilstate'].isin([1,5]) print str(sum(spouse)) + " personnes en couples" # 2eme étape : rôles au sein du foyer fiscal # selection du partneroint qui va être le vousrant (= déclarant principal du foyer fiscal) : pas d'incidence en théorie decl = spouse & ( ind['partner'] > ind['id']) partner = spouse & ( ind['partner'] < ind['id']) # Identification des personnes à charge (moins de 21 ans sauf si étudiant, moins de 25 ans ) # attention, on ne peut être à charge que si on n'est pas soi-même parent pac_condition = (ind['civilstate'] == 2) & ( ((ind['agem'] < 12*25) & \ (ind['workstate'] == 11)) | (ind['agem'] < 12*21) ) &(ind['nb_enf'] == 0) pac = ((ind['pere'] != -1) | (ind['mere'] != -1)) & pac_condition print str(sum(pac)) + ' personnes prises en charge' # Identifiants associés ind['quifoy'] = 0 ind.loc[partner,'quifoy'] = 1 # Comprend les enfants n'ayant pas de parents spécifiés (à terme rattachés au foyer 0= DASS) ind.loc[pac,'quifoy'] = 2 ind.loc[(ind['men'] == 0) & (ind['quifoy'] == 0), 'quifoy'] = 2 print "Nombres de foyers fiscaux", sum(ind['quifoy'] == 0), ", dont couple", sum(ind['quifoy'] == 1) # 3eme étape : attribution des identifiants des foyers fiscaux ind['foy'] = -1 nb_foy = sum(ind['quifoy'] == 0) print "Le nombre de foyers créés est : " + str(nb_foy) # Rq: correspond au même décalage que pour les ménages (10premiers : institutions) ind.loc[ind['quifoy'] == 0, 'foy'] = range(10, nb_foy +10) # 4eme étape : Rattachement des autres membres du ménage # (a) - Rattachements des partneroints des personnes en couples partner = ind.loc[(ind['partner'] != -1) & (ind['civilstate'].isin([1,5]))& (ind['quifoy'] == 0), ['partner','foy']] ind['foy'][partner['partner'].values] = partner['foy'].values # (b) - Rattachements de leurs enfants (en priorité sur la décla du père) for parent in ['pere', 'mere']: pac_par = ind.loc[ (ind['quifoy'] == 2) & (ind[parent] != -1) & (ind['foy'] == -1), ['id', parent]].astype(int) ind['foy'][pac_par['id'].values] = ind['foy'][pac_par[parent].values] print str(len(pac_par)) + " enfants sur la déclaration de leur " + parent # Enfants de la Dass -> foyer fiscal 'collectif' ind.loc[ind['men']==0, 'foy'] = 0 # 5eme étape : création de la table foy vous = (ind['quifoy'] == 0) & (ind['foy'] > 9) foy = ind.loc[vous,['foy', 'id', 'men']] foy = foy.rename(columns={'foy': 'id', 'id': 'vous'}) # Etape propre à l'enquete Patrimoine impots = ['zcsgcrds','zfoncier','zimpot', 'zpenaliv','zpenalir','zpsocm','zrevfin'] var_to_declar = impots + ['pond', 'id', 'pref'] foy_men = men.loc[men['pref'].isin(foy['vous']), var_to_declar].fillna(0) foy_men = foy_men.rename(columns = {'id' : 'men'}) # hypothèse réparartition des élements à égalité entre les déclarations : discutable nb_foy_men = foy.loc[foy['men'].isin(foy_men['men'].values)].groupby('men').size() if (nb_foy_men.max() >1) & (foy_men ['zimpot'].max() >0) : assert len(nb_foy_men) == len(foy_men) for var in impots : foy_men[var] = foy_men[var] / nb_foy_men foy = merge(foy, foy_men, on = 'men', how ='left', right_index=True) foy['period'] = survey_date # Ajouts des 'communautés' dans la table foyer for k in [0]: if sum(ind['foy'] == k) !=0 : to_add = DataFrame([np.zeros(len(foy.columns))], columns = foy.columns) to_add['id'] = k to_add['vous'] = -1 to_add['period'] = survey_date foy = concat([foy, to_add], axis = 0, ignore_index=True) foy.index = foy['id'] assert sum(ind['foy']==-1) == 0 print 'Taille de la table foyers :', len(foy) #### fin de declar self.ind = ind self.foy = foy print("fin de la creation des declarations") def creation_child_out_of_house(self): ''' Travail sur les liens parents-enfants. On regarde d'abord les variables utiles pour le matching ''' raise NotImplementedError() def matching_par_enf(self): ''' Matching des parents et des enfants hors du domicile ''' raise NotImplementedError() def match_couple_hdom(self): ''' Certaines personnes se déclarent en couple avec quelqu'un ne vivant pas au domicile, on les reconstruit ici. Cette étape peut s'assimiler à de la fermeture de l'échantillon. On séléctionne les individus qui se déclare en couple avec quelqu'un hors du domicile. On match mariés,pacsé d'un côté et sans contrat de l'autre. Dit autrement, si on ne trouve pas de partenaire à une personne mariée ou pacsé on change son statut de couple. Comme pour les liens parents-enfants, on néglige ici la possibilité que le partneroint soit hors champ (étrange, prison, casernes, etc). Calcul aussi la variable ind['nb_enf'] ''' raise NotImplementedError() def expand_data(self, seuil=150, nb_ligne=None): #TODO: add future and past ''' Note: ne doit pas tourner après lien parent_enfant Cependant child_out_of_house doit déjà avoir été créé car on s'en sert pour la réplication ''' self.seuil = seuil if seuil != 0 and nb_ligne is not None: raise Exception("On ne peut pas à la fois avoir un nombre de ligne désiré et une valeur" \ "qui va determiner le nombre de ligne") #TODO: on peut prendre le min des deux quand même... men = self.men ind = self.ind foy = self.foy par = self.child_out_of_house longit = self.longitudinal if par is None: print("Notez qu'il est plus malin d'étendre l'échantillon après avoir fait les tables " \ "child_out_of_house plutôt que de les faire à partir des tables déjà étendue") if foy is None: print("C'est en principe plus efficace d'étendre après la création de la table foyer" \ " mais si on veut rattacher les enfants (par exemple de 22 ans) qui ne vivent pas au" \ " domicile des parents sur leur déclaration, il faut faire l'extension et la " \ " fermeture de l'échantillon d'abord. Pareil pour les couples. ") min_pond = min(men['pond']) target_pond = float(max(min_pond, seuil)) # 1 - Réhaussement des pondérations inférieures à la pondération cible men['pond'][men['pond']<target_pond] = target_pond # 2 - Calcul du nombre de réplications à effectuer men['nb_rep'] = men['pond'].div(target_pond) men['nb_rep'] = men['nb_rep'].round() men['nb_rep'] = men['nb_rep'].astype(int) # 3- Nouvelles pondérations (qui seront celles associées aux individus après réplication) men['pond'] = men['pond'].div(men['nb_rep']) # TO DO: réflechir pondération des personnes en collectivité pour l'instant = 1 men.loc[men['id'] < 10, 'pond'] = 1 men_exp = replicate(men) # pour conserver les 10 premiers ménages = collectivités men_exp['id'] = new_idmen(men_exp, 'id') if foy is not None: foy = merge(men[['id','nb_rep']], foy, left_on='id', right_on='men', how='right', suffixes=('_men','')) foy_exp= replicate(foy) foy_exp['men'] = new_link_with_men(foy, men_exp, 'men') else: foy_exp = None if par is not None: par = merge(men[['id','nb_rep']], par, left_on = 'id', right_on='men', how='inner', suffixes=('_men','')) par_exp = replicate(par) par_exp['men'] = new_link_with_men(par, men_exp, 'men') else: par_exp = None ind = merge(men[['id','nb_rep']].rename(columns = {'id': 'men'}), ind, on='men', how='right', suffixes = ('_men','')) ind_exp = replicate(ind) # lien indiv - entités supérieures ind_exp['men'] = new_link_with_men(ind, men_exp, 'men') ind_exp['men'] += 10 # liens entre individus tableB = ind_exp[['id_rep','id_ini']] tableB['id_index'] = tableB.index # ind_exp = ind_exp.drop(['pere', 'mere','partner'], axis=1) print("debut travail sur identifiant") def _align_link(link_name, table_exp): tab = table_exp[[link_name, 'id_rep']].reset_index() tab = tab.merge(tableB,left_on=[link_name,'id_rep'], right_on=['id_ini','id_rep'], how='inner').set_index('index') tab = tab.drop([link_name], axis=1).rename(columns={'id_index': link_name}) table_exp[link_name][tab.index.values] = tab[link_name].values # table_exp.merge(tab, left_index=True,right_index=True, how='left', copy=False) return table_exp ind_exp = _align_link('pere', ind_exp) ind_exp = _align_link('mere', ind_exp) ind_exp = _align_link('partner', ind_exp) #TODO: add _align_link with 'pere' and 'mere' in child_out_ouf_house in order to swap expand # and creation_child_out_ouf_house, in the running order if foy is not None: #le plus simple est de repartir des quifoy, cela change du men # la vérité c'est que ça ne marche pas avec ind_exp['foy'] = new_link_with_men(ind, foy_exp, 'foy') vous = (ind['quifoy'] == 0) partner = (ind['quifoy'] == 1) pac = (ind['quifoy'] == 2) ind.loc[vous,'foy']= range(sum(vous)) ind.loc[partner,'foy'] = ind.ix[ind['partner'][partner],['foy']] pac_pere = pac & notnull(ind['pere']) ind.loc[pac_pere,'foy'] = ind.loc[ind.loc[pac_pere,'pere'],['foy']] pac_mere = pac & ~notnull(ind['foy']) ind.loc[pac_mere,'foy'] = ind.loc[ind.loc[pac_mere,'mere'],['foy']] for name, table in longit.iteritems(): table = table.merge(ind_exp[['id_ini', 'id']], right_on='id', left_index=True, how='right') table.set_index('id', inplace=True) table.drop('id_ini', axis=1, inplace=True) self.longitudinal[name] = table assert sum(ind['id']==-1) == 0 self.child_out_of_house = par self.men = men_exp self.ind = ind_exp self.foy = foy_exp self.drop_variable({'men':['id_rep','nb_rep'], 'ind':['id_rep']}) def format_to_liam(self): ''' On met ici les variables avec les bons codes pour achever le travail de DataTil On crée aussi les variables utiles pour la simulation ''' men = self.men ind = self.ind foy = self.foy futur = self.futur past = self.past longit = self.longitudinal ind_men = ind.groupby('men') ind = ind.set_index('men') ind['nb_men'] = ind_men.size().astype(np.int) ind = ind.reset_index() ind_foy = ind.groupby('foy') ind = ind.set_index('foy') ind['nb_foy'] = ind_foy.size().astype(np.int) ind = ind.reset_index() if 'lienpref' in ind.columns : self.drop_variable({'ind':['lienpref','anais','mnais']}) for name in ['ind', 'foy', 'men', 'futur', 'past']: table = eval(name) if table is not None: vars_int, vars_float = variables_til[name] for var in vars_int + ['id','period']: if var not in table.columns: table[var] = -1 table = table.fillna(-1) table[var] = table[var].astype(np.int32) for var in vars_float + ['pond']: if var not in table.columns: if var=='pond': table[var] = 1 else: table[var] = -1 table = table.fillna(-1) table[var] = table[var].astype(np.float64) table = table.sort_index(by=['period','id']) setattr(self, name, table) # # In case we need to Add one to each link because liam need no 0 in index # if ind['id'].min() == 0: # links = ['id','pere','mere','partner','foy','men','pref','vous'] # for table in [ind, men, foy, futur, past]: # if table is not None: # vars_link = [x for x in table.columns if x in links] # table[vars_link] += 1 # table[vars_link].replace(0,-1, inplace=True) def _check_links(self, ind): if ind is None: ind = self.ind to_check = ind[['id', 'agem', 'sexe', 'men', 'partner', 'pere', 'mere']] # age parent tab = to_check.copy() for lien in ['partner', 'pere', 'mere']: tab = tab.merge(to_check, left_on=lien, right_on='id', suffixes=('', '_' + lien), how='left', sort=False) tab.index = tab['id'] diff_age_pere = (tab['agem_pere'] - tab['agem']) diff_age_mere = (tab['agem_mere'] - tab['agem']) try: assert diff_age_pere.min() > 12*14 assert diff_age_mere.min() > 12*12.4 # pas de probleme du partneroint assert sum(tab['id_pere'] == tab['id_partner']) == 0 assert sum(tab['id_mere'] == tab['id_partner']) == 0 assert sum(tab['id_mere'] == tab['id_pere']) == 0 assert sum(tab['sexe_mere'] == tab['sexe_pere']) == 0 except: pdb.set_trace() test = diff_age_pere < 0 tab[test] # on va plus loin sur les partneroints pour éviter les frères et soeurs : tab_partner = tab.loc[tab['partner'] > -1].copy() tab_partner.replace(-1, np.nan, inplace=True) try: assert all((tab_partner['id'] == tab_partner['partner_partner'])) # Les couples sont réciproques assert sum(tab_partner['mere'] == tab_partner['mere_partner']) == 0 # pas de mariage entre frere et soeur assert sum(tab_partner['pere'] == tab_partner['pere_partner']) == 0 except: test = tab_partner['pere'] == tab_partner['pere_partner'] pdb.set_trace() def final_check(self): ''' Les checks sont censés vérifiés toutes les conditions que doit vérifier une base pour tourner sur Til ''' men = self.men ind = self.ind foy = self.foy futur = self.futur longit = self.longitudinal assert all(ind['workstate'].isin(range(1,12))) assert all(ind['civilstate'].isin(range(1,6))) # Foyers et ménages bien attribués assert sum((ind['foy'] == -1)) == 0 assert sum((ind['men'] == -1)) == 0 print "Nombre de personnes dans ménages ordinaires : ", sum(ind['men']>9) print "Nombre de personnes vivant au sein de collectivités : ", sum(ind['men']<10) ## On vérifie qu'on a un et un seul qui = 0 et au plus un qui = 1 pour foy et men for ent in ['men', 'foy']: ind['qui0'] = (ind['qui' + ent] == 0).astype(int) ind['qui1'] = (ind['qui' + ent] == 1).astype(int) ind0 = ind[ind[ent] > 9].groupby(ent) # on exclut les collectivités # on vérifie qu'on a un et un seul qui = 0 assert ind0['qui0'].sum().max() == 1 assert ind0['qui0'].sum().min() == 1 # on vérifie qu'on a au plus un qui = 1 assert ind0['qui1'].sum().max() == 1 # on vérifie que les noms d'identité sont bien dans la table entity et réciproquement list_id = eval(ent)['id'] assert ind[ent].isin(list_id).all() assert list_id.isin(ind[ent]).all() # si on est un 2 # si on est quimen = 1 alors on a son partneroint avec soi qui1 = ind['qui' + ent]==1 partner = ind.loc[qui1, 'partner'].values partner_ent = ind.iloc[partner] partner_ent = partner_ent[ent] qui1_ent = ind.loc[qui1, ent] assert (qui1_ent == partner_ent).all() # Table futur bien construite if futur is not None: # -> On vérifie que persone ne nait pas dans le futur tout en étant présent dans les données intiales id_ini = ind[['id']] # 'naiss' != -1 <-> naissance id_futur = futur.loc[(futur['naiss']!=-1) , ['id']] id_ok = concat([id_ini, id_futur], axis = 0) assert count_dup(id_ok,'id') == 0 assert len(futur[(futur['naiss']<= self.survey_year) & (futur['naiss']!= -1) ])== 0 if len(futur.loc[~futur['id'].isin(id_ok['id']), 'id']) != 0: pb_id = futur.loc[~(futur['id'].isin(id_ok['id'])), :].drop_duplicates('id') print ('Nombre identifants problématiques dans la table futur: ', len(pb_id)) print ("Nombre de personnes présentes dans la base " + str( len(id_ok)) + " ("+ str( len(id_ini)) + " initialement et " + str( len(id_futur)) + " qui naissent ensuite)") for table in [ind, men, foy, futur]: if table is not None: test_month = table['period'] % 100 assert all(test_month.isin(range(1, 13))) test_year = table['period'] // 100 assert all(test_year.isin(range(1900, 2100))) for name, table in longit.iteritems(): cols = table.columns cols_year = [(col // 100 in range(1900, 2100)) for col in cols] cols_month = [(col % 100 in range(1, 13)) for col in cols] assert all(cols_year) assert all(cols_month) # check reciprocity: assert all(ind.loc[ind['civilstate'].isin([1,5]), 'partner'] > -1) rec = ind.loc[ind['partner'] != -1, ['id','partner','civilstate']] rec = rec.merge(rec, left_on='id', right_on='partner', suffixes=('','_c')) # 1- check reciprocity of partner assert all(rec['partner_c'] == rec['id']) assert all(rec.loc[rec['civilstate'].isin([1,5]), 'civilstate'] == rec.loc[rec['civilstate'].isin([1,5]), 'civilstate_c']) self._check_links(ind) def _output_name(self, extension='.h5'): if self.seuil is None: name = self.name + extension else: name = self.name + '_' + str(self.seuil) + extension return os.path.join(path_model, name) def store_to_liam(self): ''' Sauvegarde des données au format utilisé ensuite par le modèle Til Séléctionne les variables appelée par Til derrière Appelle des fonctions de Liam2 ''' path = self._output_name() h5file = tables.openFile(path, mode="w") ent_node = h5file.createGroup("/", "entities", "Entities") for ent_name in ['ind','foy','men','futur','past']: entity = eval('self.'+ ent_name) if entity is not None: entity = entity.fillna(-1) try: ent_table = entity.to_records(index=False) except: pdb.set_trace() dtypes = ent_table.dtype final_name = of_name_to_til[ent_name] try: table = h5file.createTable(ent_node, final_name, dtypes, title="%s table" % final_name) table.append(ent_table) except: pdb.set_trace() table.flush() if ent_name == 'men': entity = entity.loc[entity['id']>-1] ent_table2 = entity[['pond','id','period']].to_records(index=False) dtypes2 = ent_table2.dtype table = h5file.createTable(ent_node, 'companies', dtypes2, title="'companies table") table.append(ent_table2) table.flush() if ent_name == 'ind': ent_table2 = entity[['agem','sexe','pere','mere','id','findet','period']].to_records(index=False) dtypes2 = ent_table2.dtype table = h5file.createTable(ent_node, 'register', dtypes2, title="register table") table.append(ent_table2) table.flush() h5file.close() # 3 - table longitudinal # Note: on conserve le format pandas ici store = HDFStore(path) for varname, table in self.longitudinal.iteritems(): table['id'] = table.index store.append('longitudinal/' + varname, table) store.close() def store(self): path = self._output_name() self.men.to_hdf(path, 'entites/men') self.ind.to_hdf(path, 'entites/ind') self.foy.to_hdf(path, 'entites/foy') def run_all(self): for method in self.methods_order: eval('self.'+ method + '()')
gpl-3.0
bkomboz/pymltk
pymltk/exploration.py
1
6123
# imports import numpy as np import pandas as pd import dask.dataframe as dd import matplotlib.pyplot as plt from . import utils # functions def summarize(data=None, features=None, size=5, digits=3, as_df=False, verbose=True, **kwargs): """ Summarize features of a given pandas/dask dataframe. Given either a pandas or a dask dataframe, summarize will create a descriptive summary of the specified features and prints this summary (or if requested returns it as a dataframe). Args: data: A pandas or dask dataframe object. features: String, list of strings, integers or booleans. The features (or indices of those) to summarize. size: Int, number of samples to draw from each feature. digits: Int, number of digits numeric values should be rounded to. as_df: Boolean, whether to return the summary as a dataframe instead of printing it (the default). verbose: Boolean, currently not used. **kwargs: Currently not used. Returns: Either a printed summary or a dataframe version of it. Raises: ValueError: If no data is specified. If features are not specified as string, list of strings, integers or booleans. If the specified feature names are not valid column names or the integers or booleans don't map to valid columns of the specified data. If size and digits are not specified as integers. """ # check input if data is None or (not isinstance(data, pd.core.frame.DataFrame) and not isinstance(data, dd.core.DataFrame)): raise ValueError('Data must be specified as \ pandas.core.frame.DataFrame or dask.core.DataFrame.') features_list = data.columns.tolist() if features is not None and (not isinstance(features, str) and not isinstance(features, list) and not isinstance(features, list)): raise ValueError('Features must be specified as string or\ list of strings, integers or booleans.') if isinstance(features, list): if ((isinstance(features[0], str) and len(set(features) - set(features_list))) or (isinstance(features[0], int) and (max(features) > len(features_list or min(features) < 0))) or (isinstance(features[0], bool) and len(features) != len(features_list))): raise ValueError('Not all of the specified features\ map to a valid feature name.') if not isinstance(size, int): raise ValueError('Size has to be specified as integer.') if not isinstance(digits, int): raise ValueError('Digits has to be specified as integer.') # setup data and features to summarize if features is not None: if isinstance(features, str): features_list = [features] elif isinstance(features[0], str): features_list = features elif isinstance(features[0], bool): features_list = [name for index, name in enumerate( features_list) if features[index]] else: features_list = [name for index, name in enumerate( features_list) if index in features] subdata = data[features_list] # general summary statistics dtypes = subdata.dtypes nan_counts = ut._compute(subdata.isnull().sum()) total_counts = ut._compute(subdata.count()) + nan_counts percents_nan = nan_counts/total_counts sample = {feature: np.random.choice(subdata[feature], size, replace=False) for feature in features_list} # object/string/category summary statistics string_features_list = dtypes[ np.logical_or(dtypes == 'category', dtypes == 'object')].index.tolist() if string_features_list: nuniques = {feature: ut._compute(data[feature].nunique()) for feature in string_features_list} percent_uniques = pd.Series(nuniques)/total_counts[ string_features_list] modes = {feature: ut.mode(data[feature]) for feature in string_features_list} # integer/numeric summary statistics numeric_features_list = dtypes[ np.logical_or(dtypes == 'int64', dtypes == 'float64')].index.tolist() if numeric_features_list: quantiles = ut._compute(data[numeric_features_list].dropna().quantile( [0, 0.25, 0.5, 0.75, 1])) means = ut._compute(data[numeric_features_list].mean()) vars = ut._compute(data[numeric_features_list].var()) #mads = {feature: np.mean(np.abs(data[feature] - # quantiles.loc[0.5, feature])) # for feature in numeric_features_list} #skewness = {feature: np.mean(np.power(( # data[feature] - means[feature]), 3))/(np.power( # total_counts[feature]/(total_counts[feature] - 1) * np.mean( # np.power((data[feature] - means[feature]), 2)), 3/2)) # for feature in numeric_features_list} # merge together into dataframe cols = [dtypes, nan_counts, np.round(percents_nan, digits)] names = ['name', 'dtype', '#nan', '%nan'] if string_features_list: cols.extend([pd.Series(nuniques), pd.Series(percent_uniques), pd.Series(modes)]) names.extend(['#uniq', '%uniq', 'mode']) if numeric_features_list: cols.extend([np.round(np.transpose(quantiles), digits), np.round(means, digits), np.round(vars, digits)]) #np.round(pd.Series(mads), digits)]) # np.round(pd.Series(skewness), digits)]) names.extend(['min', 'Q25', 'med', 'Q75', 'max','mean', 'var']) cols.append(pd.Series(sample)) names.append('sample') summary = pd.concat(cols, axis=1) summary = summary.loc[features_list, :] summary = summary.reset_index() summary.columns = names # return or print if as_df: return summary else: print(summary)
apache-2.0
kernc/scikit-learn
sklearn/metrics/tests/test_pairwise.py
22
25505
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unknown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
lcharleux/numerical_analysis
doc/Optimisation/Example_code/brachi2d.py
1
1803
#------------------------------------------------------------------------ # RECHERCHE DU CHEMIN LE PLUS RAPIDE ENTRE 2 POINTS A ET B #------------------------------------------------------------------------ #------------------------------------------------------------------------ # PACKAGES from scipy import optimize as opt # Optimize import numpy as np # Numpy import matplotlib.pyplot as plt # Pyplot from matplotlib import cm # Colormaps #------------------------------------------------------------------------ #------------------------------------------------------------------------ # POSITION DES POINTS ET DONNEES PHYSIQUES xa, xb = 0., 1. ya, yb = 1., 0. m = 1. # masse en kg g = 10. # gravite en ms**-2 #------------------------------------------------------------------------ #------------------------------------------------------------------------ # CALCUL DU TEMPS DE PARCOURS def temps(Y): # On calcule l'energie potentielle en supposant qu'elle est nulle en A Ep = m * g * (Y - Y[0]) # On calcule l'energie cinetique Ec = - Ep # On calcule la vitesse V = (2. / m * Ec) **.5 # On calcule la vitesse moyenne sur chaque element Ve = (V[1:] + V[:-1]) / 2. # On calcule le pas en X: dx = X[1] - X[0] # On calcule la longueur de chaque element Le = ( ( Y[1:] - Y[:-1] )**2 + dx**2)**.5 # On calcule le temps de parcours par element te = Le / Ve # On calcule le temps de parcours total t = te.sum() return t def add_AB(Yc): Y = np.zeros([len(Yc) + 2]) Y[1:-1] = Yc Y[0], Y[-1] = ya, yb return Y def temps2(Yc): return temps(add_AB(Yc)) #------------------------------------------------------------------------ def func(Yc): Y = add_AB(Yc) return temps(Y) def brute_force(func, limits, samples):
gpl-2.0
appapantula/scikit-learn
sklearn/preprocessing/tests/test_data.py
113
38432
import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils.testing import assert_almost_equal, clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.utils.validation import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) def test_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X = np.ones(5) assert_array_equal(scale(X, with_mean=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), 4 * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # Constant feature. X = np.zeros(5) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): """Check MaxAbsScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # sparse data X_csr = sparse.csr_matrix(X) X_trans = scaler.fit_transform(X_csr) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans.A, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv.A) def test_maxabs_scaler_large_negative_value(): """Check MaxAbsScaler on toy data with a large negative value""" X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y)
bsd-3-clause
smarden1/airflow
setup.py
2
1834
from setuptools import setup, find_packages # Kept manually in sync with airflow.__version__ version = '1.2.0' doc = [ 'sphinx>=1.2.3', 'sphinx-argparse>=0.1.13', 'sphinx-rtd-theme>=0.1.6', 'Sphinx-PyPI-upload>=0.2.1' ] hive = [ 'hive-thrift-py>=0.0.1', 'pyhive>=0.1.3', 'pyhs2>=0.6.0', ] mysql = ['mysql-python>=1.2.5'] postgres = ['psycopg2>=2.6'] optional = ['librabbitmq>=1.6.1'] samba = ['pysmbclient>=0.1.3'] s3 = ['boto>=2.36.0'] all_dbs = postgres + mysql + hive devel = all_dbs + doc + samba + s3 + ['nose'] setup( name='airflow', description='Programmatically author, schedule and monitor data pipelines', version=version, packages=find_packages(), include_package_data=True, zip_safe=False, scripts=['airflow/bin/airflow'], install_requires=[ 'celery>=3.1.17', 'chartkick>=0.4.2', 'dill>=0.2.2', 'flask>=0.10.1', 'flask-admin>=1.0.9', 'flask-cache>=0.13.1', 'flask-login>=0.2.11', 'flower>=0.7.3', 'jinja2>=2.7.3', 'markdown>=2.5.2', 'pandas>=0.15.2', 'pygments>=2.0.1', 'python-dateutil>=2.3', 'requests>=2.5.1', 'setproctitle>=1.1.8', 'snakebite>=2.4.13', 'sqlalchemy>=0.9.8', 'statsd>=3.0.1', 'thrift>=0.9.2', 'tornado>=4.0.2', ], extras_require={ 'all': devel + optional, 'all_dbs': all_dbs, 'doc': doc, 'devel': devel, 'hive': hive, 'mysql': mysql, 'postgres': postgres, 's3': s3, 'samba': samba, }, author='Maxime Beauchemin', author_email='[email protected]', url='https://github.com/airbnb/airflow', download_url=( 'https://github.com/airbnb/airflow/tarball/' + version), )
apache-2.0
voxlol/scikit-learn
examples/exercises/plot_iris_exercise.py
323
1602
""" ================================ SVM Exercise ================================ A tutorial exercise for using different SVM kernels. This exercise is used in the :ref:`using_kernels_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(0) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) X_train = X[:.9 * n_sample] y_train = y[:.9 * n_sample] X_test = X[.9 * n_sample:] y_test = y[.9 * n_sample:] # fit the model for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')): clf = svm.SVC(kernel=kernel, gamma=10) clf.fit(X_train, y_train) plt.figure(fig_num) plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10) plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.show()
bsd-3-clause
keflavich/scikit-image
doc/examples/plot_swirl.py
18
2581
""" ===== Swirl ===== Image swirling is a non-linear image deformation that creates a whirlpool effect. This example describes the implementation of this transform in ``skimage``, as well as the underlying warp mechanism. Image warping ------------- When applying a geometric transformation on an image, we typically make use of a reverse mapping, i.e., for each pixel in the output image, we compute its corresponding position in the input. The reason is that, if we were to do it the other way around (map each input pixel to its new output position), some pixels in the output may be left empty. On the other hand, each output coordinate has exactly one corresponding location in (or outside) the input image, and even if that position is non-integer, we may use interpolation to compute the corresponding image value. Performing a reverse mapping ---------------------------- To perform a geometric warp in ``skimage``, you simply need to provide the reverse mapping to the ``skimage.transform.warp`` function. E.g., consider the case where we would like to shift an image 50 pixels to the left. The reverse mapping for such a shift would be:: def shift_left(xy): xy[:, 0] += 50 return xy The corresponding call to warp is:: from skimage.transform import warp warp(image, shift_left) The swirl transformation ------------------------ Consider the coordinate :math:`(x, y)` in the output image. The reverse mapping for the swirl transformation first computes, relative to a center :math:`(x_0, y_0)`, its polar coordinates, .. math:: \\theta = \\arctan(y/x) \\rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}, and then transforms them according to .. math:: r = \ln(2) \, \mathtt{radius} / 5 \phi = \mathtt{rotation} s = \mathtt{strength} \\theta' = \phi + s \, e^{-\\rho / r + \\theta} where ``strength`` is a parameter for the amount of swirl, ``radius`` indicates the swirl extent in pixels, and ``rotation`` adds a rotation angle. The transformation of ``radius`` into :math:`r` is to ensure that the transformation decays to :math:`\\approx 1/1000^{\mathsf{th}}` within the specified radius. """ import matplotlib.pyplot as plt from skimage import data from skimage.transform import swirl image = data.checkerboard() swirled = swirl(image, rotation=0, strength=10, radius=120, order=2) fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 3)) ax0.imshow(image, cmap=plt.cm.gray, interpolation='none') ax0.axis('off') ax1.imshow(swirled, cmap=plt.cm.gray, interpolation='none') ax1.axis('off') plt.show()
bsd-3-clause
mugizico/scikit-learn
sklearn/tests/test_metaestimators.py
226
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
GoogleCloudPlatform/professional-services
tools/bigquery_user_info_updater_tool/bigquery_user_info_updater/tests/test_nested_user_info_updater.py
4
9590
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pandas as pd from google.api_core import exceptions from google.cloud import bigquery from bigquery_user_info_updater.updater_tools import query_creator from bigquery_user_info_updater.updater_tools import user_info_updater from bigquery_user_info_updater.updater_tools import user_schema class TestNestedUserInfoUpdater(object): """Tests functionality of scripts.UserInfoUpdater. Attributes: bq_client(google.cloud.bigquery.client.Client): Client to hold configurations needed for BigQuery API requests. dataset_id(str): ID of the dataset that holds the test table. dataset_ref(google.cloud.bigquery.dataset.DatasetReference): Pointer to the dataset that holds the test table. dataset(google.cloud.bigquery.dataset.Dataset): Dataset that holds the test table. user_info_updates_id(str): The ID of the historical table that holds all rows and updates for all users. temp_user_info_updates_id(str): ID of the intermediary temp table. user_info_final_id(str): The ID of table that holds one up-to-date row per user. """ def setup(self): """Sets up resources for tests. """ self.bq_client = bigquery.Client() self.dataset_id = 'user_updater_test' self.dataset_ref = self.bq_client.dataset(self.dataset_id) try: self.dataset = self.bq_client.get_dataset(self.dataset_ref) except exceptions.NotFound: dataset = bigquery.Dataset(self.dataset_ref) self.dataset = self.bq_client.create_dataset(dataset) schema_path = 'test_schemas/test_nested_schema.json' abs_path = os.path.abspath(os.path.dirname(__file__)) self.schema_path = os.path.join(abs_path, schema_path) schema = user_schema.UserSchema(self.schema_path) self.bq_schema = schema.translate_json_schema() self.user_info_updates_id = 'test_nested_user_info_updates' self.user_info_updates_table = self.create_table( self.user_info_updates_id) self.temp_user_info_updates_id = 'test_nested_temp_user_info_updates' self.temp_user_info_updates_table = self.create_table( self.temp_user_info_updates_id) self.user_info_final_id = 'test_nested_user_info_final' self.user_info_final_table = self.create_table(self.user_info_final_id) def create_table(self, table_id): """Creates test user tables. Args: table_id(str): ID of the user table to be created. Returns: The created table (google.cloud.bigquery.table.Table). """ table_ref = self.dataset_ref.table(table_id) table = bigquery.Table(table_ref, schema=self.bq_schema) try: self.bq_client.delete_table(table) return self.bq_client.create_table(table) except exceptions.NotFound: return self.bq_client.create_table(table) def load_json_to_bq(self, filename, table): job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.NEWLINE_DELIMITED_JSON abs_path = os.path.abspath(os.path.dirname(__file__)) data_file = os.path.join(abs_path, filename) with open(data_file, 'rb') as file_obj: load_job = self.bq_client.load_table_from_file( file_obj=file_obj, destination=table, job_config=job_config) return load_job.result() def test_nested_data_user_update(self, project_id): """Tests UserInfoUpdater ability to run an update on nested user data. Args: project_id(str): ID of the project that holds the test BQ tables. Returns: True if test passes, else False. """ if not project_id: raise Exception( 'Test needs project_id to pass. ' 'Add --project_id={your project ID} to test command') # Load a set of user updates to nested user_info_updates table. self.load_json_to_bq( filename='test_data/nested_data/user_info_updates_data.json', table=self.dataset_ref.table(self.user_info_updates_id)) # Load data into the temp table and final table to simulate a previous # run. self.load_json_to_bq(filename='test_data/nested_data/' 'temp_user_info_updates_initial.json', table=self.dataset_ref.table( self.temp_user_info_updates_id)) self.load_json_to_bq( filename='test_data/nested_data/user_info_final_initial.json', table=self.dataset_ref.table(self.user_info_final_id)) # Run the UserInfoUpdater on the second set of updates. test_updater = user_info_updater.UserInfoUpdater( project_id, self.dataset_id, self.user_info_updates_id, self.temp_user_info_updates_id, self.user_info_final_id) update_query_creator = query_creator.QueryCreator( schema_path=self.schema_path, user_id_field_name='userId', ingest_timestamp_field_name='ingestTimestamp', project_id=project_id, dataset_id=self.dataset_id, updates_table_id=self.user_info_updates_id, temp_updates_table_id=self.temp_user_info_updates_id, final_table_id=self.user_info_final_id) gather_updates_query = update_query_creator.create_gather_updates_query( ) test_updater.gather_updates(gather_updates_query) merge_udpates_query = update_query_creator.create_merge_query() test_updater.merge_updates(merge_udpates_query) # Query the temp table to test that the gather_updates() function worked temp_table_query_config = bigquery.QueryJobConfig() temp_table_query_config.use_legacy_sql = False temp_table_query = self.bq_client.query( query='SELECT * FROM `{0:s}.{1:s}.{2:s}`'.format( project_id, self.dataset_id, self.temp_user_info_updates_id), job_config=temp_table_query_config, location='US') temp_table_query.result() temp_table_results_df = temp_table_query.to_dataframe() \ .sort_values(by=['userId']).reset_index(drop=True) # Gather expected results for comparison abs_path = os.path.abspath(os.path.dirname(__file__)) expected_temp_data_file = os.path.join( abs_path, 'test_data/nested_data/temp_user_info_updates_expected.json') expected_temp_table_df = pd.read_json(expected_temp_data_file) # Reorder columns since read_json() reads them alphabetically with open(self.schema_path, 'r') as f: json_schema = json.loads(f.read()) col_list = [str(col['name']) for col in json_schema['fields']] expected_temp_table_df = expected_temp_table_df[col_list] # convert ingestTimestamp to datetime expected_temp_table_df['ingestTimestamp'] = pd.to_datetime( expected_temp_table_df['ingestTimestamp']) # Compare results pd.testing.assert_frame_equal(temp_table_results_df, expected_temp_table_df) # Query the final table to test that the merge_updates() function worked final_table_query_config = bigquery.QueryJobConfig() final_table_query_config.use_legacy_sql = False final_table_query = self.bq_client.query( query='SELECT * FROM `{0:s}.{1:s}.{2:s}`'.format( project_id, self.dataset_id, self.user_info_final_id), job_config=final_table_query_config, location='US') final_table_query.result() final_table_results_df = final_table_query.to_dataframe() \ .sort_values(by=['userId']).reset_index(drop=True) # Gather expected results for comparison expected_final_data_file = os.path.join( abs_path, 'test_data/nested_data/user_info_final_expected.json') expected_final_table_df = pd.read_json(expected_final_data_file) # Reorder columns since read_json() reads them alphabetically with open(self.schema_path, 'r') as f: json_schema = json.loads(f.read()) col_list = [str(col['name']) for col in json_schema['fields']] expected_final_table_df = expected_final_table_df[col_list] # convert ingestTimestamp to datetime expected_final_table_df['ingestTimestamp'] = pd.to_datetime( expected_final_table_df['ingestTimestamp']) # Compare results pd.testing.assert_frame_equal(final_table_results_df, expected_final_table_df) def teardown(self): """Deletes any resources used by tests. """ self.bq_client.delete_dataset(self.dataset_ref, delete_contents=True)
apache-2.0
procoder317/scikit-learn
sklearn/preprocessing/__init__.py
268
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
gdementen/PyTables
doc/sphinxext/inheritance_diagram.py
98
13648
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException, e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
bsd-3-clause
poryfly/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <[email protected]> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
mayblue9/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
dhruv13J/scikit-learn
examples/neighbors/plot_species_kde.py
282
4059
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`example_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = -9999 + np.zeros(land_mask.shape[0]) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
bsd-3-clause
duyet-website/api.duyet.net
lib/numpy/lib/twodim_base.py
34
25580
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, ) from numpy.core import iinfo, transpose __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
mit
draperjames/bokeh
tests/compat/polycollection.py
13
1311
from matplotlib.collections import PolyCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show # Generate data. In this case, we'll make a bunch of center-points and generate # verticies by subtracting random offsets from those center-points numpoly, numverts = 100, 4 centers = 100 * (np.random.random((numpoly, 2)) - 0.5) offsets = 10 * (np.random.random((numverts, numpoly, 2)) - 0.5) verts = centers + offsets verts = np.swapaxes(verts, 0, 1) # In your case, "verts" might be something like: # verts = zip(zip(lon1, lat1), zip(lon2, lat2), ...) # If "data" in your case is a numpy array, there are cleaner ways to reorder # things to suit. facecolors = ['red', 'green', 'blue', 'cyan', 'yellow', 'magenta', 'black'] edgecolors = ['cyan', 'yellow', 'magenta', 'black', 'red', 'green', 'blue'] widths = [5, 10, 20, 10, 5] # Make the collection and add it to the plot. col = PolyCollection(verts, facecolor=facecolors, edgecolor=edgecolors, linewidth=widths, linestyle='--', alpha=0.5) ax = plt.axes() ax.add_collection(col) plt.xlim([-60, 60]) plt.ylim([-60, 60]) plt.title("MPL-PolyCollection support in Bokeh") output_file("polycollection.html", title="polycollection.py example") show(mpl.to_bokeh())
bsd-3-clause
cwhanse/pvlib-python
pvlib/tests/test_soiling.py
2
8092
"""Test losses""" import datetime import numpy as np import pandas as pd from .conftest import assert_series_equal from pvlib.soiling import hsu, kimber from pvlib.iotools import read_tmy3 from .conftest import DATA_DIR import pytest @pytest.fixture def expected_output(): # Sample output (calculated manually) dt = pd.date_range(start=pd.Timestamp(2019, 1, 1, 0, 0, 0), end=pd.Timestamp(2019, 1, 1, 23, 59, 0), freq='1h') expected_no_cleaning = pd.Series( data=[0.96998483, 0.94623958, 0.92468139, 0.90465654, 0.88589707, 0.86826366, 0.85167258, 0.83606715, 0.82140458, 0.80764919, 0.79476875, 0.78273241, 0.77150951, 0.76106905, 0.75137932, 0.74240789, 0.73412165, 0.72648695, 0.71946981, 0.7130361, 0.70715176, 0.70178307, 0.69689677, 0.69246034], index=dt) return expected_no_cleaning @pytest.fixture def expected_output_1(): dt = pd.date_range(start=pd.Timestamp(2019, 1, 1, 0, 0, 0), end=pd.Timestamp(2019, 1, 1, 23, 59, 0), freq='1h') expected_output_1 = pd.Series( data=[0.98484972, 0.97277367, 0.96167471, 0.95119603, 1., 0.98484972, 0.97277367, 0.96167471, 1., 1., 0.98484972, 0.97277367, 0.96167471, 0.95119603, 0.94118234, 0.93154854, 0.922242, 0.91322759, 0.90448058, 0.89598283, 0.88772062, 0.87968325, 0.8718622, 0.86425049], index=dt) return expected_output_1 @pytest.fixture def expected_output_2(): dt = pd.date_range(start=pd.Timestamp(2019, 1, 1, 0, 0, 0), end=pd.Timestamp(2019, 1, 1, 23, 59, 0), freq='1h') expected_output_2 = pd.Series( data=[0.95036261, 0.91178179, 0.87774818, 0.84732079, 1., 1., 1., 0.95036261, 1., 1., 1., 1., 0.95036261, 0.91178179, 0.87774818, 0.84732079, 0.8201171, 1., 1., 1., 1., 0.95036261, 0.91178179, 0.87774818], index=dt) return expected_output_2 @pytest.fixture def expected_output_3(): dt = pd.date_range(start=pd.Timestamp(2019, 1, 1, 0, 0, 0), end=pd.Timestamp(2019, 1, 1, 23, 59, 0), freq='1h') timedelta = [0, 0, 0, 0, 0, 30, 0, 30, 0, 30, 0, -30, -30, -30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] dt_new = dt + pd.to_timedelta(timedelta, 'm') expected_output_3 = pd.Series( data=[0.96576705, 0.9387675, 0.91437615, 0.89186852, 1., 1., 0.98093819, 0.9387675, 1., 1., 1., 1., 0.96576705, 0.9387675, 0.90291005, 0.88122293, 0.86104089, 1., 1., 1., 0.96576705, 0.9387675, 0.91437615, 0.89186852], index=dt_new) return expected_output_3 @pytest.fixture def rainfall_input(): dt = pd.date_range(start=pd.Timestamp(2019, 1, 1, 0, 0, 0), end=pd.Timestamp(2019, 1, 1, 23, 59, 0), freq='1h') rainfall = pd.Series( data=[0., 0., 0., 0., 1., 0., 0., 0., 0.5, 0.5, 0., 0., 0., 0., 0., 0., 0.3, 0.3, 0.3, 0.3, 0., 0., 0., 0.], index=dt) return rainfall def test_hsu_no_cleaning(rainfall_input, expected_output): """Test Soiling HSU function""" rainfall = rainfall_input pm2_5 = 1.0 pm10 = 2.0 depo_veloc = {'2_5': 1.0e-5, '10': 1.0e-4} tilt = 0. expected_no_cleaning = expected_output result = hsu(rainfall=rainfall, cleaning_threshold=10., tilt=tilt, pm2_5=pm2_5, pm10=pm10, depo_veloc=depo_veloc, rain_accum_period=pd.Timedelta('1h')) assert_series_equal(result, expected_no_cleaning) def test_hsu(rainfall_input, expected_output_2): """Test Soiling HSU function with cleanings""" rainfall = rainfall_input pm2_5 = 1.0 pm10 = 2.0 depo_veloc = {'2_5': 1.0e-4, '10': 1.0e-4} tilt = 0. # three cleaning events at 4:00-6:00, 8:00-11:00, and 17:00-20:00 result = hsu(rainfall=rainfall, cleaning_threshold=0.5, tilt=tilt, pm2_5=pm2_5, pm10=pm10, depo_veloc=depo_veloc, rain_accum_period=pd.Timedelta('3h')) assert_series_equal(result, expected_output_2) def test_hsu_defaults(rainfall_input, expected_output_1): """ Test Soiling HSU function with default deposition velocity and default rain accumulation period. """ result = hsu(rainfall=rainfall_input, cleaning_threshold=0.5, tilt=0.0, pm2_5=1.0e-2, pm10=2.0e-2) assert np.allclose(result.values, expected_output_1) def test_hsu_variable_time_intervals(rainfall_input, expected_output_3): """ Test Soiling HSU function with variable time intervals. """ depo_veloc = {'2_5': 1.0e-4, '10': 1.0e-4} rain = pd.DataFrame(data=rainfall_input) # define time deltas in minutes timedelta = [0, 0, 0, 0, 0, 30, 0, 30, 0, 30, 0, -30, -30, -30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] rain['mins_added'] = pd.to_timedelta(timedelta, 'm') rain['new_time'] = rain.index + rain['mins_added'] rain_var_times = rain.set_index('new_time').iloc[:, 0] result = hsu( rainfall=rain_var_times, cleaning_threshold=0.5, tilt=50.0, pm2_5=1, pm10=2, depo_veloc=depo_veloc, rain_accum_period=pd.Timedelta('2h')) assert np.allclose(result, expected_output_3) @pytest.fixture def greensboro_rain(): # get TMY3 data with rain greensboro, _ = read_tmy3(DATA_DIR / '723170TYA.CSV', coerce_year=1990) return greensboro.Lprecipdepth @pytest.fixture def expected_kimber_nowash(): return pd.read_csv( DATA_DIR / 'greensboro_kimber_soil_nowash.dat', parse_dates=True, index_col='timestamp') def test_kimber_nowash(greensboro_rain, expected_kimber_nowash): """Test Kimber soiling model with no manual washes""" # Greensboro typical expected annual rainfall is 8345mm assert greensboro_rain.sum() == 8345 # calculate soiling with no wash dates nowash = kimber(greensboro_rain) # test no washes assert np.allclose(nowash.values, expected_kimber_nowash['soiling'].values) @pytest.fixture def expected_kimber_manwash(): return pd.read_csv( DATA_DIR / 'greensboro_kimber_soil_manwash.dat', parse_dates=True, index_col='timestamp') def test_kimber_manwash(greensboro_rain, expected_kimber_manwash): """Test Kimber soiling model with a manual wash""" # a manual wash date manwash = [datetime.date(1990, 2, 15), ] # calculate soiling with manual wash manwash = kimber(greensboro_rain, manual_wash_dates=manwash) # test manual wash assert np.allclose( manwash.values, expected_kimber_manwash['soiling'].values) @pytest.fixture def expected_kimber_norain(): # expected soiling reaches maximum soiling_loss_rate = 0.0015 max_loss_rate = 0.3 norain = np.ones(8760) * soiling_loss_rate/24 norain[0] = 0.0 norain = np.cumsum(norain) return np.where(norain > max_loss_rate, max_loss_rate, norain) def test_kimber_norain(greensboro_rain, expected_kimber_norain): """Test Kimber soiling model with no rain""" # a year with no rain norain = pd.Series(0, index=greensboro_rain.index) # calculate soiling with no rain norain = kimber(norain) # test no rain, soiling reaches maximum assert np.allclose(norain.values, expected_kimber_norain) @pytest.fixture def expected_kimber_initial_soil(): # expected soiling reaches maximum soiling_loss_rate = 0.0015 max_loss_rate = 0.3 norain = np.ones(8760) * soiling_loss_rate/24 norain[0] = 0.1 norain = np.cumsum(norain) return np.where(norain > max_loss_rate, max_loss_rate, norain) def test_kimber_initial_soil(greensboro_rain, expected_kimber_initial_soil): """Test Kimber soiling model with initial soiling""" # a year with no rain norain = pd.Series(0, index=greensboro_rain.index) # calculate soiling with no rain norain = kimber(norain, initial_soiling=0.1) # test no rain, soiling reaches maximum assert np.allclose(norain.values, expected_kimber_initial_soil)
bsd-3-clause
etkirsch/scikit-learn
sklearn/decomposition/truncated_svd.py
199
7744
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, as_float_array, check_random_state from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : array, shape (n_components, n_features) explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. explained_variance_ : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = check_array(X) return np.dot(X, self.components_)
bsd-3-clause
grundgruen/zipline
tests/finance/test_slippage.py
32
18400
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for finance.slippage """ import datetime import pytz from unittest import TestCase from nose_parameterized import parameterized import pandas as pd from zipline.finance.slippage import VolumeShareSlippage from zipline.protocol import Event, DATASOURCE_TYPE from zipline.finance.blotter import Order class SlippageTestCase(TestCase): def test_volume_share_slippage(self): event = Event( {'volume': 200, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'open': 3.0} ) slippage_model = VolumeShareSlippage() open_orders = [ Order(dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), amount=100, filled=0, sid=133) ] orders_txns = list(slippage_model.simulate( event, open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.01875), 'dt': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'amount': int(50), 'sid': int(133), 'commission': None, 'type': DATASOURCE_TYPE.TRANSACTION, 'order_id': open_orders[0].id } self.assertIsNotNone(txn) # TODO: Make expected_txn an Transaction object and ensure there # is a __eq__ for that class. self.assertEquals(expected_txn, txn.__dict__) def test_orders_limit(self): events = self.gen_trades() slippage_model = VolumeShareSlippage() # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'limit': 3.6}) ] orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 1) txn = orders_txns[0][1] expected_txn = { 'price': float(3.500875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'amount': int(100), 'sid': int(133), 'order_id': open_orders[0].id } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) expected_txn = {} self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'limit': 3.4}) ] orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.499125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-100), 'sid': int(133) } self.assertIsNotNone(txn) for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) STOP_ORDER_CASES = { # Stop orders can be long/short and have their price greater or # less than the stop. # # A stop being reached is conditional on the order direction. # Long orders reach the stop when the price is greater than the stop. # Short orders reach the stop when the price is less than the stop. # # Which leads to the following 4 cases: # # | long | short | # | price > stop | | | # | price < stop | | | # # Currently the slippage module acts according to the following table, # where 'X' represents triggering a transaction # | long | short | # | price > stop | | X | # | price < stop | X | | # # However, the following behavior *should* be followed. # # | long | short | # | price > stop | X | | # | price < stop | | X | 'long | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 4.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 4.0, 'open': 3.5 }, 'expected': { 'transaction': { 'price': 4.001, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': 100, 'sid': 133, } } }, 'long | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 3.6 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 4.0 }, 'expected': { 'transaction': None } }, 'short | price gt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.4 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.5, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.5, 'open': 3.0 }, 'expected': { 'transaction': None } }, 'short | price lt stop': { 'order': { 'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.5 }, 'event': { 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'volume': 2000, 'price': 3.0, 'high': 3.15, 'low': 2.85, 'sid': 133, 'close': 3.0, 'open': 3.0 }, 'expected': { 'transaction': { 'price': 2.99925, 'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), 'amount': -100, 'sid': 133, } } }, } @parameterized.expand([ (name, case['order'], case['event'], case['expected']) for name, case in STOP_ORDER_CASES.items() ]) def test_orders_stop(self, name, order_data, event_data, expected): order = Order(**order_data) event = Event(initial_values=event_data) slippage_model = VolumeShareSlippage() try: _, txn = next(slippage_model.simulate(event, [order])) except StopIteration: txn = None if expected['transaction'] is None: self.assertIsNone(txn) else: self.assertIsNotNone(txn) for key, value in expected['transaction'].items(): self.assertEquals(value, txn[key]) def test_orders_stop_limit(self): events = self.gen_trades() slippage_model = VolumeShareSlippage() # long, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.0}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 0) # long, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': 100, 'filled': 0, 'sid': 133, 'stop': 4.0, 'limit': 3.6}) ] orders_txns = list(slippage_model.simulate( events[2], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[3], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.500875), 'dt': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'amount': int(100), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) # short, does not trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 4.0}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does not trade - impacted price worse than limit price open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 3.5}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 0) # short, does trade open_orders = [ Order(**{ 'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), 'amount': -100, 'filled': 0, 'sid': 133, 'stop': 3.0, 'limit': 3.4}) ] orders_txns = list(slippage_model.simulate( events[0], open_orders )) self.assertEquals(len(orders_txns), 0) orders_txns = list(slippage_model.simulate( events[1], open_orders )) self.assertEquals(len(orders_txns), 1) _, txn = orders_txns[0] expected_txn = { 'price': float(3.499125), 'dt': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'amount': int(-100), 'sid': int(133) } for key, value in expected_txn.items(): self.assertEquals(value, txn[key]) def gen_trades(self): # create a sequence of trades events = [ Event({ 'volume': 2000, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), 'open': 3.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.5, 'datetime': datetime.datetime( 2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.5, 'dt': datetime.datetime(2006, 1, 5, 14, 32, tzinfo=pytz.utc), 'open': 3.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 4.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 33, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 4.0, 'dt': datetime.datetime(2006, 1, 5, 14, 33, tzinfo=pytz.utc), 'open': 3.5 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.5, 'datetime': datetime.datetime( 2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.5, 'dt': datetime.datetime(2006, 1, 5, 14, 34, tzinfo=pytz.utc), 'open': 4.0 }), Event({ 'volume': 2000, 'type': 4, 'price': 3.0, 'datetime': datetime.datetime( 2006, 1, 5, 14, 35, tzinfo=pytz.utc), 'high': 3.15, 'low': 2.85, 'sid': 133, 'source_id': 'test_source', 'close': 3.0, 'dt': datetime.datetime(2006, 1, 5, 14, 35, tzinfo=pytz.utc), 'open': 3.5 }) ] return events
apache-2.0
ssanderson/numpy
numpy/linalg/linalg.py
1
78991
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, transpose, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, ravel, all, Inf, dot, add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size, finfo, errstate, geterrobj, longdouble, rollaxis, amin, amax, product, abs, broadcast, atleast_2d, intp, asanyarray, isscalar, object_, ones ) from numpy.core.multiarray import normalize_axis_index from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ pass # Dealing with errors in _umath_linalg _linalg_error_extobj = None def _determine_error_states(): global _linalg_error_extobj errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] _linalg_error_extobj = [bufsize, invalid_call_errmask, None] _determine_error_states() def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if a.ndim != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % a.ndim) def _assertRankAtLeast2(*arrays): for a in arrays: if a.ndim < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % a.ndim) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError('Array must be square') def _assertNdSquareness(*arrays): for a in arrays: if max(a.shape[-2:]) != min(a.shape[-2:]): raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _isEmpty2d(arr): # check size first for efficiency return arr.size == 0 and product(arr.shape[-2:]) == 0 def _assertNoEmpty2d(*arrays): for a in arrays: if _isEmpty2d(a): raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=b.ndim)``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorinv, numpy.einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine _gesv `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: if a.shape[-1] == 0 and b.shape[-1] == 0: # Legal, but the ufunc cannot handle the 0-sized inner dims # let the ufunc handle all wrong cases. a = a.reshape(a.shape[:-1]) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve1 else: if b.size == 0: if (a.shape[-1] == 0 and b.shape[-2] == 0) or b.shape[-1] == 0: a = a[:,:1].reshape(a.shape[:-1] + (1,)) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if a.shape[-1] == 0: # The inner array is 0x0, the ufunc cannot handle this case return wrap(empty_like(a, dtype=result_t)) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,) 'full' : alias of 'reduced', deprecated 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced' and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning, stacklevel=2) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated." warnings.warn(msg, DeprecationWarning, stacklevel=2) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) _assertNoEmpty2d(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) if _isEmpty2d(a): return empty(a.shape[-1:], dtype=result_t) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines _syevd, _heevd Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[ 5.+0.j, 0.-2.j], [ 0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa; wb array([ 1., 6.]) array([ 6.+0.j, 1.+0.j]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if _isEmpty2d(a): return empty(a.shape[-1:], dtype=result_t) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) if _isEmpty2d(a): w = empty(a.shape[-1:], dtype=result_t) vt = empty(a.shape, dtype=result_t) return w, wrap(vt) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[ 5.+2.j, 9.-2.j], [ 0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[ 5.+0.j, 0.-2.j], [ 0.+2.j, 2.+0.j]]) >>> wa, va = LA.eigh(a) >>> wb, vb = LA.eig(b) >>> wa; wb array([ 1., 6.]) array([ 6.+0.j, 1.+0.j]) >>> va; vb array([[-0.44721360-0.j , -0.89442719+0.j ], [ 0.00000000+0.89442719j, 0.00000000-0.4472136j ]]) array([[ 0.89442719+0.j , 0.00000000-0.4472136j], [ 0.00000000-0.4472136j, 0.89442719+0.j ]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if _isEmpty2d(a): w = empty(a.shape[-1:], dtype=result_t) vt = empty(a.shape, dtype=result_t) return w, wrap(vt) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : (..., M, N) array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. s : (..., K) array The singular values for every matrix, sorted in descending order. v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine _gesdd The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 9), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m = a.shape[-2] n = a.shape[-1] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vt = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return wrap(u), s, wrap(vt) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x, compute_uv=False) return s[..., 0]/s[..., -1] else: return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1)) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * max(M.shape) * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : (N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) if _isEmpty2d(a): res = empty(a.shape[:-2] + (a.shape[-1], a.shape[-2]), dtype=a.dtype) return wrap(res) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0. res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0 The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) if _isEmpty2d(a): # determinant of empty matrix is 1 sign = ones(a.shape[:-2], dtype=result_t) logdet = zeros(a.shape[:-2], dtype=real_t) return sign, logdet signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) if isscalar(sign): sign = sign.astype(result_t) else: sign = sign.astype(result_t, copy=False) if isscalar(logdet): logdet = logdet.astype(real_t) else: logdet = logdet.astype(real_t, copy=False) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) # 0x0 matrices have determinant 1 if _isEmpty2d(a): return ones(a.shape[:-2], dtype=result_t) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) if isscalar(r): r = r.astype(result_t) else: r = r.astype(result_t, copy=False) return r # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. For the purposes of rank determination, singular values are treated as zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(), (1,), (K,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print(m, c) 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = b.ndim == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) _assertNoEmpty2d(a, b) # TODO: relax this constraint m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) # This line: # * is incorrect, according to the LAPACK documentation # * raises a ValueError if min(m,n) == 0 # * should not be calculated here anyway, as LAPACK should calculate # `liwork` for us. But that only works if our version of lapack does # not have this bug: # http://icl.cs.utk.edu/lapack-forum/archives/lapack/msg00899.html # Lapack_lite does have that bug... nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError('SVD did not converge in Linear Least Squares') resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) st = s[:min(n, m)].astype(result_real_t, copy=True) return wrap(x), wrap(resids), results['rank'], st def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by numpy.linalg.norm(). Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or numpy.amax or numpy.sum. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ if row_axis > col_axis: row_axis -= 1 y = rollaxis(rollaxis(x, col_axis, x.ndim), row_axis, -1) result = op(svd(y, compute_uv=0), axis=-1) return result def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0 >>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) if not issubclass(x.dtype.type, (inexact, object_)): x = x.astype(float) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).astype(float).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") if x.dtype.type is longdouble: # Convert to a float type, so integer arrays give # float results. Don't apply asfarray to longdouble arrays, # because it will downcast to float64. absx = abs(x) else: absx = x if isComplexType(x.dtype.type) else asfarray(x) if absx.dtype is x.dtype: absx = abs(absx) else: # if the type changed, we can safely overwrite absx abs(absx, out=absx) absx **= ord return add.reduce(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord) elif len(axis) == 2: row_axis, col_axis = axis row_axis = normalize_axis_index(row_axis, nd) col_axis = normalize_axis_index(col_axis, nd) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random(10000, 100) >>> B = np.random.random(100, 1000) >>> C = np.random.random(1000, 5) >>> D = np.random.random(5, 333) >>> # the actual dot multiplication >>> multi_dot([A, B, C, D]) instead of:: >>> np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> A.dot(B).dot(C).dot(D) Example: multiplication costs of different parenthesizations ------------------------------------------------------------ The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ a0, a1b0 = A.shape b1c0, c1 = C.shape # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1 cost1 = a0 * b1c0 * (a1b0 + c1) # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1 cost2 = a1b0 * c1 * (a0 + b1c0) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
bsd-3-clause
dracos/QGIS
python/plugins/processing/algs/qgis/QGISAlgorithmProvider.py
5
9868
# -*- coding: utf-8 -*- """ *************************************************************************** QGISAlgorithmProvider.py --------------------- Date : December 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'December 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os try: import matplotlib.pyplot hasMatplotlib = True except: hasMatplotlib = False from PyQt4.QtGui import QIcon from processing.core.AlgorithmProvider import AlgorithmProvider from processing.script.ScriptUtils import ScriptUtils from RegularPoints import RegularPoints from SymmetricalDifference import SymmetricalDifference from VectorSplit import VectorSplit from VectorGrid import VectorGrid from RandomExtract import RandomExtract from RandomExtractWithinSubsets import RandomExtractWithinSubsets from ExtractByLocation import ExtractByLocation from PointsInPolygon import PointsInPolygon from PointsInPolygonUnique import PointsInPolygonUnique from PointsInPolygonWeighted import PointsInPolygonWeighted from SumLines import SumLines from BasicStatisticsNumbers import BasicStatisticsNumbers from BasicStatisticsStrings import BasicStatisticsStrings from NearestNeighbourAnalysis import NearestNeighbourAnalysis from LinesIntersection import LinesIntersection from MeanCoords import MeanCoords from PointDistance import PointDistance from UniqueValues import UniqueValues from ReprojectLayer import ReprojectLayer from ExportGeometryInfo import ExportGeometryInfo from Centroids import Centroids from Delaunay import Delaunay from VoronoiPolygons import VoronoiPolygons from DensifyGeometries import DensifyGeometries from MultipartToSingleparts import MultipartToSingleparts from SimplifyGeometries import SimplifyGeometries from LinesToPolygons import LinesToPolygons from PolygonsToLines import PolygonsToLines from SinglePartsToMultiparts import SinglePartsToMultiparts from ExtractNodes import ExtractNodes from ConvexHull import ConvexHull from FixedDistanceBuffer import FixedDistanceBuffer from VariableDistanceBuffer import VariableDistanceBuffer from Clip import Clip from Difference import Difference from Dissolve import Dissolve from Intersection import Intersection from ExtentFromLayer import ExtentFromLayer from RandomSelection import RandomSelection from RandomSelectionWithinSubsets import RandomSelectionWithinSubsets from SelectByLocation import SelectByLocation from Union import Union from DensifyGeometriesInterval import DensifyGeometriesInterval from Eliminate import Eliminate from SpatialJoin import SpatialJoin from DeleteColumn import DeleteColumn from DeleteHoles import DeleteHoles from DeleteDuplicateGeometries import DeleteDuplicateGeometries from TextToFloat import TextToFloat from ExtractByAttribute import ExtractByAttribute from SelectByAttribute import SelectByAttribute from Grid import Grid from Gridify import Gridify from HubDistance import HubDistance from HubLines import HubLines from Merge import Merge from GeometryConvert import GeometryConvert from ConcaveHull import ConcaveHull from Polygonize import Polygonize from RasterLayerStatistics import RasterLayerStatistics from StatisticsByCategories import StatisticsByCategories from EquivalentNumField import EquivalentNumField from AddTableField import AddTableField from FieldsCalculator import FieldsCalculator from SaveSelectedFeatures import SaveSelectedFeatures from Explode import Explode from AutoincrementalField import AutoincrementalField from FieldPyculator import FieldsPyculator from JoinAttributes import JoinAttributes from CreateConstantRaster import CreateConstantRaster from PointsLayerFromTable import PointsLayerFromTable from PointsDisplacement import PointsDisplacement from ZonalStatistics import ZonalStatistics from PointsFromPolygons import PointsFromPolygons from PointsFromLines import PointsFromLines from RandomPointsExtent import RandomPointsExtent from RandomPointsLayer import RandomPointsLayer from RandomPointsPolygonsFixed import RandomPointsPolygonsFixed from RandomPointsPolygonsVariable import RandomPointsPolygonsVariable from RandomPointsAlongLines import RandomPointsAlongLines from PointsToPaths import PointsToPaths from PostGISExecuteSQL import PostGISExecuteSQL from ImportIntoPostGIS import ImportIntoPostGIS from SetVectorStyle import SetVectorStyle from SetRasterStyle import SetRasterStyle from SelectByExpression import SelectByExpression from SelectByAttributeSum import SelectByAttributeSum from HypsometricCurves import HypsometricCurves from SplitLinesWithLines import SplitLinesWithLines from FieldsMapper import FieldsMapper from Datasources2Vrt import Datasources2Vrt from CheckValidity import CheckValidity pluginPath = os.path.normpath(os.path.join( os.path.split(os.path.dirname(__file__))[0], os.pardir)) class QGISAlgorithmProvider(AlgorithmProvider): _icon = QIcon(os.path.join(pluginPath, 'images', 'qgis.png')) def __init__(self): AlgorithmProvider.__init__(self) self.alglist = [SumLines(), PointsInPolygon(), PointsInPolygonWeighted(), PointsInPolygonUnique(), BasicStatisticsStrings(), BasicStatisticsNumbers(), NearestNeighbourAnalysis(), MeanCoords(), LinesIntersection(), UniqueValues(), PointDistance(), ReprojectLayer(), ExportGeometryInfo(), Centroids(), Delaunay(), VoronoiPolygons(), SimplifyGeometries(), DensifyGeometries(), DensifyGeometriesInterval(), MultipartToSingleparts(), SinglePartsToMultiparts(), PolygonsToLines(), LinesToPolygons(), ExtractNodes(), Eliminate(), ConvexHull(), FixedDistanceBuffer(), VariableDistanceBuffer(), Dissolve(), Difference(), Intersection(), Union(), Clip(), ExtentFromLayer(), RandomSelection(), RandomSelectionWithinSubsets(), SelectByLocation(), RandomExtract(), DeleteHoles(), RandomExtractWithinSubsets(), ExtractByLocation(), SpatialJoin(), RegularPoints(), SymmetricalDifference(), VectorSplit(), VectorGrid(), DeleteColumn(), DeleteDuplicateGeometries(), TextToFloat(), ExtractByAttribute(), SelectByAttribute(), Grid(), Gridify(), HubDistance(), HubLines(), Merge(), GeometryConvert(), AddTableField(), FieldsCalculator(), SaveSelectedFeatures(), JoinAttributes(), AutoincrementalField(), Explode(), FieldsPyculator(), EquivalentNumField(), PointsLayerFromTable(), StatisticsByCategories(), ConcaveHull(), Polygonize(), RasterLayerStatistics(), PointsDisplacement(), ZonalStatistics(), PointsFromPolygons(), PointsFromLines(), RandomPointsExtent(), RandomPointsLayer(), RandomPointsPolygonsFixed(), RandomPointsPolygonsVariable(), RandomPointsAlongLines(), PointsToPaths(), PostGISExecuteSQL(), ImportIntoPostGIS(), SetVectorStyle(), SetRasterStyle(), SelectByExpression(), HypsometricCurves(), SplitLinesWithLines(), CreateConstantRaster(), FieldsMapper(),SelectByAttributeSum(), Datasources2Vrt(), CheckValidity() ] if hasMatplotlib: from VectorLayerHistogram import VectorLayerHistogram from RasterLayerHistogram import RasterLayerHistogram from VectorLayerScatterplot import VectorLayerScatterplot from MeanAndStdDevPlot import MeanAndStdDevPlot from BarPlot import BarPlot from PolarPlot import PolarPlot self.alglist.extend([ VectorLayerHistogram(), RasterLayerHistogram(), VectorLayerScatterplot(), MeanAndStdDevPlot(), BarPlot(), PolarPlot(), ]) folder = os.path.join(os.path.dirname(__file__), 'scripts') scripts = ScriptUtils.loadFromFolder(folder) for script in scripts: script.allowEdit = False self.alglist.extend(scripts) for alg in self.alglist: alg._icon = self._icon def initializeSettings(self): AlgorithmProvider.initializeSettings(self) def unload(self): AlgorithmProvider.unload(self) def getName(self): return 'qgis' def getDescription(self): return self.tr('QGIS geoalgorithms') def getIcon(self): return self._icon def _loadAlgorithms(self): self.algs = self.alglist def supportsNonFileBasedOutput(self): return True
gpl-2.0
OshynSong/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
jangorecki/h2o-3
h2o-py/tests/pyunit_utils/utilsPY.py
1
149810
from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import range from past.builtins import basestring import sys, os try: # works with python 2.7 not 3 from StringIO import StringIO except: # works with python 3 from io import StringIO sys.path.insert(1, "../../") import h2o import imp import random import re import subprocess from subprocess import STDOUT,PIPE from h2o.utils.shared_utils import temp_ctr from h2o.model.binomial import H2OBinomialModel from h2o.model.clustering import H2OClusteringModel from h2o.model.multinomial import H2OMultinomialModel from h2o.model.regression import H2ORegressionModel from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.deeplearning import H2ODeepLearningEstimator from h2o.estimators.random_forest import H2ORandomForestEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator from h2o.estimators.kmeans import H2OKMeansEstimator from h2o.transforms.decomposition import H2OPCA from h2o.estimators.naive_bayes import H2ONaiveBayesEstimator from decimal import * import urllib.request, urllib.error, urllib.parse import numpy as np import shutil import string import copy import json import math from random import shuffle def check_models(model1, model2, use_cross_validation=False, op='e'): """ Check that the given models are equivalent. :param model1: :param model2: :param use_cross_validation: boolean. if True, use validation metrics to determine model equality. Otherwise, use training metrics. :param op: comparison operator to use. 'e':==, 'g':>, 'ge':>= :return: None. Throw meaningful error messages if the check fails """ # 1. Check model types model1_type = model1.__class__.__name__ model2_type = model1.__class__.__name__ assert model1_type is model2_type, "The model types differ. The first model is of type {0} and the second " \ "models is of type {1}.".format(model1_type, model2_type) # 2. Check model metrics if isinstance(model1,H2OBinomialModel): # 2a. Binomial # F1 f1_1 = model1.F1(xval=use_cross_validation) f1_2 = model2.F1(xval=use_cross_validation) if op == 'e': assert f1_1[0][1] == f1_2[0][1], "The first model has an F1 of {0} and the second model has an F1 of " \ "{1}. Expected the first to be == to the second.".format(f1_1[0][1], f1_2[0][1]) elif op == 'g': assert f1_1[0][1] > f1_2[0][1], "The first model has an F1 of {0} and the second model has an F1 of " \ "{1}. Expected the first to be > than the second.".format(f1_1[0][1], f1_2[0][1]) elif op == 'ge': assert f1_1[0][1] >= f1_2[0][1], "The first model has an F1 of {0} and the second model has an F1 of " \ "{1}. Expected the first to be >= than the second.".format(f1_1[0][1], f1_2[0][1]) elif isinstance(model1,H2ORegressionModel): # 2b. Regression # MSE mse1 = model1.mse(xval=use_cross_validation) mse2 = model2.mse(xval=use_cross_validation) if op == 'e': assert mse1 == mse2, "The first model has an MSE of {0} and the second model has an MSE of " \ "{1}. Expected the first to be == to the second.".format(mse1, mse2) elif op == 'g': assert mse1 > mse2, "The first model has an MSE of {0} and the second model has an MSE of " \ "{1}. Expected the first to be > than the second.".format(mse1, mse2) elif op == 'ge': assert mse1 >= mse2, "The first model has an MSE of {0} and the second model has an MSE of " \ "{1}. Expected the first to be >= than the second.".format(mse1, mse2) elif isinstance(model1,H2OMultinomialModel): # 2c. Multinomial # hit-ratio pass elif isinstance(model1,H2OClusteringModel): # 2d. Clustering # totss totss1 = model1.totss(xval=use_cross_validation) totss2 = model2.totss(xval=use_cross_validation) if op == 'e': assert totss1 == totss2, "The first model has an TOTSS of {0} and the second model has an " \ "TOTSS of {1}. Expected the first to be == to the second.".format(totss1, totss2) elif op == 'g': assert totss1 > totss2, "The first model has an TOTSS of {0} and the second model has an " \ "TOTSS of {1}. Expected the first to be > than the second.".format(totss1, totss2) elif op == 'ge': assert totss1 >= totss2, "The first model has an TOTSS of {0} and the second model has an " \ "TOTSS of {1}. Expected the first to be >= than the second." \ "".format(totss1, totss2) def check_dims_values(python_obj, h2o_frame, rows, cols, dim_only=False): """ Check that the dimensions and values of the python object and H2OFrame are equivalent. Assumes that the python object conforms to the rules specified in the h2o frame documentation. :param python_obj: a (nested) list, tuple, dictionary, numpy.ndarray, ,or pandas.DataFrame :param h2o_frame: an H2OFrame :param rows: number of rows :param cols: number of columns :param dim_only: check the dimensions only :return: None """ h2o_rows, h2o_cols = h2o_frame.dim assert h2o_rows == rows and h2o_cols == cols, "failed dim check! h2o_rows:{0} rows:{1} h2o_cols:{2} cols:{3}" \ "".format(h2o_rows, rows, h2o_cols, cols) if not dim_only: if isinstance(python_obj, (list, tuple)): for c in range(cols): for r in range(rows): pval = python_obj[r] if isinstance(pval, (list, tuple)): pval = pval[c] hval = h2o_frame[r, c] assert pval == hval or abs(pval - hval) < 1e-10, \ "expected H2OFrame to have the same values as the python object for row {0} " \ "and column {1}, but h2o got {2} and python got {3}.".format(r, c, hval, pval) elif isinstance(python_obj, dict): for r in range(rows): for k in list(python_obj.keys()): pval = python_obj[k][r] if hasattr(python_obj[k],'__iter__') else python_obj[k] hval = h2o_frame[r,k] assert pval == hval, "expected H2OFrame to have the same values as the python object for row {0} " \ "and column {1}, but h2o got {2} and python got {3}.".format(r, k, hval, pval) def np_comparison_check(h2o_data, np_data, num_elements): """ Check values achieved by h2o against values achieved by numpy :param h2o_data: an H2OFrame or H2OVec :param np_data: a numpy array :param num_elements: number of elements to compare :return: None """ # Check for numpy try: imp.find_module('numpy') except ImportError: assert False, "failed comparison check because unable to import numpy" import numpy as np rows, cols = h2o_data.dim for i in range(num_elements): r = random.randint(0,rows-1) c = random.randint(0,cols-1) h2o_val = h2o_data[r,c] np_val = np_data[r,c] if len(np_data.shape) > 1 else np_data[r] if isinstance(np_val, np.bool_): np_val = bool(np_val) # numpy haz special bool type :( assert np.absolute(h2o_val - np_val) < 1e-5, \ "failed comparison check! h2o computed {0} and numpy computed {1}".format(h2o_val, np_val) def javapredict(algo, equality, train, test, x, y, compile_only=False, **kwargs): print("Creating model in H2O") if algo == "gbm": model = H2OGradientBoostingEstimator(**kwargs) elif algo == "random_forest": model = H2ORandomForestEstimator(**kwargs) elif algo == "deeplearning": model = H2ODeepLearningEstimator(**kwargs) elif algo == "glm": model = H2OGeneralizedLinearEstimator(**kwargs) elif algo == "naive_bayes": model = H2ONaiveBayesEstimator(**kwargs) elif algo == "kmeans": model = H2OKMeansEstimator(**kwargs) elif algo == "pca": model = H2OPCA(**kwargs) else: raise ValueError if algo == "kmeans" or algo == "pca": model.train(x=x, training_frame=train) else: model.train(x=x, y=y, training_frame=train) print(model) # HACK: munge model._id so that it conforms to Java class name. For example, change K-means to K_means. # TODO: clients should extract Java class name from header. regex = re.compile("[+\\-* !@#$%^&()={}\\[\\]|;:'\"<>,.?/]") pojoname = regex.sub("_", model._id) print("Downloading Java prediction model code from H2O") tmpdir = os.path.normpath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "results", pojoname)) os.makedirs(tmpdir) h2o.download_pojo(model, path=tmpdir) h2o_genmodel_jar = os.path.join(tmpdir, "h2o-genmodel.jar") assert os.path.exists(h2o_genmodel_jar), "Expected file {0} to exist, but it does not.".format(h2o_genmodel_jar) print("h2o-genmodel.jar saved in {0}".format(h2o_genmodel_jar)) java_file = os.path.join(tmpdir, pojoname + ".java") assert os.path.exists(java_file), "Expected file {0} to exist, but it does not.".format(java_file) print("java code saved in {0}".format(java_file)) print("Compiling Java Pojo") javac_cmd = ["javac", "-cp", h2o_genmodel_jar, "-J-Xmx12g", "-J-XX:MaxPermSize=256m", java_file] subprocess.check_call(javac_cmd) if not compile_only: print("Predicting in H2O") predictions = model.predict(test) predictions.summary() predictions.head() out_h2o_csv = os.path.join(tmpdir, "out_h2o.csv") h2o.download_csv(predictions, out_h2o_csv) assert os.path.exists(out_h2o_csv), "Expected file {0} to exist, but it does not.".format(out_h2o_csv) print("H2O Predictions saved in {0}".format(out_h2o_csv)) print("Setting up for Java POJO") in_csv = os.path.join(tmpdir, "in.csv") h2o.download_csv(test[x], in_csv) # hack: the PredictCsv driver can't handle quoted strings, so remove them f = open(in_csv, "r+") csv = f.read() csv = re.sub('\"', "", csv) f.seek(0) f.write(csv) f.truncate() f.close() assert os.path.exists(in_csv), "Expected file {0} to exist, but it does not.".format(in_csv) print("Input CSV to PredictCsv saved in {0}".format(in_csv)) print("Running PredictCsv Java Program") out_pojo_csv = os.path.join(tmpdir, "out_pojo.csv") cp_sep = ";" if sys.platform == "win32" else ":" java_cmd = ["java", "-ea", "-cp", h2o_genmodel_jar + cp_sep + tmpdir, "-Xmx12g", "-XX:MaxPermSize=2g", "-XX:ReservedCodeCacheSize=256m", "hex.genmodel.tools.PredictCsv", "--pojo", pojoname, "--input", in_csv, "--output", out_pojo_csv] p = subprocess.Popen(java_cmd, stdout=PIPE, stderr=STDOUT) o, e = p.communicate() print("Java output: {0}".format(o)) assert os.path.exists(out_pojo_csv), "Expected file {0} to exist, but it does not.".format(out_pojo_csv) predictions2 = h2o.upload_file(path=out_pojo_csv) print("Pojo predictions saved in {0}".format(out_pojo_csv)) print("Comparing predictions between H2O and Java POJO") # Dimensions hr, hc = predictions.dim pr, pc = predictions2.dim assert hr == pr, "Expected the same number of rows, but got {0} and {1}".format(hr, pr) assert hc == pc, "Expected the same number of cols, but got {0} and {1}".format(hc, pc) # Value for r in range(hr): hp = predictions[r, 0] if equality == "numeric": pp = float.fromhex(predictions2[r, 0]) assert abs(hp - pp) < 1e-4, \ "Expected predictions to be the same (within 1e-4) for row %d, but got %r and %r" % (r, hp, pp) elif equality == "class": pp = predictions2[r, 0] assert hp == pp, "Expected predictions to be the same for row %d, but got %r and %r" % (r, hp, pp) else: raise ValueError def javamunge(assembly, pojoname, test, compile_only=False): """ Here's how to use: assembly is an already fit H2OAssembly; The test set should be used to compare the output here and the output of the POJO. """ print("Downloading munging POJO code from H2O") tmpdir = os.path.normpath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "results", pojoname)) os.makedirs(tmpdir) assembly.to_pojo(pojoname, path=tmpdir, get_jar=True) h2o_genmodel_jar = os.path.join(tmpdir, "h2o-genmodel.jar") assert os.path.exists(h2o_genmodel_jar), "Expected file {0} to exist, but it does not.".format(h2o_genmodel_jar) print("h2o-genmodel.jar saved in {0}".format(h2o_genmodel_jar)) java_file = os.path.join(tmpdir, pojoname + ".java") assert os.path.exists(java_file), "Expected file {0} to exist, but it does not.".format(java_file) print("java code saved in {0}".format(java_file)) print("Compiling Java Pojo") javac_cmd = ["javac", "-cp", h2o_genmodel_jar, "-J-Xmx12g", "-J-XX:MaxPermSize=256m", java_file] subprocess.check_call(javac_cmd) if not compile_only: print("Setting up for Java POJO") in_csv = os.path.join(tmpdir, "in.csv") h2o.download_csv(test, in_csv) assert os.path.exists(in_csv), "Expected file {0} to exist, but it does not.".format(in_csv) print("Input CSV to mungedCSV saved in {0}".format(in_csv)) print("Predicting in H2O") munged = assembly.fit(test) munged.head() out_h2o_csv = os.path.join(tmpdir, "out_h2o.csv") h2o.download_csv(munged, out_h2o_csv) assert os.path.exists(out_h2o_csv), "Expected file {0} to exist, but it does not.".format(out_h2o_csv) print("Munged frame saved in {0}".format(out_h2o_csv)) print("Running PredictCsv Java Program") out_pojo_csv = os.path.join(tmpdir, "out_pojo.csv") cp_sep = ";" if sys.platform == "win32" else ":" java_cmd = ["java", "-ea", "-cp", h2o_genmodel_jar + cp_sep + tmpdir, "-Xmx12g", "-XX:MaxPermSize=2g", "-XX:ReservedCodeCacheSize=256m", "hex.genmodel.tools.MungeCsv", "--header", "--munger", pojoname, "--input", in_csv, "--output", out_pojo_csv] print("JAVA COMMAND: " + " ".join(java_cmd)) p = subprocess.Popen(java_cmd, stdout=PIPE, stderr=STDOUT) o, e = p.communicate() print("Java output: {0}".format(o)) assert os.path.exists(out_pojo_csv), "Expected file {0} to exist, but it does not.".format(out_pojo_csv) munged2 = h2o.upload_file(path=out_pojo_csv, col_types=test.types) print("Pojo predictions saved in {0}".format(out_pojo_csv)) print("Comparing predictions between H2O and Java POJO") # Dimensions hr, hc = munged.dim pr, pc = munged2.dim assert hr == pr, "Expected the same number of rows, but got {0} and {1}".format(hr, pr) assert hc == pc, "Expected the same number of cols, but got {0} and {1}".format(hc, pc) # Value import math import numbers munged.show() munged2.show() for r in range(hr): for c in range(hc): hp = munged[r,c] pp = munged2[r,c] if isinstance(hp, numbers.Number): assert isinstance(pp, numbers.Number) assert (math.fabs(hp-pp) < 1e-8) or (math.isnan(hp) and math.isnan(pp)), "Expected munged rows to be the same for row {0}, but got {1}, and {2}".format(r, hp, pp) else: assert hp==pp, "Expected munged rows to be the same for row {0}, but got {1}, and {2}".format(r, hp, pp) def locate(path): """ Search for a relative path and turn it into an absolute path. This is handy when hunting for data files to be passed into h2o and used by import file. Note: This function is for unit testing purposes only. Parameters ---------- path : str Path to search for :return: Absolute path if it is found. None otherwise. """ if (test_is_on_hadoop()): # Jenkins jobs create symbolic links to smalldata and bigdata on the machine that starts the test. However, # in an h2o multinode hadoop cluster scenario, the clustered machines don't know about the symbolic link. # Consequently, `locate` needs to return the actual path to the data on the clustered machines. ALL jenkins # machines store smalldata and bigdata in /home/0xdiag/. If ON.HADOOP is set by the run.py, the path arg MUST # be an immediate subdirectory of /home/0xdiag/. Moreover, the only guaranteed subdirectories of /home/0xdiag/ # are smalldata and bigdata. p = os.path.realpath(os.path.join("/home/0xdiag/", path)) if not os.path.exists(p): raise ValueError("File not found: " + path) return p else: tmp_dir = os.path.realpath(os.getcwd()) possible_result = os.path.join(tmp_dir, path) while (True): if (os.path.exists(possible_result)): return possible_result next_tmp_dir = os.path.dirname(tmp_dir) if (next_tmp_dir == tmp_dir): raise ValueError("File not found: " + path) tmp_dir = next_tmp_dir possible_result = os.path.join(tmp_dir, path) def hadoop_namenode_is_accessible(): url = "http://{0}:50070".format(hadoop_namenode()) try: urllib.urlopen(url) internal = True except: internal = False return internal def test_is_on_hadoop(): if hasattr(sys.modules["tests.pyunit_utils"], '__on_hadoop__'): return sys.modules["tests.pyunit_utils"].__on_hadoop__ return False def hadoop_namenode(): if os.getenv("NAME_NODE"): return os.getenv("NAME_NODE").split(".")[0] elif hasattr(sys.modules["tests.pyunit_utils"], '__hadoop_namenode__'): return sys.modules["tests.pyunit_utils"].__hadoop_namenode__ return None def pyunit_exec(test_name): with open(test_name, "r") as t: pyunit = t.read() pyunit_c = compile(pyunit, os.path.abspath(test_name), 'exec') exec(pyunit_c, {}) def standalone_test(test): h2o.init(strict_version_check=False) h2o.remove_all() h2o.log_and_echo("------------------------------------------------------------") h2o.log_and_echo("") h2o.log_and_echo("STARTING TEST") h2o.log_and_echo("") h2o.log_and_echo("------------------------------------------------------------") test() def make_random_grid_space(algo, ncols=None, nrows=None): """ Construct a dictionary of the form {gbm_parameter:list_of_values, ...}, which will eventually be passed to H2OGridSearch to build a grid object. The gbm parameters, and their associated values, are randomly selected. :param algo: a string {"gbm", "rf", "dl", "km", "glm"} representing the algo dimension of the grid space :param ncols: Used for mtries selection or k (pca) :param nrows: Used for k (pca) :return: a dictionary of parameter_name:list_of_values """ grid_space = {} if algo in ["gbm", "rf"]: if random.randint(0,1): grid_space['ntrees'] = random.sample(list(range(1,6)),random.randint(2,3)) if random.randint(0,1): grid_space['max_depth'] = random.sample(list(range(1,6)),random.randint(2,3)) if random.randint(0,1): grid_space['min_rows'] = random.sample(list(range(1,11)),random.randint(2,3)) if random.randint(0,1): grid_space['nbins'] = random.sample(list(range(2,21)),random.randint(2,3)) if random.randint(0,1): grid_space['nbins_cats'] = random.sample(list(range(2,1025)),random.randint(2,3)) if algo == "gbm": if random.randint(0,1): grid_space['learn_rate'] = [random.random() for _ in range(random.randint(2,3))] grid_space['distribution'] = random.sample(['bernoulli', 'multinomial', 'gaussian', 'poisson', 'tweedie', 'gamma'], 1) if algo == "rf": if random.randint(0,1): grid_space['mtries'] = random.sample(list(range(1,ncols+1)),random.randint(2,3)) if random.randint(0,1): grid_space['sample_rate'] = [random.random() for r in range(random.randint(2,3))] elif algo == "km": grid_space['k'] = random.sample(list(range(1,10)),random.randint(2,3)) if random.randint(0,1): grid_space['max_iterations'] = random.sample(list(range(1,1000)),random.randint(2,3)) if random.randint(0,1): grid_space['standardize'] = [True, False] if random.randint(0,1): grid_space['seed'] = random.sample(list(range(1,1000)),random.randint(2,3)) if random.randint(0,1): grid_space['init'] = random.sample(['Random','PlusPlus','Furthest'],random.randint(2,3)) elif algo == "glm": if random.randint(0,1): grid_space['alpha'] = [random.random() for r in range(random.randint(2,3))] grid_space['family'] = random.sample(['binomial','gaussian','poisson','tweedie','gamma'], 1) if grid_space['family'] == "tweedie": if random.randint(0,1): grid_space['tweedie_variance_power'] = [round(random.random()+1,6) for r in range(random.randint(2,3))] grid_space['tweedie_link_power'] = 1 - grid_space['tweedie_variance_power'] elif algo == "dl": if random.randint(0,1): grid_space['activation'] = \ random.sample(["Rectifier", "Tanh", "TanhWithDropout", "RectifierWithDropout", "MaxoutWithDropout"], random.randint(2,3)) if random.randint(0,1): grid_space['l2'] = [0.001*random.random() for r in range(random.randint(2,3))] grid_space['distribution'] = random.sample(['bernoulli','multinomial','gaussian','poisson','tweedie','gamma'],1) return grid_space elif algo == "naiveBayes": grid_space['laplace'] = 0 if random.randint(0,1): grid_space['laplace'] = [round(random.random() + r, 6) for r in random.sample(list(range(0,11)), random.randint(2,3))] if random.randint(0,1): grid_space['min_sdev'] = [round(random.random(),6) for r in range(random.randint(2,3))] if random.randint(0,1): grid_space['eps_sdev'] = [round(random.random(),6) for r in range(random.randint(2,3))] elif algo == "pca": if random.randint(0,1): grid_space['max_iterations'] = random.sample(list(range(1,1000)),random.randint(2,3)) if random.randint(0,1): grid_space['transform'] = random.sample(["NONE","STANDARDIZE","NORMALIZE","DEMEAN","DESCALE"], random.randint(2,3)) grid_space['k'] = random.sample(list(range(1,min(ncols,nrows))),random.randint(2,3)) else: raise ValueError return grid_space # Validate given models' parameters against expected values def expect_model_param(models, attribute_name, expected_values): print("param: {0}".format(attribute_name)) actual_values = list(set([m.params[attribute_name]['actual'] \ if type(m.params[attribute_name]['actual']) != list else m.params[attribute_name]['actual'][0] for m in models.models])) # possible for actual to be a list (GLM) if type(expected_values) != list: expected_values = [expected_values] # limit precision. Rounding happens in some models like RF actual_values = [x if isinstance(x,basestring) else round(float(x),5) for x in actual_values] expected_values = [x if isinstance(x,basestring) else round(float(x),5) for x in expected_values] print("actual values: {0}".format(actual_values)) print("expected values: {0}".format(expected_values)) actual_values_len = len(actual_values) expected_values_len = len(expected_values) assert actual_values_len == expected_values_len, "Expected values len: {0}. Actual values len: " \ "{1}".format(expected_values_len, actual_values_len) actual_values = sorted(actual_values) expected_values = sorted(expected_values) for i in range(len(actual_values)): if isinstance(actual_values[i], float): assert abs(actual_values[i]-expected_values[i]) < 1.1e-5, "Too large of a difference betewen actual and " \ "expected value. Actual value: {}. Expected value: {}"\ .format(actual_values[i], expected_values[i]) else: assert actual_values[i] == expected_values[i], "Expected: {}. Actual: {}"\ .format(expected_values[i], actual_values[i]) def rest_ctr(): return h2o.connection().requests_count def write_syn_floating_point_dataset_glm(csv_training_data_filename, csv_validation_data_filename, csv_test_data_filename, csv_weight_name, row_count, col_count, data_type, max_p_value, min_p_value, max_w_value, min_w_value, noise_std, family_type, valid_row_count, test_row_count, class_number=2, class_method=('probability', 'probability', 'probability'), class_margin=[0.0, 0.0, 0.0]): """ Generate random data sets to test the GLM algo using the following steps: 1. randomly generate the intercept and weight vector; 2. generate a set of predictors X; 3. generate the corresponding response y using the formula: y = w^T x+b+e where T is transpose, e is a random Gaussian noise added. For the Binomial family, the relationship between the response Y and predictor vector X is assumed to be Prob(Y = 1|X) = exp(W^T * X + e)/(1+exp(W^T * X + e)). For the Multinomial family, the relationship between the response Y (K possible classes) and predictor vector X is assumed to be Prob(Y = c|X) = exp(Wc^T * X + e)/(sum k=0 to K-1 (ep(Wk^T *X+e)) :param csv_training_data_filename: string representing full path filename to store training data set. Set to null string if no training data set is to be generated. :param csv_validation_data_filename: string representing full path filename to store validation data set. Set to null string if no validation data set is to be generated. :param csv_test_data_filename: string representing full path filename to store test data set. Set to null string if no test data set is to be generated. :param csv_weight_name: string representing full path filename to store intercept and weight used to generate all data sets. :param row_count: integer representing number of samples (predictor, response) in training data set :param col_count: integer representing the number of predictors in the data set :param data_type: integer representing the type of predictors or weights (1: integers, 2: real) :param max_p_value: integer representing maximum predictor values :param min_p_value: integer representing minimum predictor values :param max_w_value: integer representing maximum intercept/weight values :param min_w_value: integer representing minimum intercept/weight values :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param valid_row_count: integer representing number of samples (predictor, response) in validation data set :param test_row_count: integer representing number of samples (predictor, response) in test data set :param class_number: integer, optional, representing number of classes for binomial and multinomial :param class_method: string tuple, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial family_type for training/validation/test data set respectively. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in margin. If the maximum class probability fails to be greater by the margin than the second highest class probability, the data sample is discarded. :param class_margin: float tuple, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability in order for us to keep the data sample for training/validation/test data set respectively. This field is only meaningful if class_method is set to 'threshold' :return: None """ # generate bias b and weight as a column vector weights = generate_weights_glm(csv_weight_name, col_count, data_type, min_w_value, max_w_value, family_type=family_type, class_number=class_number) # generate training data set if len(csv_training_data_filename) > 0: generate_training_set_glm(csv_training_data_filename, row_count, col_count, min_p_value, max_p_value, data_type, family_type, noise_std, weights, class_method=class_method[0], class_margin=class_margin[0]) # generate validation data set if len(csv_validation_data_filename) > 0: generate_training_set_glm(csv_validation_data_filename, valid_row_count, col_count, min_p_value, max_p_value, data_type, family_type, noise_std, weights, class_method=class_method[1], class_margin=class_margin[1]) # generate test data set if len(csv_test_data_filename) > 0: generate_training_set_glm(csv_test_data_filename, test_row_count, col_count, min_p_value, max_p_value, data_type, family_type, noise_std, weights, class_method=class_method[2], class_margin=class_margin[2]) def write_syn_mixed_dataset_glm(csv_training_data_filename, csv_training_data_filename_true_one_hot, csv_validation_data_filename, csv_validation_filename_true_one_hot, csv_test_data_filename, csv_test_filename_true_one_hot, csv_weight_filename, row_count, col_count, max_p_value, min_p_value, max_w_value, min_w_value, noise_std, family_type, valid_row_count, test_row_count, enum_col, enum_level_vec, class_number=2, class_method=['probability', 'probability', 'probability'], class_margin=[0.0, 0.0, 0.0]): """ This function differs from write_syn_floating_point_dataset_glm in one small point. The predictors in this case contains categorical data as well as real data. Generate random data sets to test the GLM algo using the following steps: 1. randomly generate the intercept and weight vector; 2. generate a set of predictors X; 3. generate the corresponding response y using the formula: y = w^T x+b+e where T is transpose, e is a random Gaussian noise added. For the Binomial family, the relationship between the response Y and predictor vector X is assumed to be Prob(Y = 1|X) = exp(W^T * X + e)/(1+exp(W^T * X + e)). For the Multinomial family, the relationship between the response Y (K possible classes) and predictor vector X is assumed to be Prob(Y = c|X) = exp(Wc^T * X + e)/(sum k=0 to K-1 (ep(Wk^T *X+e)) :param csv_training_data_filename: string representing full path filename to store training data set. Set to null string if no training data set is to be generated. :param csv_training_data_filename_true_one_hot: string representing full path filename to store training data set with true one-hot encoding. Set to null string if no training data set is to be generated. :param csv_validation_data_filename: string representing full path filename to store validation data set. Set to null string if no validation data set is to be generated. :param csv_validation_filename_true_one_hot: string representing full path filename to store validation data set with true one-hot. Set to null string if no validation data set is to be generated. :param csv_test_data_filename: string representing full path filename to store test data set. Set to null string if no test data set is to be generated. :param csv_test_filename_true_one_hot: string representing full path filename to store test data set with true one-hot encoding. Set to null string if no test data set is to be generated. :param csv_weight_filename: string representing full path filename to store intercept and weight used to generate all data sets. :param row_count: integer representing number of samples (predictor, response) in training data set :param col_count: integer representing the number of predictors in the data set :param max_p_value: integer representing maximum predictor values :param min_p_value: integer representing minimum predictor values :param max_w_value: integer representing maximum intercept/weight values :param min_w_value: integer representing minimum intercept/weight values :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param valid_row_count: integer representing number of samples (predictor, response) in validation data set :param test_row_count: integer representing number of samples (predictor, response) in test data set :param enum_col: integer representing actual number of categorical columns in data set :param enum_level_vec: vector containing maximum integer value for each categorical column :param class_number: integer, optional, representing number classes for binomial and multinomial :param class_method: string tuple, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial family_type for training/validation/test data set respectively. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample is discarded. :param class_margin: float tuple, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability by in order for us to keep the data sample for training/validation/test data set respectively. This field is only meaningful if class_method is set to 'threshold' :return: None """ # add column count of encoded categorical predictors, if maximum value for enum is 3, it has 4 levels. # hence 4 bits are used to encode it with true one hot encoding. That is why we are adding 1 bit per # categorical columns added to our predictors new_col_count = col_count - enum_col + sum(enum_level_vec) + enum_level_vec.shape[0] # generate the weights to be applied to the training/validation/test data sets # this is for true one hot encoding. For reference+one hot encoding, will skip # few extra weights weights = generate_weights_glm(csv_weight_filename, new_col_count, 2, min_w_value, max_w_value, family_type=family_type, class_number=class_number) # generate training data set if len(csv_training_data_filename) > 0: generate_training_set_mixed_glm(csv_training_data_filename, csv_training_data_filename_true_one_hot, row_count, col_count, min_p_value, max_p_value, family_type, noise_std, weights, enum_col, enum_level_vec, class_number=class_number, class_method=class_method[0], class_margin=class_margin[0]) # generate validation data set if len(csv_validation_data_filename) > 0: generate_training_set_mixed_glm(csv_validation_data_filename, csv_validation_filename_true_one_hot, valid_row_count, col_count, min_p_value, max_p_value, family_type, noise_std, weights, enum_col, enum_level_vec, class_number=class_number, class_method=class_method[1], class_margin=class_margin[1]) # generate test data set if len(csv_test_data_filename) > 0: generate_training_set_mixed_glm(csv_test_data_filename, csv_test_filename_true_one_hot, test_row_count, col_count, min_p_value, max_p_value, family_type, noise_std, weights, enum_col, enum_level_vec, class_number=class_number, class_method=class_method[2], class_margin=class_margin[2]) def generate_weights_glm(csv_weight_filename, col_count, data_type, min_w_value, max_w_value, family_type='gaussian', class_number=2): """ Generate random intercept and weight vectors (integer or real) for GLM algo and save the values in a file specified by csv_weight_filename. :param csv_weight_filename: string representing full path filename to store intercept and weight used to generate all data set :param col_count: integer representing the number of predictors in the data set :param data_type: integer representing the type of predictors or weights (1: integers, 2: real) :param max_w_value: integer representing maximum intercept/weight values :param min_w_value: integer representing minimum intercept/weight values :param family_type: string ,optional, represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param class_number: integer, optional, representing number classes for binomial and multinomial :return: column vector of size 1+colCount representing intercept and weight or matrix of size 1+colCount by class_number """ # first generate random intercept and weight if 'gaussian' in family_type.lower(): if data_type == 1: # generate random integer intercept/weight weight = np.random.random_integers(min_w_value, max_w_value, [col_count+1, 1]) elif data_type == 2: # generate real intercept/weights weight = np.random.uniform(min_w_value, max_w_value, [col_count+1, 1]) else: print("dataType must be 1 or 2 for now.") sys.exit(1) elif ('binomial' in family_type.lower()) or ('multinomial' in family_type.lower()): if 'binomial' in family_type.lower(): # for binomial, only need 1 set of weight class_number -= 1 if class_number <= 0: print("class_number must be >= 2!") sys.exit(1) if isinstance(col_count, np.ndarray): temp_col_count = col_count[0] else: temp_col_count = col_count if data_type == 1: # generate random integer intercept/weight weight = np.random.random_integers(min_w_value, max_w_value, [temp_col_count+1, class_number]) elif data_type == 2: # generate real intercept/weights weight = np.random.uniform(min_w_value, max_w_value, [temp_col_count+1, class_number]) else: print("dataType must be 1 or 2 for now.") sys.exit(1) # save the generated intercept and weight np.savetxt(csv_weight_filename, weight.transpose(), delimiter=",") return weight def generate_training_set_glm(csv_filename, row_count, col_count, min_p_value, max_p_value, data_type, family_type, noise_std, weight, class_method='probability', class_margin=0.0): """ Generate supervised data set given weights for the GLM algo. First randomly generate the predictors, then call function generate_response_glm to generate the corresponding response y using the formula: y = w^T x+b+e where T is transpose, e is a random Gaussian noise added. For the Binomial family, the relationship between the response Y and predictor vector X is assumed to be Prob(Y = 1|X) = exp(W^T * X + e)/(1+exp(W^T * X + e)). For the Multinomial family, the relationship between the response Y (K possible classes) and predictor vector X is assumed to be Prob(Y = c|X) = exp(Wc^T * X + e)/(sum k=0 to K-1 (ep(Wk^T *X+e)). The predictors and responses are saved in a file specified by csv_filename. :param csv_filename: string representing full path filename to store supervised data set :param row_count: integer representing the number of training samples in the data set :param col_count: integer representing the number of predictors in the data set :param max_p_value: integer representing maximum predictor values :param min_p_value: integer representing minimum predictor values :param data_type: integer representing the type of predictors or weights (1: integers, 2: real) :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param weight: vector representing w in our formula to generate the response. :param class_method: string tuple, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial family-type for training/validation/test data set respectively. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in the margin. If the maximum class probability fails to be greater by the margin than the second highest class probability, the data sample is discarded. :param class_margin: float tuple, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability in order for us to keep the data sample for training/validation/test data set respectively. This field is only meaningful if class_method is set to 'threshold' :return: None """ if data_type == 1: # generate random integers x_mat = np.random.random_integers(min_p_value, max_p_value, [row_count, col_count]) elif data_type == 2: # generate random real numbers x_mat = np.random.uniform(min_p_value, max_p_value, [row_count, col_count]) else: print("dataType must be 1 or 2 for now. ") sys.exit(1) # generate the response vector to the input predictors response_y = generate_response_glm(weight, x_mat, noise_std, family_type, class_method=class_method, class_margin=class_margin) # for family_type = 'multinomial' or 'binomial', response_y can be -ve to indicate bad sample data. # need to delete this data sample before proceeding if ('multinomial' in family_type.lower()) or ('binomial' in family_type.lower()): if 'threshold' in class_method.lower(): if np.any(response_y < 0): # remove negative entries out of data set (x_mat, response_y) = remove_negative_response(x_mat, response_y) # write to file in csv format np.savetxt(csv_filename, np.concatenate((x_mat, response_y), axis=1), delimiter=",") def generate_clusters(cluster_center_list, cluster_pt_number_list, cluster_radius_list): """ This function is used to generate clusters of points around cluster_centers listed in cluster_center_list. The radius of the cluster of points are specified by cluster_pt_number_list. The size of each cluster could be different and it is specified in cluster_radius_list. :param cluster_center_list: list of coordinates of cluster centers :param cluster_pt_number_list: number of points to generate for each cluster center :param cluster_radius_list: list of size of each cluster :return: list of sample points that belong to various clusters """ k = len(cluster_pt_number_list) # number of clusters to generate clusters for if (not(k == len(cluster_center_list))) or (not(k == len(cluster_radius_list))): print("Length of list cluster_center_list, cluster_pt_number_list, cluster_radius_list must be the same!") sys.exit(1) training_sets = [] for k_ind in range(k): new_cluster_data = generate_one_cluster(cluster_center_list[k_ind], cluster_pt_number_list[k_ind], cluster_radius_list[k_ind]) if k_ind > 0: training_sets = np.concatenate((training_sets, new_cluster_data), axis=0) else: training_sets = new_cluster_data # want to shuffle the data samples so that the clusters are all mixed up map(np.random.shuffle, training_sets) return training_sets def generate_one_cluster(cluster_center, cluster_number, cluster_size): """ This function will generate a full cluster wither cluster_number points centered on cluster_center with maximum radius cluster_size :param cluster_center: python list denoting coordinates of cluster center :param cluster_number: integer denoting number of points to generate for this cluster :param cluster_size: float denoting radius of cluster :return: np matrix denoting a cluster """ pt_dists = np.random.uniform(0, cluster_size, [cluster_number, 1]) coord_pts = len(cluster_center) # dimension of each cluster point one_cluster_data = np.zeros((cluster_number, coord_pts), dtype=np.float) for p_ind in range(cluster_number): coord_indices = list(range(coord_pts)) random.shuffle(coord_indices) # randomly determine which coordinate to generate left_radius = pt_dists[p_ind] for c_ind in range(coord_pts): coord_index = coord_indices[c_ind] one_cluster_data[p_ind, coord_index] = random.uniform(-1*left_radius+cluster_center[coord_index], left_radius+cluster_center[coord_index]) left_radius = math.sqrt(pow(left_radius, 2)-pow((one_cluster_data[p_ind, coord_index]- cluster_center[coord_index]), 2)) return one_cluster_data def remove_negative_response(x_mat, response_y): """ Recall that when the user chooses to generate a data set for multinomial or binomial using the 'threshold' method, response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample is discarded. However, when we generate the data set, we keep all samples. For data sample with maximum class probability that fails to be greater by margin than the second highest class probability, the response is set to be -1. This function will remove all data samples (predictors and responses) with response set to -1. :param x_mat: predictor matrix containing all predictor values :param response_y: response that can be negative if that data sample is to be removed :return: tuple containing x_mat, response_y with negative data samples removed. """ y_response_negative = np.where(response_y < 0) # matrix of True or False x_mat = np.delete(x_mat,y_response_negative[0].transpose(),axis=0) # remove predictor row with negative response # remove rows with negative response response_y = response_y[response_y >= 0] return x_mat,response_y.transpose() def generate_training_set_mixed_glm(csv_filename, csv_filename_true_one_hot, row_count, col_count, min_p_value, max_p_value, family_type, noise_std, weight, enum_col, enum_level_vec, class_number=2, class_method='probability', class_margin=0.0): """ Generate supervised data set given weights for the GLM algo with mixed categorical and real value predictors. First randomly generate the predictors, then call function generate_response_glm to generate the corresponding response y using the formula: y = w^T x+b+e where T is transpose, e is a random Gaussian noise added. For the Binomial family, the relationship between the response Y and predictor vector X is assumed to be Prob(Y = 1|X) = exp(W^T * X + e)/(1+exp(W^T * X + e)). For the Multinomial family, the relationship between the response Y (K possible classes) and predictor vector X is assumed to be Prob(Y = c|X) = exp(Wc^T * X + e)/(sum k=0 to K-1 (ep(Wk^T *X+e)) e is the random Gaussian noise added to the response. The predictors and responses are saved in a file specified by csv_filename. :param csv_filename: string representing full path filename to store supervised data set :param csv_filename_true_one_hot: string representing full path filename to store data set with true one-hot encoding. :param row_count: integer representing the number of training samples in the data set :param col_count: integer representing the number of predictors in the data set :param max_p_value: integer representing maximum predictor values :param min_p_value: integer representing minimum predictor values :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param weight: vector representing w in our formula to generate the response. :param enum_col: integer representing actual number of categorical columns in data set :param enum_level_vec: vector containing maximum integer value for each categorical column :param class_number: integer, optional, representing number classes for binomial and multinomial :param class_method: string, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial family_type. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample is discarded. :param class_margin: float, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability by in order for us to keep the data set sample. This field is only meaningful if class_method is set to 'threshold' :return: None """ # generate the random training data sets enum_dataset = np.zeros((row_count, enum_col), dtype=np.int) # generate the categorical predictors # generate categorical data columns for indc in range(enum_col): enum_dataset[:, indc] = np.random.random_integers(0, enum_level_vec[indc], row_count) # generate real data columns x_mat = np.random.uniform(min_p_value, max_p_value, [row_count, col_count-enum_col]) x_mat = np.concatenate((enum_dataset, x_mat), axis=1) # concatenate categorical and real predictor columns if len(csv_filename_true_one_hot) > 0: generate_and_save_mixed_glm(csv_filename_true_one_hot, x_mat, enum_level_vec, enum_col, True, weight, noise_std, family_type, class_method=class_method, class_margin=class_margin) if len(csv_filename) > 0: generate_and_save_mixed_glm(csv_filename, x_mat, enum_level_vec, enum_col, False, weight, noise_std, family_type, class_method=class_method, class_margin=class_margin) def generate_and_save_mixed_glm(csv_filename, x_mat, enum_level_vec, enum_col, true_one_hot, weight, noise_std, family_type, class_method='probability', class_margin=0.0): """ Given the weights and input data matrix with mixed categorical and real value predictors, this function will generate a supervised data set and save the input data and response in a csv format file specified by csv_filename. It will first encode the enums without using one hot encoding with or without a reference level first before generating a response Y. :param csv_filename: string representing full path filename to store supervised data set with reference level plus true one-hot encoding. :param x_mat: predictor matrix with mixed columns (categorical/real values) :param enum_level_vec: vector containing maximum integer value for each categorical column :param enum_col: integer representing actual number of categorical columns in data set :param true_one_hot: bool indicating whether we are using true one hot encoding or reference level plus one hot encoding :param weight: vector representing w in our formula to generate the response :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param class_method: string, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial family_type. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in the margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample is discarded. :param class_margin: float, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability in order for us to keep the data sample. This field is only meaningful if class_method is set to 'threshold' :return: None """ # encode the enums x_mat_encoded = encode_enum_dataset(x_mat, enum_level_vec, enum_col, true_one_hot, False) # extract the correct weight dimension for the data set if not true_one_hot: (num_row, num_col) = x_mat_encoded.shape weight = weight[0:num_col+1] # +1 to take care of the intercept term # generate the corresponding response vector given the weight and encoded input predictors response_y = generate_response_glm(weight, x_mat_encoded, noise_std, family_type, class_method=class_method, class_margin=class_margin) # for familyType = 'multinomial' or 'binomial', response_y can be -ve to indicate bad sample data. # need to delete this before proceeding if ('multinomial' in family_type.lower()) or ('binomial' in family_type.lower()): if 'threshold' in class_method.lower(): (x_mat,response_y) = remove_negative_response(x_mat, response_y) # write generated data set to file in csv format np.savetxt(csv_filename, np.concatenate((x_mat, response_y), axis=1), delimiter=",") def encode_enum_dataset(dataset, enum_level_vec, enum_col, true_one_hot, include_nans): """ Given 2-d numpy array of predictors with categorical and real columns, this function will encode the enum columns with 1-hot encoding or with reference plus one hot encoding :param dataset: 2-d numpy array of predictors with both categorical and real columns :param enum_level_vec: vector containing maximum level for each categorical column :param enum_col: number of categorical columns in the data set :param true_one_hot: bool indicating if we are using true one hot encoding or with one reference level + one hot encoding :param include_nans: bool indicating if we have nans in categorical columns :return: data set with categorical columns encoded with 1-hot encoding or 1-hot encoding plus reference """ (num_row, num_col) = dataset.shape # split the data set into categorical and real parts enum_arrays = dataset[:, 0:enum_col] new_enum_arrays = [] # perform the encoding for each element of categorical part for indc in range(enum_col): enum_col_num = enum_level_vec[indc]+1 if not true_one_hot: enum_col_num -= 1 if include_nans and np.any(enum_arrays[:, indc]): enum_col_num += 1 new_temp_enum = np.zeros((num_row, enum_col_num[0])) one_hot_matrix = one_hot_encoding(enum_col_num) last_col_index = enum_col_num-1 # encode each enum using 1-hot encoding or plus reference value for indr in range(num_row): enum_val = enum_arrays[indr, indc] if true_one_hot: # not using true one hot new_temp_enum[indr, :] = replace_with_encoded_bits(one_hot_matrix, enum_val, 0, last_col_index) else: if enum_val: new_temp_enum[indr, :] = replace_with_encoded_bits(one_hot_matrix, enum_val, 1, last_col_index) if indc == 0: new_enum_arrays = new_temp_enum else: new_enum_arrays = np.concatenate((new_enum_arrays, new_temp_enum), axis=1) return np.concatenate((new_enum_arrays, dataset[:, enum_col:num_col]), axis=1) def replace_with_encoded_bits(one_hot_matrix, enum_val, add_value, last_col_index): """ Generate encoded bits for a categorical data value using one hot encoding. :param one_hot_matrix: matrix representing the encoding of categorical data value to 1-hot encoding :param enum_val: categorical data value, could be np.nan :param add_value: set to 1 if a reference value is needed in addition to 1-hot encoding :param last_col_index: index into encoding for np.nan if exists :return: vector representing the encoded values for a enum value """ if np.isnan(enum_val): # if data value is np.nan return one_hot_matrix[last_col_index] else: return one_hot_matrix[int(enum_val-add_value)] def one_hot_encoding(enum_level): """ Generate the one_hot_encoding matrix given the number of enum_level. :param enum_level: generate the actual one-hot encoding matrix :return: numpy array for the enum_level specified. Note, enum_level <= 6 """ if enum_level >= 2: base_array = np.array([[0, 1], [1, 0]]) # for 2 enum levels for enum_index in range(3, enum_level+1): # loop to build encoding for enum levels > 2 (num_row, num_col) = base_array.shape col_zeros = np.asmatrix(np.zeros(num_row)).transpose() # column of zero matrix base_array = np.concatenate((col_zeros, base_array), axis=1) # add column of zero row_zeros = np.asmatrix(np.zeros(num_row+1)) # add row of zeros row_zeros[0, 0] = 1 # set first element to 1 base_array = np.concatenate((base_array, row_zeros), axis=0) return base_array else: print ("enum_level must be >= 2.") sys.exit(1) def generate_response_glm(weight, x_mat, noise_std, family_type, class_method='probability', class_margin=0.0): """ Generate response vector given weight matrix, predictors matrix for the GLM algo. :param weight: vector representing w in our formula to generate the response :param x_mat: random numpy matrix (2-D ndarray) containing the predictors :param noise_std: Gaussian noise standard deviation used to generate noise e to add to response :param family_type: string represents the various distribution families (Gaussian, multinomial, binomial) supported by our GLM algo :param class_method: string, optional, describing how we derive the final response from the class probabilities generated for binomial and multinomial familyType. If set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in the margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample is discarded. :param class_margin: float, optional, denotes the threshold by how much the maximum class probability has to exceed the second highest class probability in order for us to keep the data set sample. This field is only meaningful if class_method is set to 'threshold' :return: vector representing the response """ (num_row, num_col) = x_mat.shape # add a column of 1's to x_mat temp_ones_col = np.asmatrix(np.ones(num_row)).transpose() x_mat = np.concatenate((temp_ones_col, x_mat), axis=1) # generate response given predictor and weight and add noise vector, default behavior response_y = x_mat * weight + noise_std * np.random.standard_normal([num_row, 1]) # added more to form Multinomial response if ('multinomial' in family_type.lower()) or ('binomial' in family_type.lower()): temp_mat = np.exp(response_y) # matrix of n by K where K = 1 for binomials if 'binomial' in family_type.lower(): ntemp_mat = temp_mat + 1 btemp_mat = temp_mat / ntemp_mat temp_mat = np.concatenate((1-btemp_mat, btemp_mat), axis=1) # inflate temp_mat to 2 classes response_y = derive_discrete_response(temp_mat, class_method, class_margin) return response_y def derive_discrete_response(prob_mat, class_method, class_margin): """ This function is written to generate the final class response given the probabilities (Prob(y=k)). There are two methods that we use and is specified by the class_method. If class_method is set to 'probability', response y is generated randomly according to the class probabilities calculated. If set to 'threshold', response y is set to the class with the maximum class probability if the maximum class probability exceeds the second highest class probability by the value set in margin. If the maximum class probability fails to be greater by margin than the second highest class probability, the data sample will be discarded later by marking the final response as -1. :param prob_mat: probability matrix specifying the probability that y=k where k is a class :param class_method: string set to 'probability' or 'threshold' :param class_margin: if class_method='threshold', class_margin is the margin used to determine if a response is to be kept or discarded. :return: response vector representing class of y or -1 if an data sample is to be discarded. """ (num_sample, num_class) = prob_mat.shape prob_mat = normalize_matrix(prob_mat) discrete_y = np.zeros((num_sample, 1), dtype=np.int) if 'probability' in class_method.lower(): prob_mat = np.cumsum(prob_mat, axis=1) random_v = np.random.uniform(0, 1, [num_sample, 1]) # choose the class that final response y belongs to according to the # probability prob(y=k) class_bool = random_v < prob_mat for indR in range(num_sample): for indC in range(num_class): if class_bool[indR, indC]: discrete_y[indR, 0] = indC break elif 'threshold' in class_method.lower(): discrete_y = np.argmax(prob_mat, axis=1) temp_mat = np.diff(np.sort(prob_mat, axis=1), axis=1) # check if max value exceeds second one by at least margin mat_diff = temp_mat[:, num_class-2] mat_bool = mat_diff < class_margin discrete_y[mat_bool] = -1 else: print('class_method should be set to "probability" or "threshold" only!') sys.exit(1) return discrete_y def normalize_matrix(mat): """ This function will normalize a matrix across each row such that the row sum is 1. :param mat: matrix containing prob(y=k) :return: normalized matrix containing prob(y=k) """ (n, K) = mat.shape kronmat = np.ones((1, K), dtype=float) row_sum = np.sum(mat, axis=1) row_sum_mat = np.kron(row_sum, kronmat) return mat/row_sum_mat def move_files(dir_path, old_name, new_file, action='move'): """ Simple function to move or copy a data set (old_name) to a special directory (dir_path) with new name (new_file) so that we will be able to re-run the tests if we have found something wrong with the algorithm under test with the data set. This is done to avoid losing the data set. :param dir_path: string representing full directory path where a file is to be moved to :param old_name: string representing file (filename with full directory path) to be moved to new directory. :param new_file: string representing the file name of the moved in the new directory :param action: string, optional, represent the action 'move' or 'copy' file :return: None """ new_name = os.path.join(dir_path, new_file) # generate new filename including directory path if os.path.isfile(old_name): # only move/copy file old_name if it actually exists if 'move' in action: motion = 'mv ' elif 'copy' in action: motion = 'cp ' else: print("Illegal action setting. It can only be 'move' or 'copy'!") sys.exit(1) cmd = motion+old_name+' '+new_name # generate cmd line string to move the file subprocess.call(cmd, shell=True) def remove_files(filename): """ Simple function to remove data set saved in filename if the dynamic test is completed with no error. Some data sets we use can be rather big. This is performed to save space. :param filename: string representing the file to be removed. Full path is included. :return: None """ cmd = 'rm ' + filename subprocess.call(cmd, shell=True) def random_col_duplication(num_cols, duplication_threshold, max_number, to_scale, max_scale_factor): """ This function will randomly determine for each column if it should be duplicated. If it is to be duplicated, how many times, the duplication should be. In addition, a scaling factor will be randomly applied to each duplicated column if enabled. :param num_cols: integer representing number of predictors used :param duplication_threshold: threshold to determine if a column is to be duplicated. Set this number to be low if you want to encourage column duplication and vice versa :param max_number: maximum number of times a column is to be duplicated :param to_scale: bool indicating if a duplicated column is to be scaled :param max_scale_factor: real representing maximum scale value for repeated columns :return: a tuple containing two vectors: col_return, col_scale_return. col_return: vector indicating the column indices of the original data matrix that will be included in the new data matrix with duplicated columns col_scale_return: vector indicating for each new column in the new data matrix with duplicated columns, what scale should be applied to that column. """ col_indices = list(range(num_cols)) # contains column indices of predictors in original data set col_scales = [1]*num_cols # scaling factor for original data set, all ones. for ind in range(num_cols): # determine for each column if to duplicate it temp = random.uniform(0, 1) # generate random number from 0 to 1 if temp > duplication_threshold: # duplicate column if random number generated exceeds duplication_threshold rep_num = random.randint(1, max_number) # randomly determine how many times to repeat a column more_col_indices = [ind]*rep_num col_indices.extend(more_col_indices) temp_scale = [] for ind in range(rep_num): if to_scale: # for each duplicated column, determine a scaling factor to multiply the column with temp_scale.append(random.uniform(0, max_scale_factor)) else: temp_scale.append(1) col_scales.extend(temp_scale) # randomly shuffle the predictor column orders and the corresponding scaling factors new_col_indices = list(range(len(col_indices))) random.shuffle(new_col_indices) col_return = [col_indices[i] for i in new_col_indices] col_scale_return = [col_scales[i] for i in new_col_indices] return col_return, col_scale_return def duplicate_scale_cols(col_indices, col_scale, old_filename, new_filename): """ This function actually performs the column duplication with scaling giving the column indices and scaling factors for each column. It will first load the original data set from old_filename. After performing column duplication and scaling, the new data set will be written to file with new_filename. :param col_indices: vector indicating the column indices of the original data matrix that will be included in the new data matrix with duplicated columns :param col_scale: vector indicating for each new column in the new data matrix with duplicated columns, what scale should be applied to that column :param old_filename: string representing full directory path and filename where data set is stored :param new_filename: string representing full directory path and filename where new data set is to be stored :return: None """ # pd_frame = pd.read_csv(old_filename, header=None) # read in original data set # # pd_frame_new = pd.DataFrame() # new empty data frame # # for ind in range(len(col_indices)): # for each column # tempc = pd_frame.ix[:, col_indices[ind]]*col_scale[ind] # extract a column from old data frame and scale it # pd_frame_new = pd.concat([pd_frame_new, tempc], axis=1) # add it to the new data frame np_frame = np.asmatrix(np.genfromtxt(old_filename, delimiter=',', dtype=None)) (num_row, num_col) = np_frame.shape np_frame_new = np.asmatrix(np.zeros((num_row, len(col_indices)), dtype=np.float)) for ind in range(len(col_indices)): np_frame_new[:, ind] = np_frame[:, col_indices[ind]]*col_scale[ind] # done changing the data frame. Save it in a new file np.savetxt(new_filename, np_frame_new, delimiter=",") def insert_nan_in_data(old_filename, new_filename, missing_fraction): """ Give the filename of a data set stored in old_filename, this function will randomly determine for each predictor to replace its value with nan or not with probability missing_frac. The new data set will be stored in filename new_filename. :param old_filename: string representing full directory path and filename where data set is stored :param new_filename: string representing full directory path and filename where new data set with missing values is to be stored :param missing_fraction: real value representing the probability of replacing a predictor with nan. :return: None """ # pd_frame = pd.read_csv(old_filename, header=None) # read in a dataset np_frame = np.asmatrix(np.genfromtxt(old_filename, delimiter=',', dtype=None)) (row_count, col_count) = np_frame.shape random_matrix = np.random.uniform(0, 1, [row_count, col_count-1]) for indr in range(row_count): # for each predictor value, determine if to replace value with nan for indc in range(col_count-1): if random_matrix[indr, indc] < missing_fraction: np_frame[indr, indc] = np.nan # save new data set with missing values to new file np.savetxt(new_filename, np_frame, delimiter=",") # pd_frame.to_csv(new_filename, sep=',', header=False, index=False, na_rep='nan') def print_message_values(start_string, nump_array): """ This function prints the value of a nump_array with a string message in front of it. :param start_string: string representing message to be printed :param nump_array: array storing something :return: None """ print(start_string) print(nump_array) def show_test_results(test_name, curr_test_val, new_test_val): """ This function prints the test execution results which can be passed or failed. A message will be printed on screen to warn user of the test result. :param test_name: string representing test name :param curr_test_val: integer representing number of tests failed so far before the test specified in test_name is executed :param new_test_val: integer representing number of tests failed after the test specified in test_name is executed :return: integer: 0 if test passed and 1 if test faild. """ failed_string = "Ooops, " + test_name + " failed. I am sorry..." pass_string = "Yeah, " + test_name + " passed!" if (curr_test_val < new_test_val): # this test has failed print(failed_string) return 1 else: print(pass_string) return 0 def equal_two_arrays(array1, array2, eps, tolerance): """ This function will compare the values of two python tuples. First, if the values are below eps which denotes the significance level that we care, no comparison is performed. Next, False is returned if the different between any elements of the two array exceeds some tolerance. :param array1: numpy array containing some values of interest :param array2: numpy array containing some values of interest that we would like to compare it with array1 :param eps: significance level that we care about in order to perform the comparison :param tolerance: threshold for which we allow the two array elements to be different by :return: True if elements in array1 and array2 are close and False otherwise """ size1 = len(array1) if size1 == len(array2): # arrays must be the same size # compare two arrays for ind in range(size1): if not ((array1[ind] < eps) and (array2[ind] < eps)): # values to be compared are not too small, perform comparison # look at differences between elements of array1 and array2 compare_val_h2o_Py = abs(array1[ind] - array2[ind]) if compare_val_h2o_Py > tolerance: # difference is too high, return false return False return True # return True, elements of two arrays are close enough else: print("The two arrays are of different size!") sys.exit(1) def compare_two_arrays(array1, array2, eps, tolerance, comparison_string, array1_string, array2_string, error_string, success_string, template_is_better, just_print=False): """ This function is written to print out the performance comparison results for various values that we care about. It will return 1 if the values of the two arrays exceed threshold specified in tolerance. The actual comparison is performed by calling function equal_two_array. :param array1: numpy array containing some values of interest :param array2: numpy array containing some values of interest that we would like to compare it with array1 :param eps: significance level that we care about in order to perform the comparison :param tolerance: threshold for which we allow the two array elements to be different by :param comparison_string: string stating what the comparison is about, e.g. "Comparing p-values ...." :param array1_string: string stating what is the array1 attribute of interest, e.g. "H2O p-values: " :param array2_string: string stating what is the array2 attribute of interest, e.g. "Theoretical p-values: " :param error_string: string stating what you want to say if the difference between array1 and array2 exceeds tolerance, e.g "P-values are not equal!" :param success_string: string stating what you want to say if the difference between array1 and array2 does not exceed tolerance "P-values are close enough!" :param template_is_better: bool, True, will return 1 if difference among elements of array1 and array2 exceeds tolerance. False, will always return 0 even if difference among elements of array1 and array2 exceeds tolerance. In this case, the system under test actually performs better than the template. :param just_print: bool if True will print attribute values without doing comparison. False will print attribute values and perform comparison :return: if template_is_better = True, return 0 if elements in array1 and array2 are close and 1 otherwise; if template_is_better = False, will always return 0 since system under tests performs better than template system. """ # display array1, array2 with proper description print(comparison_string) print(array1_string, array1) print(array2_string, array2) if just_print: # just print the two values and do no comparison return 0 else: # may need to actually perform comparison if template_is_better: try: assert equal_two_arrays(array1, array2, eps, tolerance), error_string print(success_string) sys.stdout.flush() return 0 except: sys.stdout.flush() return 1 else: print("Test result is actually better than comparison template!") return 0 def make_Rsandbox_dir(base_dir, test_name, make_dir): """ This function will remove directory "Rsandbox/test_name" off directory base_dir and contents if it exists. If make_dir is True, it will create a clean directory "Rsandbox/test_name" off directory base_dir. :param base_dir: string contains directory path where we want to build our Rsandbox/test_name off from :param test_name: string contains unit test name that the Rsandbox is created for :param make_dir: bool, True: will create directory baseDir/Rsandbox/test_name, False: will not create directory. :return: syndatasets_dir: string containing the full path of the directory name specified by base_dir, test_name """ # create the Rsandbox directory path for the test. syndatasets_dir = os.path.join(base_dir, "Rsandbox_" + test_name) if os.path.exists(syndatasets_dir): # remove Rsandbox directory if it exists shutil.rmtree(syndatasets_dir) if make_dir: # create Rsandbox directory if make_dir is True os.makedirs(syndatasets_dir) return syndatasets_dir def get_train_glm_params(model, what_param, family_type='gaussian'): """ This function will grab the various attributes (like coefficients, p-values, and others) off a GLM model that has been built. :param model: GLM model that we want to extract information from :param what_param: string indicating the model attribute of interest like 'p-value','weights',... :param family_type: string, optional, represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :return: attribute value of interest """ coeff_pvalues = model._model_json["output"]["coefficients_table"].cell_values if what_param == 'p-values': if 'gaussian' in family_type.lower(): p_value_h2o = [] for ind in range(len(coeff_pvalues)): p_value_h2o.append(coeff_pvalues[ind][-1]) return p_value_h2o else: print("P-values are only available to Gaussian family.") sys.exit(1) elif what_param == 'weights': if 'gaussian' in family_type.lower(): weights = [] for ind in range(len(coeff_pvalues)): weights.append(coeff_pvalues[ind][1]) return weights elif ('multinomial' in family_type.lower()) or ('binomial' in family_type.lower()): # for multinomial, the coefficients are organized as features by number of classes for # nonstandardized and then standardized weights. Need to grab the correct matrix as # number of classes by n_features matrix num_feature = len(coeff_pvalues) num_class = (len(coeff_pvalues[0])-1)/2 coeffs = np.zeros((num_class,num_feature), dtype=np.float) end_index = int(num_class+1) for col_index in range(len(coeff_pvalues)): coeffs[:, col_index] = coeff_pvalues[col_index][1:end_index] return coeffs elif what_param == 'best_lambda': lambda_str = model._model_json["output"]["model_summary"].cell_values[0][4].split('=') return float(str(lambda_str[-2]).split(',')[0]) elif what_param == 'confusion_matrix': if 'multinomial' in family_type.lower(): return model._model_json["output"]["training_metrics"]._metric_json["cm"]["table"] elif 'binomial' in family_type.lower(): return model.confusion_matrix().table else: print("parameter value not found in GLM model") sys.exit(1) def less_than(val1, val2): """ Simple function that returns True if val1 <= val2 and False otherwise. :param val1: first value of interest :param val2: second value of interest :return: bool: True if val1 <= val2 and False otherwise """ if round(val1, 3) <= round(val2, 3): # only care to the 3rd position after decimal point return True else: return False def replace_nan_with_mean(data_with_nans, nans_row_col_indices, col_means): """ Given a data set with nans, row and column indices of where the nans are and the col_means, this function will replace the nans with the corresponding col_means. :param data_with_nans: data set matrix with nans :param nans_row_col_indices: matrix containing the row and column indices of where the nans are :param col_means: vector containing the column means of data_with_NAs :return: data_with_NAs: data set with nans replaced with column means """ num_NAs = len(nans_row_col_indices[0]) for ind in range(num_NAs): data_with_nans[nans_row_col_indices[0][ind], nans_row_col_indices[1][ind]] = \ col_means[nans_row_col_indices[1][ind]] return data_with_nans def remove_csv_files(dir_path, suffix=".csv", action='remove', new_dir_path=""): """ Given a directory, this function will gather all function ending with string specified in suffix. Next, it is going to delete those files if action is set to 'remove'. If action is set to 'copy', a new_dir_path must be specified where the files ending with suffix will be moved to this new directory instead. :param dir_path: string representing full path to directory of interest :param suffix: string representing suffix of filename that are to be found and deleted :param action: string, optional, denote the action to perform on files, 'remove' or 'move' :param new_dir_path: string, optional, representing full path to new directory :return: None """ filenames = os.listdir(dir_path) # list all files in directory # only collect files with filename ending with suffix to_remove = [filename for filename in filenames if filename.endswith(suffix)] # delete files ending with suffix for fn in to_remove: temp_fn = os.path.join(dir_path, fn) # only remove if file actually exists. if os.path.isfile(temp_fn): if 'remove' in action: remove_files(temp_fn) elif 'copy' in action: move_files(new_dir_path, temp_fn, fn, action=action) else: print("action string can only be 'remove' or 'copy.") sys.exit(1) def extract_comparison_attributes_and_print(model_h2o, h2o_model_test_metrics, end_test_str, want_p_values, attr1_bool, attr2_bool, att1_template, att2_template, att3_template, att4_template, compare_att1_str, h2o_att1_str, template_att1_str, att1_str_fail, att1_str_success, compare_att2_str, h2o_att2_str, template_att2_str, att2_str_fail, att2_str_success, compare_att3_str, h2o_att3_str, template_att3_str, att3_str_fail, att3_str_success, compare_att4_str, h2o_att4_str, template_att4_str, att4_str_fail, att4_str_success, failed_test_number, ignored_eps, allowed_diff, noise_var, template_must_be_better, attr3_bool=True, attr4_bool=True): """ This function basically will compare four attributes (weight, p-values, training data MSE, test data MSE) of a test with a template model. If the difference of comparison exceeds a certain threshold, the test will be determined as failed and vice versa. There are times when we do not care about p-values and/or weight comparisons but mainly concerned with MSEs. We can set the input parameters to indicate if this is the case. :param model_h2o: H2O model that we want to evaluate :param h2o_model_test_metrics: test performance of H2O model under evaluation :param end_test_str: string representing end test banner to be printed :param want_p_values: bool True if we want to care about p-values and False if we don't :param attr1_bool: bool True if we want to compare weight difference between H2O model and template model and False otherwise. :param attr2_bool: bool True if we want to compare p-value difference between H2O model and template model and False otherwise. :param att1_template: value of first template attribute, the weight vector :param att2_template: value of second template attribute, the p-value vector :param att3_template: value of third template attribute, the training data set MSE :param att4_template: value of fourth template attribute, the test data set MSE :param compare_att1_str: string describing the comparison of first attribute, e.g. "Comparing intercept and weights ...." :param h2o_att1_str: string describing H2O model first attribute values, e.g. "H2O intercept and weights: " :param template_att1_str: string describing template first attribute values, e.g. "Theoretical intercept and weights: " :param att1_str_fail: string describing message to print out if difference exceeds threshold, e.g. "Intercept and weights are not equal!" :param att1_str_success: string describing message to print out if difference < threshold, e.g. "Intercept and weights are close enough!" :param compare_att2_str: string describing the comparison of first attribute, e.g. "Comparing p-values ...." :param h2o_att2_str: string describing H2O model first attribute values, e.g. "H2O p-values: " :param template_att2_str: string describing template first attribute values, e.g. "Theoretical p-values: " :param att2_str_fail: string describing message to print out if difference exceeds threshold, e.g. "P-values are not equal!" :param att2_str_success: string describing message to print out if difference < threshold, e.g. "P-values are close enough!" :param compare_att3_str: string describing the comparison of first attribute, e.g. "Comparing training MSEs ...." :param h2o_att3_str: string describing H2O model first attribute values, e.g. "H2O training MSE: " :param template_att3_str: string describing template first attribute values, e.g. "Theoretical train MSE: " :param att3_str_fail: string describing message to print out if difference exceeds threshold, e.g. "Training MSEs are not equal!" :param att3_str_success: string describing message to print out if difference < threshold, e.g. "Training MSEs are close enough!" :param compare_att4_str: string describing the comparison of first attribute, e.g. "Comparing test MSEs ...." :param h2o_att4_str: string describing H2O model first attribute values, e.g. "H2O test MSE: " :param template_att4_str: string describing template first attribute values, e.g. "Theoretical test MSE: " :param att4_str_fail: string describing message to print out if difference exceeds threshold, e.g. "Test MSEs are not equal!" :param att4_str_success: string describing message to print out if difference < threshold, e.g. "Test MSEs are close enough!" :param failed_test_number: integer denote the number of tests failed :param ignored_eps: if value < than this value, no comparison is performed :param allowed_diff: threshold if exceeded will fail a test :param noise_var: Gaussian noise variance used to generate data set :param template_must_be_better: bool: True: template value must be lower, False: don't care :param attr3_bool: bool denoting if we should compare attribute 3 values :param attr4_bool: bool denoting if we should compare attribute 4 values :return: a tuple containing test h2o model training and test performance metrics that include: weight, pValues, mse_train, r2_train, mse_test, r2_test """ # grab weight from h2o model test1_weight = get_train_glm_params(model_h2o, 'weights') # grab p-values from h2o model test1_p_values = [] if want_p_values: test1_p_values = get_train_glm_params(model_h2o, 'p-values') # grab other performance metrics test1_mse_train = model_h2o.mse() test1_r2_train = model_h2o.r2() test1_mse_test = h2o_model_test_metrics.mse() test1_r2_test = h2o_model_test_metrics.r2() # compare performances of template and h2o model weights failed_test_number += compare_two_arrays(test1_weight, att1_template, ignored_eps, allowed_diff*100, compare_att1_str, h2o_att1_str, template_att1_str, att1_str_fail, att1_str_success, attr1_bool) # p-values if want_p_values: if np.isnan(np.asarray(test1_p_values)).any(): # p-values contain nan failed_test_number += 1 failed_test_number += compare_two_arrays(test1_p_values, att2_template, ignored_eps, allowed_diff, compare_att2_str, h2o_att2_str, template_att2_str, att2_str_fail, att2_str_success, attr2_bool) # Training MSE need_to_compare = less_than(att3_template, test1_mse_train) # in some cases, template value should always be better. Training data MSE should always # be better without regularization than with regularization if (not need_to_compare) and template_must_be_better: failed_test_number += 1 failed_test_number += compare_two_arrays([test1_mse_train], [att3_template], ignored_eps, noise_var, compare_att3_str, h2o_att3_str, template_att3_str, att3_str_fail, att3_str_success, attr3_bool) # Test MSE need_to_compare = less_than(att4_template, test1_mse_test) failed_test_number += compare_two_arrays([test1_mse_test], [att4_template], ignored_eps, noise_var, compare_att4_str, h2o_att4_str, template_att4_str, att4_str_fail, att4_str_success, need_to_compare, attr4_bool) # print end test banner print(end_test_str) print("*******************************************************************************************") sys.stdout.flush() return test1_weight, test1_p_values, test1_mse_train, test1_r2_train, test1_mse_test,\ test1_r2_test, failed_test_number def extract_comparison_attributes_and_print_multinomial(model_h2o, h2o_model_test_metrics, family_type, end_test_str, compare_att_str=["", "", "", "", "", "", ""], h2o_att_str=["", "", "", "", "", "", ""], template_att_str=["", "", "", "", "", "", ""], att_str_fail=["", "", "", "", "", "", ""], att_str_success=["", "", "", "", "", "", ""], test_model=None, test_model_metric=None, template_params=None, can_be_better_than_template=[ False, False, False, False, False, False], just_print=[True, True, True, True, True, True], ignored_eps=1e-15, allowed_diff=1e-5, failed_test_number=0): """ This function basically will compare and print out six performance metrics of a test with a template model. If the difference of comparison exceeds a certain threshold, the test will be determined as failed and vice versa. There are times when we do not care about comparisons but mainly concerned with logloss/prediction accuracy in determining if a test shall fail. We can set the input parameters to indicate if this is the case. :param model_h2o: H2O model that we want to evaluate :param h2o_model_test_metrics: test performance of H2O model under evaluation :param family_type: string represents the various distribution families (gaussian, multinomial, binomial) supported by our GLM algo :param end_test_str: string to be printed at the end of a test :param compare_att_str: array of strings describing what we are trying to compare :param h2o_att_str: array of strings describing each H2O attribute of interest :param template_att_str: array of strings describing template attribute of interest :param att_str_fail: array of strings to be printed if the comparison failed :param att_str_success: array of strings to be printed if comparison succeeded :param test_model: template model whose attributes we want to compare our H2O model with :param test_model_metric: performance on test data set of template model :param template_params: array containing template attribute values that we want to compare our H2O model with :param can_be_better_than_template: array of bool: True: template value must be lower, False: don't care :param just_print: array of bool for each attribute if True, no comparison is performed, just print the attributes and if False, will compare the attributes and print the attributes as well :param ignored_eps: if value < than this value, no comparison is performed :param allowed_diff: threshold if exceeded will fail a test :param failed_test_number: integer denote the number of tests failed so far :return: accumulated number of tests that have failed so far """ # grab performance metrics from h2o model (h2o_weight, h2o_logloss_train, h2o_confusion_matrix_train, h2o_accuracy_train, h2o_logloss_test, h2o_confusion_matrix_test, h2o_accuracy_test) = grab_model_params_metrics(model_h2o, h2o_model_test_metrics, family_type) # grab performance metrics from template model if test_model and test_model_metric: (template_weight, template_logloss_train, template_confusion_matrix_train, template_accuracy_train, template_logloss_test, template_confusion_matrix_test, template_accuracy_test) = \ grab_model_params_metrics(test_model, test_model_metric, family_type) elif template_params: # grab template comparison values from somewhere else (template_weight, template_logloss_train, template_confusion_matrix_train, template_accuracy_train, template_logloss_test, template_confusion_matrix_test, template_accuracy_test) = template_params else: print("No valid template parameters are given for comparison.") sys.exit(1) # print and/or compare the weights between template and H2O compare_index = 0 failed_test_number += compare_two_arrays(h2o_weight, template_weight, ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], True, just_print[compare_index]) compare_index += 1 # this is logloss from training data set, if not(just_print[compare_index]) and not(can_be_better_than_template[compare_index]): if (h2o_logloss_train < template_logloss_train) and \ (abs(h2o_logloss_train-template_logloss_train) > 1e-5): # H2O performed better than template which is not allowed failed_test_number += 1 # increment failed_test_number and just print the results compare_two_arrays([h2o_logloss_train], [template_logloss_train], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], True, True) else: failed_test_number += compare_two_arrays([h2o_logloss_train], [template_logloss_train], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], True, False) else: template_better = is_template_better(just_print[compare_index], can_be_better_than_template[compare_index], h2o_logloss_train, template_logloss_train, False) # print and compare the logloss between template and H2O for training data failed_test_number += compare_two_arrays([h2o_logloss_train], [template_logloss_train], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], template_better, just_print[compare_index]) compare_index += 1 template_better = is_template_better(just_print[compare_index], can_be_better_than_template[compare_index], h2o_logloss_test, template_logloss_test, False) # print and compare the logloss between template and H2O for test data failed_test_number += compare_two_arrays([h2o_logloss_test], [template_logloss_test], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], template_better, just_print[compare_index]) compare_index += 1 # print the confusion matrix from training data failed_test_number += compare_two_arrays(h2o_confusion_matrix_train, template_confusion_matrix_train, ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], True, just_print[compare_index]) compare_index += 1 # print the confusion matrix from test data failed_test_number += compare_two_arrays(h2o_confusion_matrix_test, template_confusion_matrix_test, ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], True, just_print[compare_index]) compare_index += 1 template_better = is_template_better(just_print[compare_index], can_be_better_than_template[compare_index], h2o_accuracy_train, template_accuracy_train, True) # print accuracy from training dataset failed_test_number += compare_two_arrays([h2o_accuracy_train], [template_accuracy_train], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], template_better, just_print[compare_index]) compare_index += 1 # print accuracy from test dataset template_better = is_template_better(just_print[compare_index], can_be_better_than_template[compare_index], h2o_accuracy_test, template_accuracy_test, True) failed_test_number += compare_two_arrays([h2o_accuracy_test], [template_accuracy_test], ignored_eps, allowed_diff, compare_att_str[compare_index], h2o_att_str[compare_index], template_att_str[compare_index], att_str_fail[compare_index], att_str_success[compare_index], template_better, just_print[compare_index]) # print end test banner print(end_test_str) print("*******************************************************************************************") sys.stdout.flush() return failed_test_number def is_template_better(just_print, can_be_better_than_template, h2o_att, template_att, bigger_is_better): """ This function is written to determine if the system under test performs better than the template model performance. :param just_print: bool representing if we are just interested in printing the attribute values :param can_be_better_than_template: bool stating that it is okay in this case for the system under test to perform better than the template system. :param h2o_att: number representing the h2o attribute under test :param template_att: number representing the template attribute :param bigger_is_better: bool representing if metric is perceived to be better if its value is higher :return: bool indicating if the template attribute is better. """ if just_print: # not interested in comparison, just want to print attribute values return True # does not matter what we return here else: if bigger_is_better: # metric is better if it is greater return not(h2o_att > template_att) else: # metric is better if it is less return not(h2o_att < template_att) def grab_model_params_metrics(model_h2o, h2o_model_test_metrics, family_type): """ This function will extract and return the various metrics from a H2O GLM model and the corresponding H2O model test metrics. :param model_h2o: GLM H2O model :param h2o_model_test_metrics: performance on test data set from H2O GLM model :param family_type: string representing 'gaussian', 'binomial' or 'multinomial' :return: tuple containing weight, logloss/confusion matrix/prediction accuracy calculated from training data set and test data set respectively """ # grab weight from h2o model h2o_weight = get_train_glm_params(model_h2o, 'weights', family_type=family_type) # grab other performance metrics h2o_logloss_train = model_h2o.logloss() h2o_confusion_matrix_train = get_train_glm_params(model_h2o, 'confusion_matrix', family_type=family_type) last_index = len(h2o_confusion_matrix_train.cell_values)-1 h2o_logloss_test = h2o_model_test_metrics.logloss() if 'multinomial' in family_type.lower(): h2o_confusion_matrix_test = h2o_model_test_metrics.confusion_matrix() h2o_accuracy_train = 1-h2o_confusion_matrix_train.cell_values[last_index][last_index] h2o_accuracy_test = 1-h2o_confusion_matrix_test.cell_values[last_index][last_index] elif 'binomial' in family_type.lower(): h2o_confusion_matrix_test = h2o_model_test_metrics.confusion_matrix().table real_last_index = last_index+1 h2o_accuracy_train = 1-float(h2o_confusion_matrix_train.cell_values[last_index][real_last_index]) h2o_accuracy_test = 1-float(h2o_confusion_matrix_test.cell_values[last_index][real_last_index]) else: print("Only 'multinomial' and 'binomial' distribution families are supported for grab_model_params_metrics " "function!") sys.exit(1) return h2o_weight, h2o_logloss_train, h2o_confusion_matrix_train, h2o_accuracy_train, h2o_logloss_test,\ h2o_confusion_matrix_test, h2o_accuracy_test def prepare_data_sklearn_multinomial(training_data_xy): """ Sklearn model requires that the input matrix should contain a column of ones in order for it to generate the intercept term. In addition, it wants the response vector to be in a certain format as well. :param training_data_xy: matrix containing both the predictors and response column :return: tuple containing the predictor columns with a column of ones as the first column and the response vector in the format that Sklearn wants. """ (num_row, num_col) = training_data_xy.shape # change response to be enum and not real y_ind = num_col-1 training_data_xy[y_ind] = training_data_xy[y_ind].astype(int) # prepare response column for sklearn logistic regression response_y = training_data_xy[:, y_ind] response_y = np.ravel(response_y) training_data = training_data_xy[:, range(0, y_ind)] # added column of ones into data matrix X_MAT temp_ones = np.asmatrix(np.ones(num_row)).transpose() x_mat = np.concatenate((temp_ones, training_data), axis=1) return response_y, x_mat def get_gridables(params_in_json): """ This function is written to walk through all parameters of a model and grab the parameters, its type and its default values as three lists of all the gridable parameters. :param params_in_json: a list of parameters associated with a H2O model. Each list is a dict containing fields of interest like name, type, gridable, default values, .... :return: three lists: gridable_params, gridable_types and gridable_defaults containing the names of the parameter, its associated type like int, float, unicode, bool and default parameter values """ # grab all gridable parameters and its type gridable_parameters = [] gridable_types = [] gridable_defaults = [] for each_param in params_in_json: if each_param['gridable']: gridable_parameters.append(str(each_param["name"])) gridable_types.append(each_param["type"]) if type(each_param["default_value"]) == 'unicode': # hyper-parameters cannot be unicode gridable_defaults.append(str(each_param["default_value"])) else: gridable_defaults.append(each_param["default_value"]) return gridable_parameters, gridable_types, gridable_defaults def add_fold_weights_offset_columns(h2o_frame, nfold_max_weight_offset, column_names, column_type='fold_assignment'): """ Add fold_columns to H2O training frame specified in h2o_frame according to nfold. The new added columns should use the names in column_names. Returns a h2o_frame with newly added fold_columns. Copied from Eric's code. :param h2o_frame: H2O frame containing training data :param nfold_max_weight_offset: integer, number of fold in the cross-validation or maximum weight scale or offset :param column_names: list of strings denoting the column names for the new fold columns :param column_type: optional string denoting whether we are trying to generate fold_assignment or weights_column or offset_column :return: H2O frame with added fold column assignments """ number_row = h2o_frame.nrow # copied this part from Eric's code for index in range(len(column_names)): if 'fold_assignment' in column_type: temp_a = np.random.random_integers(0, nfold_max_weight_offset - 1, [number_row, 1]) # inclusive elif 'weights_column' in column_type: temp_a = np.random.uniform(0, nfold_max_weight_offset, [number_row, 1]) elif 'offset_column' in column_type: temp_a = random.uniform(0, nfold_max_weight_offset)*np.asmatrix(np.ones(number_row)).transpose() else: print("column_type must be either 'fold_assignment' or 'weights_column'!") sys.exit(1) fold_assignments = h2o.H2OFrame(temp_a) fold_assignments.set_names([column_names[index]]) h2o_frame = h2o_frame.cbind(fold_assignments) return h2o_frame def gen_grid_search(model_params, hyper_params, exclude_parameters, gridable_parameters, gridable_types, gridable_defaults, max_int_number, max_int_val, min_int_val, max_real_number, max_real_val, min_real_val, quantize_level='1.00000000'): """ This function is written to randomly generate griddable parameters for a gridsearch. For parameters already found in hyper_params, no random list will be generated. In addition, we will check to make sure that the griddable parameters are actually used by the model before adding them to the hyper_params dict. :param model_params: list of string containing names of argument to the model :param hyper_params: dict structure containing a list of gridable parameters names with their list :param exclude_parameters: list containing parameter names not to be added to hyper_params :param gridable_parameters: list of gridable parameter names :param gridable_types: list of gridable parameter types :param gridable_defaults: list of gridable parameter default values :param max_int_number: integer, size of integer gridable parameter list :param max_int_val: integer, maximum integer value for integer gridable parameter :param min_int_val: integer, minimum integer value for integer gridable parameter :param max_real_number: integer, size of real gridable parameter list :param max_real_val: float, maximum real value for real gridable parameter :param min_real_val: float, minimum real value for real gridable parameter :param quantize_level: string representing the quantization level of floating point values generated randomly. :return: a tuple of hyper_params: dict of hyper parameters for gridsearch, true_gridable_parameters: a list of string containing names of truely gridable parameters, true_gridable_types: a list of string denoting parameter types and true_gridable_defaults: default values of those truly gridable parameters """ count_index = 0 true_gridable_parameters = [] true_gridable_types = [] true_gridable_defaults = [] for para_name in gridable_parameters: # parameter must not in exclusion list if (para_name in model_params) and (para_name not in exclude_parameters): true_gridable_parameters.append(para_name) true_gridable_types.append(gridable_types[count_index]) true_gridable_defaults.append(gridable_defaults[count_index]) if para_name not in hyper_params.keys(): # add default value to user defined parameter list # gridable parameter not seen before. Randomly generate values for it if ('int' in gridable_types[count_index]) or ('long' in gridable_types[count_index]): # make sure integer values are not duplicated, using set action to remove duplicates hyper_params[para_name] = list(set([random.randint(min_int_val, max_int_val) for p in range(0, max_int_number)])) elif ('double' in gridable_types[count_index]) or ('float' in gridable_types[count_index]): hyper_params[para_name] = fix_float_precision(list(np.random.uniform(min_real_val, max_real_val, max_real_number)), quantize_level=quantize_level) count_index += 1 return hyper_params, true_gridable_parameters, true_gridable_types, true_gridable_defaults def fix_float_precision(float_list, quantize_level='1.00000000'): """ This function takes in a floating point tuple and attempt to change it to floating point number with fixed precision. :param float_list: tuple/list of floating point numbers :param quantize_level: string, optional, represent the number of fix points we care :return: tuple of floats to the exact precision specified in quantize_level """ fixed_float = [] for num in float_list: fixed_float.append(float(Decimal(num).quantize(Decimal(quantize_level)))) return list(set(fixed_float)) def extract_used_params_xval(a_grid_model, model_param_names, params_dict, algo="GBM"): """ This function performs similar functions to function extract_used_params. However, for max_runtime_secs, we need to go into each cross-valudation model and grab the max_runtime_secs and add them up in order to get the correct value. In addition, we put your algo model specific parameters into params_dict. :param a_grid_model: list of models generated by gridsearch :param model_param_names: hyper-parameter names that are specified for the gridsearch. :param params_dict: dict containing name/value pairs specified to an algo. :param algo: string, optional, denoting the algo we are looking at. :return: params_used: a dict structure containing parameters that take on values as name/value pairs which will be used to build a model by hand using the same parameter setting as the model built by gridsearch. """ params_used = dict() # need to extract the max_runtime_secs ONE cross-validation model or the base model if a_grid_model._is_xvalidated: xv_keys = a_grid_model._xval_keys for id in xv_keys: # only need to get info from one model each_xv_model = h2o.get_model(id) # get each model params_used = extract_used_params(model_param_names, each_xv_model.params, params_dict, algo) break else: params_used = extract_used_params(model_param_names, a_grid_model.params, params_dict, algo) return params_used def extract_used_params(model_param_names, grid_model_params, params_dict, algo="GLM"): """ This function is used to build a dict out of parameters used by our gridsearch to build a H2O model given the dict structure that describes the parameters and their values used by gridsearch to build that particular mode. :param model_param_names: list contains parameter names that we are interested in extracting :param grid_model_params: dict contains key as names of parameter and values as list of two values: default and actual. :param params_dict: dict containing extra parameters to add to params_used like family, e.g. 'gaussian', 'binomial', ... :return: params_used: a dict structure containing parameters that take on values as name/value pairs which will be used to build a model by hand using the same parameter setting as the model built by gridsearch. """ params_used = dict() grid_model_params_keys = grid_model_params.keys() for each_parameter in model_param_names: parameter_name = str(each_parameter) if parameter_name in grid_model_params_keys: params_used[parameter_name] = grid_model_params[each_parameter]['actual'] if params_dict: for key, value in params_dict.items(): params_used[key] = value # add distribution family to parameters used list # only for GLM, change lambda to Lambda if algo =="GLM": if 'lambda' in params_used.keys(): params_used['Lambda'] = params_used['lambda'] del params_used['lambda'] return params_used def insert_error_grid_search(hyper_params, gridable_parameters, gridable_types, error_number): """ This function will randomly introduce errors into a copy of hyper_params. Depending on the random number error_number generated, the following errors can be introduced: error_number = 0: randomly alter the name of a hyper-parameter name; error_number = 1: randomly choose a hyper-parameter and remove all elements in its list error_number = 2: add randomly generated new hyper-parameter names with random list error_number other: randomly choose a hyper-parameter and insert an illegal type into it :param hyper_params: dict containing all legal hyper-parameters for our grid search :param gridable_parameters: name of griddable parameters (some may not be griddable) :param gridable_types: type of griddable parameters :param error_number: integer representing which errors to introduce into the gridsearch hyper-parameters :return: new dict with errors in either parameter names or parameter values """ error_hyper_params = copy.deepcopy(hyper_params) # error_hyper_params = {k : v for k, v in hyper_params.items()} param_index = random.randint(0, len(hyper_params)-1) param_name = list(hyper_params)[param_index] param_type = gridable_types[gridable_parameters.index(param_name)] if error_number == 0: # grab a hyper-param randomly and copy its name twice new_name = param_name+param_name error_hyper_params[new_name] = error_hyper_params[param_name] del error_hyper_params[param_name] elif error_number == 1: error_hyper_params[param_name] = [] elif error_number == 2: new_param = generate_random_words(random.randint(20,100)) error_hyper_params[new_param] = error_hyper_params[param_name] else: error_hyper_params = insert_bad_value(error_hyper_params, param_name, param_type) return error_hyper_params def insert_bad_value(error_hyper_params, param_name, param_type): """ This function is written to insert a value that is of a different type into an array than the one its other elements are for. :param error_hyper_params: dict containing all hyper-parameters for a grid search :param param_name: string denoting the hyper-parameter we want to insert bad element to :param param_type: string denoting hyper-parameter type :return: dict containing new inserted error value """ if 'int' in param_type: # insert a real number into integer error_hyper_params[param_name].append(random.uniform(-10,10)) elif 'enum' in param_type: # insert an float into enums error_hyper_params[param_name].append(random.uniform(-10,10)) elif 'double' in param_type: # insert an enum into float error_hyper_params[param_name].append(random.uniform(0,1) > 0.5) else: # insert a random string for all other cases error_hyper_params[param_name].append(generate_random_words(random.randint(20,100))) return error_hyper_params def generate_random_words(word_length): """ This function will generate a random word consisting of letters, numbers and punctuation given the word_length. :param word_length: integer denoting length of the word :return: string representing the random word """ if word_length > 0: all_chars = string.ascii_letters + string.digits + string.punctuation return ''.join((random.choice(all_chars)) for index in range(int(word_length))) else: print("word_length must be an integer greater than 0.") sys.exit(1) def generate_redundant_parameters(hyper_params, gridable_parameters, gridable_defaults, error_number): """ This function will randomly choose a set of hyper_params and make a dict out of it so we can duplicate the parameter specification in both the model and grid search. :param hyper_params: dict containing all griddable parameters as hyper_param to grid search :param gridable_parameters: list of gridable parameters (not truly) :param gridable_defaults: list of default values for gridable parameters :param error_number: int, indicate ways to change the model parameter and the hyper-parameter Here are the actions performed on the model parameter and hyper-parameters. error_number = 0: set model parameter to be a value out of the hyper-parameter value list, should not generate error; error_number = 1: set model parameter to be default value, should not generate error in this case; error_number = 3: make sure model parameter is not set to default and choose a value not in the hyper-parameter value list. :return: 2 dicts containing duplicated parameters with specification, new hyperparameter specification """ error_hyper_params = copy.deepcopy(hyper_params) # error_hyper_params = {k : v for k, v in hyper_params.items()} params_dict = {} num_params = random.randint(1, len(error_hyper_params)) params_list = list(error_hyper_params) # remove default values out of hyper_params for key in params_list: default_value = gridable_defaults[gridable_parameters.index(key )] if default_value in error_hyper_params[key]: error_hyper_params[key].remove(default_value) for index in range(num_params): param_name = params_list[index] hyper_params_len = len(error_hyper_params[param_name]) if error_number == 0: # randomly assigned the parameter to take one value out of the list param_value_index = random.randint(0, len(error_hyper_params[param_name])-1) params_dict[param_name] = error_hyper_params[param_name][param_value_index] elif error_number == 1: param_value_index = gridable_parameters.index(param_name) params_dict[param_name] = gridable_defaults[param_value_index] else: # randomly assign model parameter to one of the hyper-parameter values, should create error condition here param_value_index = random.randint(0, hyper_params_len-1) params_dict[param_name] = error_hyper_params[param_name][param_value_index] # final check to make sure lambda is Lambda if 'lambda' in list(params_dict): params_dict["Lambda"] = params_dict['lambda'] del params_dict["lambda"] return params_dict, error_hyper_params def count_models(hyper_params): """ Given a hyper_params dict, this function will return the maximum number of models that can be built out of all the combination of hyper-parameters. :param hyper_params: dict containing parameter name and a list of values to iterate over :return: max_model_number: int representing maximum number of models built """ max_model_number = 1 for key in list(hyper_params): max_model_number *= len(hyper_params[key]) return max_model_number def error_diff_2_models(grid_table1, grid_table2, metric_name): """ This function will take two models generated by gridsearch and calculate the mean absolute differences of the metric values specified by the metric_name in the two model. It will return the mean differences. :param grid_table1: first H2OTwoDimTable generated by gridsearch :param grid_table2: second H2OTwoDimTable generated by gridsearch :param metric_name: string, name of the metric of interest :return: real number which is the mean absolute metric difference between the two models """ num_model = len(grid_table1.cell_values) metric_diff = 0 for model_index in range(num_model): metric_diff += abs(grid_table1.cell_values[model_index][-1] - grid_table2.cell_values[model_index][-1]) if (num_model > 0): return metric_diff/num_model else: print("error_diff_2_models: your table contains zero models.") sys.exit(1) def find_grid_runtime(model_list): """ This function given a grid_model built by gridsearch will go into the model and calculate the total amount of time it took to actually build all the models in second :param model_list: list of model built by gridsearch, cartesian or randomized with cross-validation enabled. :return: total_time_sec: total number of time in seconds in building all the models """ total_time_sec = 0 for each_model in model_list: total_time_sec += each_model._model_json["output"]["run_time"] # time in ms # if cross validation is used, need to add those run time in here too if each_model._is_xvalidated: xv_keys = each_model._xval_keys for id in xv_keys: each_xv_model = h2o.get_model(id) total_time_sec += each_xv_model._model_json["output"]["run_time"] return total_time_sec/1000.0 # return total run time in seconds def evaluate_metrics_stopping(model_list, metric_name, bigger_is_better, search_criteria, possible_model_number): """ This function given a list of dict that contains the value of metric_name will manually go through the early stopping condition and see if the randomized grid search will give us the correct number of models generated. Note that you cannot assume the model_list is in the order of when a model is built. It actually already come sorted which we do not want.... :param model_list: list of models built sequentially that contains metric of interest among other fields :param metric_name: string representing name of metric that we want to based our stopping condition on :param bigger_is_better: bool indicating if the metric is optimized by getting bigger if True and vice versa :param search_criteria: dict structure containing the search criteria for randomized gridsearch :param possible_model_number: integer, represent the absolute possible number of models built based on the hyper-parameter size :return: bool indicating if the early topping condition is justified """ tolerance = search_criteria["stopping_tolerance"] stop_round = search_criteria["stopping_rounds"] min_list_len = 2*stop_round # minimum length of metrics needed before we start early stopping evaluation metric_list = [] # store metric of optimization stop_now = False # provide metric list sorted by time. Oldest model appear first. metric_list_time_ordered = sort_model_by_time(model_list, metric_name) for metric_value in metric_list_time_ordered: metric_list.append(metric_value) if len(metric_list) > min_list_len: # start early stopping evaluation now stop_now = evaluate_early_stopping(metric_list, stop_round, tolerance, bigger_is_better) if stop_now: if len(metric_list) < len(model_list): # could have stopped early in randomized gridsearch return False else: # randomized gridsearch stopped at the correct condition return True if len(metric_list) == possible_model_number: # never meet early stopping condition at end of random gridsearch return True # if max number of model built, still ok else: return False # early stopping condition never met but random gridsearch did not build all models, bad! def sort_model_by_time(model_list, metric_name): """ This function is written to sort the metrics that we care in the order of when the model was built. The oldest model metric will be the first element. :param model_list: list of models built sequentially that contains metric of interest among other fields :param metric_name: string representing name of metric that we want to based our stopping condition on :return: model_metric_list sorted by time """ model_num = len(model_list) model_metric_list = [None] * model_num for index in range(model_num): model_index = int(model_list[index]._id.split('_')[-1]) model_metric_list[model_index] = \ model_list[index]._model_json["output"]["cross_validation_metrics"]._metric_json[metric_name] return model_metric_list def evaluate_early_stopping(metric_list, stop_round, tolerance, bigger_is_better): """ This function mimics the early stopping function as implemented in ScoreKeeper.java. Please see the Java file comment to see the explanation of how the early stopping works. :param metric_list: list containing the optimization metric under consideration for gridsearch model :param stop_round: integer, determine averaging length :param tolerance: real, tolerance to see if the grid search model has improved enough to keep going :param bigger_is_better: bool: True if metric is optimized as it gets bigger and vice versa :return: bool indicating if we should stop early and sorted metric_list """ metric_len = len(metric_list) metric_list.sort(reverse=bigger_is_better) shortest_len = 2*stop_round bestInLastK = 1.0*sum(metric_list[0:stop_round])/stop_round lastBeforeK = 1.0*sum(metric_list[stop_round:shortest_len])/stop_round if not(np.sign(bestInLastK) == np.sign(lastBeforeK)): return False ratio = bestInLastK/lastBeforeK if math.isnan(ratio): return False if bigger_is_better: return not (ratio > 1+tolerance) else: return not (ratio < 1-tolerance) def check_and_count_models(hyper_params, params_zero_one, params_more_than_zero, params_more_than_one, params_zero_positive, max_grid_model): """ This function will look at the hyper-parameter space set in hyper_params, generate a new hyper_param space that will contain a smaller number of grid_models. It will determine how many models will be built from this new hyper_param space. In order to arrive at the correct answer, it must discount parameter settings that are illegal. :param hyper_params: dict containing model parameter names and list of values to set it to :param params_zero_one: list containing model parameter names whose values must be between 0 and 1 :param params_more_than_zero: list containing model parameter names whose values must exceed zero :param params_more_than_one: list containing model parameter names whose values must exceed one :param params_zero_positive: list containing model parameter names whose values must equal to or exceed zero :param max_grid_model: maximum number of grid_model that can be generated from the new hyper_params space :return: total model: integer denoting number of grid models that can be built from all legal parameter settings in new hyper_parameter space final_hyper_params: dict of new hyper parameter space derived from the original hyper_params """ total_model = 1 param_len = 0 hyper_keys = list(hyper_params) shuffle(hyper_keys) # get all hyper_parameter names in random order final_hyper_params = dict() for param in hyper_keys: # this param should be between 0 and 2 if param == "col_sample_rate_change_per_level": param_len = len([x for x in hyper_params["col_sample_rate_change_per_level"] if (x >= 0) and (x <= 2)]) elif param in params_zero_one: param_len = len([x for x in hyper_params[param] if (x >= 0) and (x <= 1)]) elif param in params_more_than_zero: param_len = len([x for x in hyper_params[param] if (x > 0)]) elif param in params_more_than_one: param_len = len([x for x in hyper_params[param] if (x > 1)]) elif param in params_zero_positive: param_len = len([x for x in hyper_params[param] if (x >= 0)]) else: param_len = len(hyper_params[param]) if (param_len >= 0) and ((total_model*param_len) <= max_grid_model): total_model *= param_len final_hyper_params[param] = hyper_params[param] elif (total_model*param_len) > max_grid_model: break return total_model, final_hyper_params def write_hyper_parameters_json(dir1, dir2, json_filename, hyper_parameters): """ Write a json file of the hyper_parameters in directories dir1 and dir2 for debugging purposes. :param dir1: String containing first directory where you want to write the json file to :param dir2: String containing second directory where you want to write the json file to :param json_filename: String containing json file name :param hyper_parameters: dict containing hyper-parameters used """ # save hyper-parameter file in test directory with open(os.path.join(dir1, json_filename), 'w') as test_file: json.dump(hyper_parameters, test_file) # save hyper-parameter file in sandbox with open(os.path.join(dir2, json_filename), 'w') as test_file: json.dump(hyper_parameters, test_file) def compare_frames(frame1, frame2, numElements, tol_time=0, tol_numeric=0, strict=False, compare_NA=True): """ This function will compare two H2O frames to make sure their dimension, and values in all cells are the same. It will not compare the column names though. :param frame1: H2O frame to be compared :param frame2: H2O frame to be compared :param numElements: integer to denote number of rows to compare. Done to reduce compare time. Set to 0 or negative number if you want to compare all elements. :param tol_time: optional parameter to limit time value difference. :param tol_numerica: optional parameter to limit numeric value difference. :param strict: optional parameter to enforce strict comparison or not. If True, column type must match in order to pass the test. :param compare_NA: optional parameter to compare NA or not. For csv file generated from orc file, the NAs are represented as some other symbol but our CSV will not be able to parse it correctly as NA. In this case, do not compare the number of NAs. :return: boolean: True, the two frames are equal and False otherwise. """ # check frame dimensions rows1, cols1 = frame1.dim rows2, cols2 = frame2.dim assert rows1 == rows2 and cols1 == cols2, "failed dim check! frame 1 rows:{0} frame 2 rows:{1} frame 1 cols:{2} " \ "frame2 cols:{3}".format(rows1, rows2, cols1, cols2) na_frame1 = frame1.isna().sum() na_frame2 = frame2.isna().sum() if compare_NA: # check number of missing values assert na_frame1 == na_frame2, "failed numbers of NA check! Frame 1 NA number: {0}, frame 2 " \ "NA number: {1}".format(na_frame1, na_frame2) # check column types are the same before proceeding to check each row content. for col_ind in range(cols1): c1_key = frame1.columns[col_ind] c2_key = frame2.columns[col_ind] c2_type = frame2.types[c2_key] c1_type = frame1.types[c1_key] print("###### Comparing column: {0} and column type is {1}.".format(col_ind, c1_type)) if strict: # every column type must match assert c1_type == c2_type, "failed column type check! frame1 col type: {0}, frame2 col type: " \ "{1}".format(c1_type, c2_type) else: if str(c2_type) == 'enum': # orc files do not have enum column type. We convert it here frame1[col_ind].asfactor() else: assert c1_type == c2_type, "failed column type check! frame1 col type: {0}, frame2 col type: " \ "{1}".format(c1_type, c2_type) # compare string if (str(c1_type) == 'string') or (str(c1_type) == 'enum'): compareOneStringColumn(frame1, frame2, col_ind, rows1, numElements) else: if str(c2_type) == 'time': # compare time columns compareOneNumericColumn(frame1, frame2, col_ind, rows1, tol_time, numElements) else: compareOneNumericColumn(frame1, frame2, col_ind, rows1, tol_numeric, numElements) return True def compareOneStringColumn(frame1, frame2, col_ind, rows, numElements): """ This function will compare two String columns of two H2O frames to make sure that they are the same. :param frame1: H2O frame to be compared :param frame2: H2O frame to be compared :param col_ind: integer denoting column index to compare the two frames :param rows: integer denoting number of rows in the column :param numElements: integer to denote number of rows to compare. Done to reduce compare time :return: None. Will throw exceptions if comparison failed. """ row_indices = list(range(rows)) if numElements > 0: random.shuffle(row_indices) else: numElements = rows for ele_ind in range(numElements): row_ind = row_indices[ele_ind] val1 = frame1[row_ind, col_ind] val2 = frame2[row_ind, col_ind] assert val1 == val2, "failed frame values check! frame1 value: {0}, frame2 value: {1} at row {2}, column " \ "{3}".format(val1, val2, row_ind, col_ind) def compareOneNumericColumn(frame1, frame2, col_ind, rows, tolerance, numElements): """ This function compares two numeric columns of two H2O frames to make sure that they are close. :param frame1: H2O frame to be compared :param frame2: H2O frame to be compared :param col_ind: integer denoting column index to compare the two frames :param rows: integer denoting number of rows in the column :param tolerance: double parameter to limit numerical value difference. :param numElements: integer to denote number of rows to compare. Done to reduce compare time. :return: None. Will throw exceptions if comparison failed. """ row_indices = [] if numElements > 0: row_indices = random.sample(xrange(rows), numElements) else: numElements = rows # Compare all elements row_indices = list(range(rows)) for ele_ind in range(numElements): row_ind = row_indices[ele_ind] val1 = frame1[row_ind, col_ind] val2 = frame2[row_ind, col_ind] if not(math.isnan(val1)) and not(math.isnan(val2)): # both frames contain valid elements diff = abs(val1-val2) assert diff <= tolerance, "failed frame values check! frame1 value = {0}, frame2 value = {1}, " \ "at row {2}, column {3}. The difference is {4}.".format(val1, val2, row_ind, col_ind, diff) elif math.isnan(val1) and math.isnan(val2): # both frame contains missing values continue else: # something is wrong, one frame got a missing value while the other is fine. assert 1 == 2, "failed frame values check! frame1 value {0}, frame2 value {1} at row {2}, " \ "column {3}".format(val1, val2, row_ind, col_ind) import warnings def expect_warnings(filewithpath, warn_phrase="warn", warn_string_of_interest="warn", number_of_times=1, in_hdfs=False): """ This function will execute a command to run and analyze the print outs of running the command. The goal here is to capture any warnings that we may expect out of running those commands. :param filewithpath: name of file to be parsed with path :param warn_phrase: capture the warning header, sometimes it is warn or userwarn. :param warn_string_of_interest: specific warning message string :param number_of_times: number of warning lines we are expecting. :return: True if warning was found and False otherwise """ number_warngings = 0 buffer = StringIO() # redirect warning messages to string buffer for later analysis sys.stderr = buffer frame = None if in_hdfs: frame = h2o.import_file(filewithpath) else: frame = h2o.import_file(path=locate(filewithpath)) sys.stderr = sys.__stderr__ # redirect it back to stdout. try: # for python 2.7 if len(buffer.buflist) > 0: for index in range(len(buffer.buflist)): print("*** captured warning message: {0}".format(buffer.buflist[index])) if (warn_phrase in buffer.buflist[index]) and (warn_string_of_interest in buffer.buflist[index]): number_warngings = number_warngings+1 except: # for python 3. warns = buffer.getvalue() print("*** captured warning message: {0}".format(warns)) if (warn_phrase in warns) and (warn_string_of_interest in warns): number_warngings = number_warngings+1 print("Number of warnings found: {0} and number of times that warnings should appear {1}.".format(number_warngings, number_of_times)) if number_warngings >= number_of_times: return True else: return False def compare_frame_summary(frame1_summary, frame2_summary, compareNames=False, compareTypes=False): """ This method is written to compare the frame summary between two frames. :param frame1_summary: :param frame2_summary: :param compareNames: :param compareTypes: :return: """ frame1_column_number = len(frame1_summary) frame2_column_number = len(frame2_summary) assert frame1_column_number == frame2_column_number, "failed column number check! Frame 1 column number: {0}," \ "frame 2 column number: {1}".format(frame1_column_number, frame2_column_number) for col_index in range(frame1_column_number): # check summary for each column for key_val in list(frame1_summary[col_index]): if not(compareNames) and (str(key_val) == 'label'): continue if not(compareTypes) and (str(key_val) == 'type'): continue if str(key_val) == 'precision': # skip comparing precision continue val1 = frame1_summary[col_index][key_val] val2 = frame2_summary[col_index][key_val] if isinstance(val1, list) or isinstance(val1, dict): if isinstance(val1, dict): assert val1 == val2, "failed column summary comparison for column {0} and summary " \ "type {1}, frame 1 value is {2}, frame 2 value is " \ "{3}".format(col_index, str(key_val), val1, val2) else: if len(val1) > 0: # find if elements are float float_found = False for ind in range(len(val1)): if isinstance(val1[ind], float): float_found = True break if float_found: for ind in range(len(val1)): if not(str(val1[ind] == 'NaN')): assert abs(val1[ind]-val2[ind]) < 1e-5, "failed column summary comparison for " \ "column {0} and summary type {1}, frame 1" \ " value is {2}, frame 2 value is " \ "{3}".format(col_index, str(key_val), val1[ind], val2[ind]) else: assert val1 == val2, "failed column summary comparison for column {0} and summary" \ " type {1}, frame 1 value is {2}, frame 2 value is " \ "{3}".format(col_index, str(key_val), val1, val2) else: if isinstance(val1, float): assert abs(val1-val2) < 1e-5, "failed column summary comparison for column {0} and summary type " \ "{1}, frame 1 value is {2}, frame 2 value is " \ "{3}".format(col_index, str(key_val), val1, val2) else: assert val1 == val2, "failed column summary comparison for column {0} and summary type " \ "{1}, frame 1 value is {2}, frame 2 value is " \ "{3}".format(col_index, str(key_val), val1, val2) def cannaryHDFSTest(hdfs_name_node, file_name): """ This function is written to detect if the hive-exec version is too old. It will return True if it is too old and false otherwise. :param hdfs_name_node: :param file_name: :return: """ url_orc = "hdfs://{0}{1}".format(hdfs_name_node, file_name) try: tempFrame = h2o.import_file(url_orc) h2o.remove(tempFrame) print("Your hive-exec version is good. Parsing success for {0}.".format(url_orc)) return False except Exception as e: print("Error exception is {0}".format(str(e))) if "NoSuchFieldError: vector" in str(e): return True else: # exception is caused by other reasons. return False
apache-2.0
CforED/Machine-Learning
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
jpautom/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
lin-credible/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
40
23697
# Authors: Olivier Grisel <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import TempMemmap from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): # Check that the lasso can handle zero data without crashing X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): # Test Lasso on a toy example for various values of alpha. # When validating this against glmnet notice that glmnet divides it # against nobs. X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): # Test ElasticNet for various parameters of alpha and l1_ratio. # Actually, the parameters alpha = 0 should not be allowed. However, # we test it as a border case. # ElasticNet is tested with and without precomputed Gram matrix X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) assert_array_almost_equal( coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_uniform_targets(): enet = ElasticNetCV(fit_intercept=True, n_alphas=3) m_enet = MultiTaskElasticNetCV(fit_intercept=True, n_alphas=3) lasso = LassoCV(fit_intercept=True, n_alphas=3) m_lasso = MultiTaskLassoCV(fit_intercept=True, n_alphas=3) models_single_task = (enet, lasso) models_multi_task = (m_enet, m_lasso) rng = np.random.RandomState(0) X_train = rng.random_sample(size=(10, 3)) X_test = rng.random_sample(size=(10, 3)) y1 = np.empty(10) y2 = np.empty((10, 2)) for model in models_single_task: for y_values in (0, 5): y1.fill(y_values) assert_array_equal(model.fit(X_train, y1).predict(X_test), y1) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) for model in models_multi_task: for y_values in (0, 5): y2[:, 0].fill(y_values) y2[:, 1].fill(2 * y_values) assert_array_equal(model.fit(X_train, y2).predict(X_test), y2) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] # Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_lasso_readonly_data(): X = np.array([[-1], [0], [1]]) Y = np.array([-1, 0, 1]) # just a straight line T = np.array([[2], [3], [4]]) # test sample with TempMemmap((X, Y)) as (X, Y): clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) def test_multi_task_lasso_readonly_data(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] with TempMemmap((X, Y)) as (X, Y): Y = np.c_[y, y] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): # Test that both random and cyclic selection give the same results. # Ensure that the test models fully converge and check a wide # range of conditions. # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): # Test that setting precompute="auto" gives a Deprecation Warning. X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): # Test that the coefs returned by positive=True in enet_path are positive X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) def test_sparse_dense_descent_paths(): # Test that dense and sparse input give the same input for descent paths. X, y, _, _ = build_dataset(n_samples=50, n_features=20) csr = sparse.csr_matrix(X) for path in [enet_path, lasso_path]: _, coefs, _ = path(X, y, fit_intercept=False) _, sparse_coefs, _ = path(csr, y, fit_intercept=False) assert_array_almost_equal(coefs, sparse_coefs)
bsd-3-clause
rajat1994/scikit-learn
sklearn/decomposition/pca.py
192
23117
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) Data spectrum. rank: int Tested rank value. n_samples: int Number of samples. n_features: int Number of features. Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Read more in the :ref:`User Guide <PCA>`. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Principal axes in feature space, representing the directions of maximum variance in the data. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ check_is_fitted(self, 'mean_') if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide <RandomizedPCA>`. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
rgommers/statsmodels
statsmodels/tools/tests/test_tools.py
1
18390
""" Test functions for models.tools """ from statsmodels.compat.python import lrange, range import numpy as np from numpy.random import standard_normal from numpy.testing import (assert_equal, assert_array_equal, assert_almost_equal, assert_string_equal, TestCase) from nose.tools import (assert_true, assert_false, assert_raises) from statsmodels.datasets import longley from statsmodels.tools import tools from statsmodels.tools.tools import pinv_extended from statsmodels.compat.numpy import np_matrix_rank class TestTools(TestCase): def test_add_constant_list(self): x = lrange(1,5) x = tools.add_constant(x) y = np.asarray([[1,1,1,1],[1,2,3,4.]]).T assert_equal(x, y) def test_add_constant_1d(self): x = np.arange(1,5) x = tools.add_constant(x) y = np.asarray([[1,1,1,1],[1,2,3,4.]]).T assert_equal(x, y) def test_add_constant_has_constant1d(self): x = np.ones(5) x = tools.add_constant(x) assert_equal(x, np.ones(5)) def test_add_constant_has_constant2d(self): x = np.asarray([[1,1,1,1],[1,2,3,4.]]) y = tools.add_constant(x) assert_equal(x,y) def test_recipr(self): X = np.array([[2,1],[-1,0]]) Y = tools.recipr(X) assert_almost_equal(Y, np.array([[0.5,1],[0,0]])) def test_recipr0(self): X = np.array([[2,1],[-4,0]]) Y = tools.recipr0(X) assert_almost_equal(Y, np.array([[0.5,1],[-0.25,0]])) def test_rank(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = standard_normal((40,10)) self.assertEquals(tools.rank(X), np_matrix_rank(X)) X[:,0] = X[:,1] + X[:,2] self.assertEquals(tools.rank(X), np_matrix_rank(X)) def test_extendedpinv(self): X = standard_normal((40, 10)) np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals) def test_extendedpinv_singular(self): X = standard_normal((40, 10)) X[:, 5] = X[:, 1] + X[:, 3] np_inv = np.linalg.pinv(X) np_sing_vals = np.linalg.svd(X, 0, 0) sm_inv, sing_vals = pinv_extended(X) assert_almost_equal(np_inv, sm_inv) assert_almost_equal(np_sing_vals, sing_vals) def test_fullrank(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") X = standard_normal((40,10)) X[:,0] = X[:,1] + X[:,2] Y = tools.fullrank(X) self.assertEquals(Y.shape, (40,9)) self.assertEquals(tools.rank(Y), 9) X[:,5] = X[:,3] + X[:,4] Y = tools.fullrank(X) self.assertEquals(Y.shape, (40,8)) warnings.simplefilter("ignore") self.assertEquals(tools.rank(Y), 8) def test_estimable(): rng = np.random.RandomState(20120713) N, P = (40, 10) X = rng.normal(size=(N, P)) C = rng.normal(size=(1, P)) isestimable = tools.isestimable assert_true(isestimable(C, X)) assert_true(isestimable(np.eye(P), X)) for row in np.eye(P): assert_true(isestimable(row, X)) X = np.ones((40, 2)) assert_true(isestimable([1, 1], X)) assert_false(isestimable([1, 0], X)) assert_false(isestimable([0, 1], X)) assert_false(isestimable(np.eye(2), X)) halfX = rng.normal(size=(N, 5)) X = np.hstack([halfX, halfX]) assert_false(isestimable(np.hstack([np.eye(5), np.zeros((5, 5))]), X)) assert_false(isestimable(np.hstack([np.zeros((5, 5)), np.eye(5)]), X)) assert_true(isestimable(np.hstack([np.eye(5), np.eye(5)]), X)) # Test array-like for design XL = X.tolist() assert_true(isestimable(np.hstack([np.eye(5), np.eye(5)]), XL)) # Test ValueError for incorrect number of columns X = rng.normal(size=(N, 5)) for n in range(1, 4): assert_raises(ValueError, isestimable, np.ones((n,)), X) assert_raises(ValueError, isestimable, np.eye(4), X) class TestCategoricalNumerical(object): #TODO: use assert_raises to check that bad inputs are taken care of def __init__(self): #import string stringabc = 'abcdefghijklmnopqrstuvwxy' self.des = np.random.randn(25,2) self.instr = np.floor(np.arange(10,60, step=2)/10) x=np.zeros((25,5)) x[:5,0]=1 x[5:10,1]=1 x[10:15,2]=1 x[15:20,3]=1 x[20:25,4]=1 self.dummy = x structdes = np.zeros((25,1),dtype=[('var1', 'f4'),('var2', 'f4'), ('instrument','f4'),('str_instr','a10')]) structdes['var1'] = self.des[:,0][:,None] structdes['var2'] = self.des[:,1][:,None] structdes['instrument'] = self.instr[:,None] string_var = [stringabc[0:5], stringabc[5:10], stringabc[10:15], stringabc[15:20], stringabc[20:25]] string_var *= 5 self.string_var = np.array(sorted(string_var)) structdes['str_instr'] = self.string_var[:,None] self.structdes = structdes self.recdes = structdes.view(np.recarray) def test_array2d(self): des = np.column_stack((self.des, self.instr, self.des)) des = tools.categorical(des, col=2) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],10) def test_array1d(self): des = tools.categorical(self.instr) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],6) def test_array2d_drop(self): des = np.column_stack((self.des, self.instr, self.des)) des = tools.categorical(des, col=2, drop=True) assert_array_equal(des[:,-5:], self.dummy) assert_equal(des.shape[1],9) def test_array1d_drop(self): des = tools.categorical(self.instr, drop=True) assert_array_equal(des, self.dummy) assert_equal(des.shape[1],5) def test_recarray2d(self): des = tools.categorical(self.recdes, col='instrument') # better way to do this? test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray2dint(self): des = tools.categorical(self.recdes, col=2) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray1d(self): instr = self.structdes['instrument'].view(np.recarray) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_recarray1d_drop(self): instr = self.structdes['instrument'].view(np.recarray) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_recarray2d_drop(self): des = tools.categorical(self.recdes, col='instrument', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray2d(self): des = tools.categorical(self.structdes, col='instrument') test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray2dint(self): des = tools.categorical(self.structdes, col=2) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray1d(self): instr = self.structdes['instrument'].view(dtype=[('var1', 'f4')]) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_structarray2d_drop(self): des = tools.categorical(self.structdes, col='instrument', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray1d_drop(self): instr = self.structdes['instrument'].view(dtype=[('var1', 'f4')]) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) # def test_arraylike2d(self): # des = tools.categorical(self.structdes.tolist(), col=2) # test_des = des[:,-5:] # assert_array_equal(test_des, self.dummy) # assert_equal(des.shape[1], 9) # def test_arraylike1d(self): # instr = self.structdes['instrument'].tolist() # dum = tools.categorical(instr) # test_dum = dum[:,-5:] # assert_array_equal(test_dum, self.dummy) # assert_equal(dum.shape[1], 6) # def test_arraylike2d_drop(self): # des = tools.categorical(self.structdes.tolist(), col=2, drop=True) # test_des = des[:,-5:] # assert_array_equal(test__des, self.dummy) # assert_equal(des.shape[1], 8) # def test_arraylike1d_drop(self): # instr = self.structdes['instrument'].tolist() # dum = tools.categorical(instr, drop=True) # assert_array_equal(dum, self.dummy) # assert_equal(dum.shape[1], 5) class TestCategoricalString(TestCategoricalNumerical): # comment out until we have type coercion # def test_array2d(self): # des = np.column_stack((self.des, self.instr, self.des)) # des = tools.categorical(des, col=2) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],10) # def test_array1d(self): # des = tools.categorical(self.instr) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],6) # def test_array2d_drop(self): # des = np.column_stack((self.des, self.instr, self.des)) # des = tools.categorical(des, col=2, drop=True) # assert_array_equal(des[:,-5:], self.dummy) # assert_equal(des.shape[1],9) def test_array1d_drop(self): des = tools.categorical(self.string_var, drop=True) assert_array_equal(des, self.dummy) assert_equal(des.shape[1],5) def test_recarray2d(self): des = tools.categorical(self.recdes, col='str_instr') # better way to do this? test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray2dint(self): des = tools.categorical(self.recdes, col=3) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_recarray1d(self): instr = self.structdes['str_instr'].view(np.recarray) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_recarray1d_drop(self): instr = self.structdes['str_instr'].view(np.recarray) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_recarray2d_drop(self): des = tools.categorical(self.recdes, col='str_instr', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray2d(self): des = tools.categorical(self.structdes, col='str_instr') test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray2dint(self): des = tools.categorical(self.structdes, col=3) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 9) def test_structarray1d(self): instr = self.structdes['str_instr'].view(dtype=[('var1', 'a10')]) dum = tools.categorical(instr) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names[-5:]])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 6) def test_structarray2d_drop(self): des = tools.categorical(self.structdes, col='str_instr', drop=True) test_des = np.column_stack(([des[_] for _ in des.dtype.names[-5:]])) assert_array_equal(test_des, self.dummy) assert_equal(len(des.dtype.names), 8) def test_structarray1d_drop(self): instr = self.structdes['str_instr'].view(dtype=[('var1', 'a10')]) dum = tools.categorical(instr, drop=True) test_dum = np.column_stack(([dum[_] for _ in dum.dtype.names])) assert_array_equal(test_dum, self.dummy) assert_equal(len(dum.dtype.names), 5) def test_arraylike2d(self): pass def test_arraylike1d(self): pass def test_arraylike2d_drop(self): pass def test_arraylike1d_drop(self): pass def test_rec_issue302(): arr = np.rec.fromrecords([[10], [11]], names='group') actual = tools.categorical(arr) expected = np.rec.array([(10, 1.0, 0.0), (11, 0.0, 1.0)], dtype=[('group', int), ('group_10', float), ('group_11', float)]) assert_array_equal(actual, expected) def test_issue302(): arr = np.rec.fromrecords([[10, 12], [11, 13]], names=['group', 'whatever']) actual = tools.categorical(arr, col=['group']) expected = np.rec.array([(10, 12, 1.0, 0.0), (11, 13, 0.0, 1.0)], dtype=[('group', int), ('whatever', int), ('group_10', float), ('group_11', float)]) assert_array_equal(actual, expected) def test_pandas_const_series(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=False) assert_string_equal('const', series.columns[1]) assert_equal(series.var(0)[1], 0) def test_pandas_const_series_prepend(): dta = longley.load_pandas() series = dta.exog['GNP'] series = tools.add_constant(series, prepend=True) assert_string_equal('const', series.columns[0]) assert_equal(series.var(0)[0], 0) def test_pandas_const_df(): dta = longley.load_pandas().exog dta = tools.add_constant(dta, prepend=False) assert_string_equal('const', dta.columns[-1]) assert_equal(dta.var(0)[-1], 0) def test_pandas_const_df_prepend(): dta = longley.load_pandas().exog # regression test for #1025 dta['UNEMP'] /= dta['UNEMP'].std() dta = tools.add_constant(dta, prepend=True) assert_string_equal('const', dta.columns[0]) assert_equal(dta.var(0)[0], 0) def test_chain_dot(): A = np.arange(1,13).reshape(3,4) B = np.arange(3,15).reshape(4,3) C = np.arange(5,8).reshape(3,1) assert_equal(tools.chain_dot(A,B,C), np.array([[1820],[4300],[6780]])) class TestNanDot(object): @classmethod def setupClass(cls): nan = np.nan cls.mx_1 = np.array([[nan, 1.], [2., 3.]]) cls.mx_2 = np.array([[nan, nan], [2., 3.]]) cls.mx_3 = np.array([[0., 0.], [0., 0.]]) cls.mx_4 = np.array([[1., 0.], [1., 0.]]) cls.mx_5 = np.array([[0., 1.], [0., 1.]]) cls.mx_6 = np.array([[1., 2.], [3., 4.]]) def test_11(self): test_res = tools.nan_dot(self.mx_1, self.mx_1) expected_res = np.array([[ np.nan, np.nan], [ np.nan, 11.]]) assert_array_equal(test_res, expected_res) def test_12(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_2) expected_res = np.array([[ nan, nan], [ nan, nan]]) assert_array_equal(test_res, expected_res) def test_13(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_3) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_14(self): nan = np.nan test_res = tools.nan_dot(self.mx_1, self.mx_4) expected_res = np.array([[ nan, 0.], [ 5., 0.]]) assert_array_equal(test_res, expected_res) def test_41(self): nan = np.nan test_res = tools.nan_dot(self.mx_4, self.mx_1) expected_res = np.array([[ nan, 1.], [ nan, 1.]]) assert_array_equal(test_res, expected_res) def test_23(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_3) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_32(self): nan = np.nan test_res = tools.nan_dot(self.mx_3, self.mx_2) expected_res = np.array([[ 0., 0.], [ 0., 0.]]) assert_array_equal(test_res, expected_res) def test_24(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_4) expected_res = np.array([[ nan, 0.], [ 5., 0.]]) assert_array_equal(test_res, expected_res) def test_25(self): nan = np.nan test_res = tools.nan_dot(self.mx_2, self.mx_5) expected_res = np.array([[ 0., nan], [ 0., 5.]]) assert_array_equal(test_res, expected_res) def test_66(self): nan = np.nan test_res = tools.nan_dot(self.mx_6, self.mx_6) expected_res = np.array([[ 7., 10.], [ 15., 22.]]) assert_array_equal(test_res, expected_res)
bsd-3-clause
dssg/wikienergy
disaggregator/build/pandas/pandas/tseries/tests/test_timedeltas.py
1
55479
# pylint: disable-msg=E1101,W0612 from __future__ import division from datetime import datetime, timedelta, time import nose from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, Timestamp, Timedelta, TimedeltaIndex, isnull, notnull, bdate_range, date_range, timedelta_range, Int64Index) import pandas.core.common as com from pandas.compat import StringIO, lrange, range, zip, u, OrderedDict, long, PY3_2 from pandas import compat, to_timedelta, tslib from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type as ct from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal, assert_index_equal, ensure_clean) from pandas.tseries.offsets import Day, Second, Hour import pandas.util.testing as tm from numpy.random import rand, randn from pandas import _np_version_under1p8 iNaT = tslib.iNaT class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_construction(self): expected = np.timedelta64(10,'D').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10,unit='d').value, expected) self.assertEqual(Timedelta(10.0,unit='d').value, expected) self.assertEqual(Timedelta('10 days').value, expected) self.assertEqual(Timedelta(days=10).value, expected) self.assertEqual(Timedelta(days=10.0).value, expected) expected += np.timedelta64(10,'s').astype('m8[ns]').view('i8') self.assertEqual(Timedelta('10 days 00:00:10').value, expected) self.assertEqual(Timedelta(days=10,seconds=10).value, expected) self.assertEqual(Timedelta(days=10,milliseconds=10*1000).value, expected) self.assertEqual(Timedelta(days=10,microseconds=10*1000*1000).value, expected) # test construction with np dtypes # GH 8757 timedelta_kwargs = {'days':'D', 'seconds':'s', 'microseconds':'us', 'milliseconds':'ms', 'minutes':'m', 'hours':'h', 'weeks':'W'} npdtypes = [np.int64, np.int32, np.int16, np.float64, np.float32, np.float16] for npdtype in npdtypes: for pykwarg, npkwarg in timedelta_kwargs.items(): expected = np.timedelta64(1, npkwarg).astype('m8[ns]').view('i8') self.assertEqual(Timedelta(**{pykwarg:npdtype(1)}).value, expected) # rounding cases self.assertEqual(Timedelta(82739999850000).value, 82739999850000) self.assertTrue('0 days 22:58:59.999850' in str(Timedelta(82739999850000))) self.assertEqual(Timedelta(123072001000000).value, 123072001000000) self.assertTrue('1 days 10:11:12.001' in str(Timedelta(123072001000000))) # more strings # GH 8190 self.assertEqual(Timedelta('1 h'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hour'), timedelta(hours=1)) self.assertEqual(Timedelta('1 hours'), timedelta(hours=1)) self.assertEqual(Timedelta('-1 hours'), -timedelta(hours=1)) self.assertEqual(Timedelta('1 m'), timedelta(minutes=1)) self.assertEqual(Timedelta('1.5 m'), timedelta(seconds=90)) self.assertEqual(Timedelta('1 minute'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 minutes'), timedelta(minutes=1)) self.assertEqual(Timedelta('1 s'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 second'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 seconds'), timedelta(seconds=1)) self.assertEqual(Timedelta('1 ms'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 milli'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 millisecond'), timedelta(milliseconds=1)) self.assertEqual(Timedelta('1 us'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 micros'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1 microsecond'), timedelta(microseconds=1)) self.assertEqual(Timedelta('1.5 microsecond'), Timedelta('00:00:00.000001500')) self.assertEqual(Timedelta('1 ns'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nano'), Timedelta('00:00:00.000000001')) self.assertEqual(Timedelta('1 nanosecond'), Timedelta('00:00:00.000000001')) # combos self.assertEqual(Timedelta('10 days 1 hour'), timedelta(days=10,hours=1)) self.assertEqual(Timedelta('10 days 1 h'), timedelta(days=10,hours=1)) self.assertEqual(Timedelta('10 days 1 h 1m 1s'), timedelta(days=10,hours=1,minutes=1,seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), -timedelta(days=10,hours=1,minutes=1,seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s'), -timedelta(days=10,hours=1,minutes=1,seconds=1)) self.assertEqual(Timedelta('-10 days 1 h 1m 1s 3us'), -timedelta(days=10,hours=1,minutes=1,seconds=1,microseconds=3)) self.assertEqual(Timedelta('-10 days 1 h 1.5m 1s 3us'), -timedelta(days=10,hours=1,minutes=1,seconds=31,microseconds=3)) # currently invalid as it has a - on the hhmmdd part (only allowed on the days) self.assertRaises(ValueError, lambda : Timedelta('-10 days -1 h 1.5m 1s 3us')) # roundtripping both for string and value for v in ['1s', '-1s', '1us', '-1us', '1 day', '-1 day', '-23:59:59.999999', '-1 days +23:59:59.999999', '-1ns', '1ns', '-23:59:59.999999999']: td = Timedelta(v) self.assertEqual(Timedelta(td.value),td) # str does not normally display nanos if not td.nanoseconds: self.assertEqual(Timedelta(str(td)),td) self.assertEqual(Timedelta(td._repr_base(format='all')),td) # floats expected = np.timedelta64(10,'s').astype('m8[ns]').view('i8') + np.timedelta64(500,'ms').astype('m8[ns]').view('i8') self.assertEqual(Timedelta(10.5,unit='s').value, expected) # nat self.assertEqual(Timedelta('').value,iNaT) self.assertEqual(Timedelta('nat').value,iNaT) self.assertEqual(Timedelta('NAT').value,iNaT) self.assertTrue(isnull(Timestamp('nat'))) self.assertTrue(isnull(Timedelta('nat'))) # offset self.assertEqual(to_timedelta(pd.offsets.Hour(2)),Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Hour(2)),Timedelta('0 days, 02:00:00')) self.assertEqual(Timedelta(pd.offsets.Second(2)),Timedelta('0 days, 00:00:02')) # invalid tm.assertRaisesRegexp(ValueError, "cannot construct a TimeDelta", lambda : Timedelta()) tm.assertRaisesRegexp(ValueError, "cannot create timedelta string convert", lambda : Timedelta('foo')) tm.assertRaisesRegexp(ValueError, "cannot construct a TimeDelta from the passed arguments, allowed keywords are ", lambda : Timedelta(day=10)) def test_repr(self): self.assertEqual(repr(Timedelta(10,unit='d')),"Timedelta('10 days 00:00:00')") self.assertEqual(repr(Timedelta(10,unit='s')),"Timedelta('0 days 00:00:10')") self.assertEqual(repr(Timedelta(10,unit='ms')),"Timedelta('0 days 00:00:00.010000')") self.assertEqual(repr(Timedelta(-10,unit='ms')),"Timedelta('-1 days +23:59:59.990000')") def test_identity(self): td = Timedelta(10,unit='d') self.assertTrue(isinstance(td, Timedelta)) self.assertTrue(isinstance(td, timedelta)) def test_conversion(self): for td in [ Timedelta(10,unit='d'), Timedelta('1 days, 10:11:12.012345') ]: pydt = td.to_pytimedelta() self.assertTrue(td == Timedelta(pydt)) self.assertEqual(td, pydt) self.assertTrue(isinstance(pydt, timedelta) and not isinstance(pydt, Timedelta)) self.assertEqual(td, np.timedelta64(td.value, 'ns')) td64 = td.to_timedelta64() self.assertEqual(td64, np.timedelta64(td.value, 'ns')) self.assertEqual(td, td64) self.assertTrue(isinstance(td64, np.timedelta64)) # this is NOT equal and cannot be roundtriped (because of the nanos) td = Timedelta('1 days, 10:11:12.012345678') self.assertTrue(td != td.to_pytimedelta()) def test_ops(self): td = Timedelta(10,unit='d') self.assertEqual(-td,Timedelta(-10,unit='d')) self.assertEqual(+td,Timedelta(10,unit='d')) self.assertEqual(td - td, Timedelta(0,unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20,unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20,unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5,unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is pd.NaT) # invert self.assertEqual(-td,Timedelta('-10d')) self.assertEqual(td * -1,Timedelta('-10d')) self.assertEqual(-1 * td,Timedelta('-10d')) self.assertEqual(abs(-td),Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda : Timedelta(11,unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda : td * td) # can't operate with integers self.assertRaises(TypeError, lambda : td + 2) self.assertRaises(TypeError, lambda : td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_freq_conversion(self): td = Timedelta('1 days 2 hours 3 ns') result = td / np.timedelta64(1,'D') self.assertEquals(result, td.value/float(86400*1e9)) result = td / np.timedelta64(1,'s') self.assertEquals(result, td.value/float(1e9)) result = td / np.timedelta64(1,'ns') self.assertEquals(result, td.value) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1])) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1])) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_compare_timedelta_series(self): # regresssion test for GH5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_fields(self): rng = to_timedelta('1 days, 10:11:12') self.assertEqual(rng.days,1) self.assertEqual(rng.hours,10) self.assertEqual(rng.minutes,11) self.assertEqual(rng.seconds,12) self.assertEqual(rng.milliseconds,0) self.assertEqual(rng.microseconds,0) self.assertEqual(rng.nanoseconds,0) td = Timedelta('-1 days, 10:11:12') self.assertEqual(abs(td),Timedelta('13:48:48')) self.assertTrue(str(td) == "-1 days +10:11:12") self.assertEqual(-td,Timedelta('0 days 13:48:48')) self.assertEqual(-Timedelta('-1 days, 10:11:12').value,49728000000000) self.assertEqual(Timedelta('-1 days, 10:11:12').value,-49728000000000) rng = to_timedelta('-1 days, 10:11:12') self.assertEqual(rng.days,-1) self.assertEqual(rng.hours,10) self.assertEqual(rng.minutes,11) self.assertEqual(rng.seconds,12) self.assertEqual(rng.milliseconds,0) self.assertEqual(rng.microseconds,0) self.assertEqual(rng.nanoseconds,0) # components tup = pd.to_timedelta(-1, 'us').components self.assertEqual(tup.days,-1) self.assertEqual(tup.hours,23) self.assertEqual(tup.minutes,59) self.assertEqual(tup.seconds,59) self.assertEqual(tup.milliseconds,999) self.assertEqual(tup.microseconds,999) self.assertEqual(tup.nanoseconds,0) tup = Timedelta('-1 days 1 us').components self.assertEqual(tup.days,-2) self.assertEqual(tup.hours,23) self.assertEqual(tup.minutes,59) self.assertEqual(tup.seconds,59) self.assertEqual(tup.milliseconds,999) self.assertEqual(tup.microseconds,999) self.assertEqual(tup.nanoseconds,0) def test_timedelta_range(self): expected = to_timedelta(np.arange(5),unit='D') result = timedelta_range('0 days',periods=5,freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(11),unit='D') result = timedelta_range('0 days','10 days',freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(5),unit='D') + Second(2) + Day() result = timedelta_range('1 days, 00:00:02','5 days, 00:00:02',freq='D') tm.assert_index_equal(result, expected) expected = to_timedelta([1,3,5,7,9],unit='D') + Second(2) result = timedelta_range('1 days, 00:00:02',periods=5,freq='2D') tm.assert_index_equal(result, expected) expected = to_timedelta(np.arange(50),unit='T')*30 result = timedelta_range('0 days',freq='30T',periods=50) tm.assert_index_equal(result, expected) def test_numeric_conversions(self): self.assertEqual(ct(0), np.timedelta64(0,'ns')) self.assertEqual(ct(10), np.timedelta64(10,'ns')) self.assertEqual(ct(10,unit='ns'), np.timedelta64(10,'ns').astype('m8[ns]')) self.assertEqual(ct(10,unit='us'), np.timedelta64(10,'us').astype('m8[ns]')) self.assertEqual(ct(10,unit='ms'), np.timedelta64(10,'ms').astype('m8[ns]')) self.assertEqual(ct(10,unit='s'), np.timedelta64(10,'s').astype('m8[ns]')) self.assertEqual(ct(10,unit='d'), np.timedelta64(10,'D').astype('m8[ns]')) def test_timedelta_conversions(self): self.assertEqual(ct(timedelta(seconds=1)), np.timedelta64(1,'s').astype('m8[ns]')) self.assertEqual(ct(timedelta(microseconds=1)), np.timedelta64(1,'us').astype('m8[ns]')) self.assertEqual(ct(timedelta(days=1)), np.timedelta64(1,'D').astype('m8[ns]')) def test_short_format_converters(self): def conv(v): return v.astype('m8[ns]') self.assertEqual(ct('10'), np.timedelta64(10,'ns')) self.assertEqual(ct('10ns'), np.timedelta64(10,'ns')) self.assertEqual(ct('100'), np.timedelta64(100,'ns')) self.assertEqual(ct('100ns'), np.timedelta64(100,'ns')) self.assertEqual(ct('1000'), np.timedelta64(1000,'ns')) self.assertEqual(ct('1000ns'), np.timedelta64(1000,'ns')) self.assertEqual(ct('1000NS'), np.timedelta64(1000,'ns')) self.assertEqual(ct('10us'), np.timedelta64(10000,'ns')) self.assertEqual(ct('100us'), np.timedelta64(100000,'ns')) self.assertEqual(ct('1000us'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1000Us'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1000uS'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('1ms'), np.timedelta64(1000000,'ns')) self.assertEqual(ct('10ms'), np.timedelta64(10000000,'ns')) self.assertEqual(ct('100ms'), np.timedelta64(100000000,'ns')) self.assertEqual(ct('1000ms'), np.timedelta64(1000000000,'ns')) self.assertEqual(ct('-1s'), -np.timedelta64(1000000000,'ns')) self.assertEqual(ct('1s'), np.timedelta64(1000000000,'ns')) self.assertEqual(ct('10s'), np.timedelta64(10000000000,'ns')) self.assertEqual(ct('100s'), np.timedelta64(100000000000,'ns')) self.assertEqual(ct('1000s'), np.timedelta64(1000000000000,'ns')) self.assertEqual(ct('1d'), conv(np.timedelta64(1,'D'))) self.assertEqual(ct('-1d'), -conv(np.timedelta64(1,'D'))) self.assertEqual(ct('1D'), conv(np.timedelta64(1,'D'))) self.assertEqual(ct('10D'), conv(np.timedelta64(10,'D'))) self.assertEqual(ct('100D'), conv(np.timedelta64(100,'D'))) self.assertEqual(ct('1000D'), conv(np.timedelta64(1000,'D'))) self.assertEqual(ct('10000D'), conv(np.timedelta64(10000,'D'))) # space self.assertEqual(ct(' 10000D '), conv(np.timedelta64(10000,'D'))) self.assertEqual(ct(' - 10000D '), -conv(np.timedelta64(10000,'D'))) # invalid self.assertRaises(ValueError, ct, '1foo') self.assertRaises(ValueError, ct, 'foo') def test_full_format_converters(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1,'D') self.assertEqual(ct('1days'), conv(d1)) self.assertEqual(ct('1days,'), conv(d1)) self.assertEqual(ct('- 1days,'), -conv(d1)) self.assertEqual(ct('00:00:01'), conv(np.timedelta64(1,'s'))) self.assertEqual(ct('06:00:01'), conv(np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('06:00:01.0'), conv(np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('06:00:01.01'), conv(np.timedelta64(1000*(6*3600+1)+10,'ms'))) self.assertEqual(ct('- 1days, 00:00:01'), conv(-d1+np.timedelta64(1,'s'))) self.assertEqual(ct('1days, 06:00:01'), conv(d1+np.timedelta64(6*3600+1,'s'))) self.assertEqual(ct('1days, 06:00:01.01'), conv(d1+np.timedelta64(1000*(6*3600+1)+10,'ms'))) # invalid self.assertRaises(ValueError, ct, '- 1days, 00') def test_nat_converters(self): self.assertEqual(to_timedelta('nat',box=False).astype('int64'), tslib.iNaT) self.assertEqual(to_timedelta('nan',box=False).astype('int64'), tslib.iNaT) def test_to_timedelta(self): def conv(v): return v.astype('m8[ns]') d1 = np.timedelta64(1,'D') self.assertEqual(to_timedelta('1 days 06:05:01.00003',box=False), conv(d1+np.timedelta64(6*3600+5*60+1,'s')+np.timedelta64(30,'us'))) self.assertEqual(to_timedelta('15.5us',box=False), conv(np.timedelta64(15500,'ns'))) # empty string result = to_timedelta('',box=False) self.assertEqual(result.astype('int64'), tslib.iNaT) result = to_timedelta(['', '']) self.assertTrue(isnull(result).all()) # pass thru result = to_timedelta(np.array([np.timedelta64(1,'s')])) expected = np.array([np.timedelta64(1,'s')]) tm.assert_almost_equal(result,expected) # ints result = np.timedelta64(0,'ns') expected = to_timedelta(0,box=False) self.assertEqual(result, expected) # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(['1d','1days 00:00:01'])) tm.assert_series_equal(result, expected) # with units result = TimedeltaIndex([ np.timedelta64(0,'ns'), np.timedelta64(10,'s').astype('m8[ns]') ]) expected = to_timedelta([0,10],unit='s') tm.assert_index_equal(result, expected) # single element conversion v = timedelta(seconds=1) result = to_timedelta(v,box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) v = np.timedelta64(timedelta(seconds=1)) result = to_timedelta(v,box=False) expected = np.timedelta64(timedelta(seconds=1)) self.assertEqual(result, expected) # arrays of various dtypes arr = np.array([1]*5,dtype='int64') result = to_timedelta(arr,unit='s') expected = TimedeltaIndex([ np.timedelta64(1,'s') ]*5) tm.assert_index_equal(result, expected) arr = np.array([1]*5,dtype='int64') result = to_timedelta(arr,unit='m') expected = TimedeltaIndex([ np.timedelta64(1,'m') ]*5) tm.assert_index_equal(result, expected) arr = np.array([1]*5,dtype='int64') result = to_timedelta(arr,unit='h') expected = TimedeltaIndex([ np.timedelta64(1,'h') ]*5) tm.assert_index_equal(result, expected) arr = np.array([1]*5,dtype='timedelta64[s]') result = to_timedelta(arr) expected = TimedeltaIndex([ np.timedelta64(1,'s') ]*5) tm.assert_index_equal(result, expected) arr = np.array([1]*5,dtype='timedelta64[D]') result = to_timedelta(arr) expected = TimedeltaIndex([ np.timedelta64(1,'D') ]*5) tm.assert_index_equal(result, expected) # Test with lists as input when box=false expected = np.array(np.arange(3)*1000000000, dtype='timedelta64[ns]') result = to_timedelta(range(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta(np.arange(3), unit='s', box=False) tm.assert_numpy_array_equal(expected, result) result = to_timedelta([0, 1, 2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) # Tests with fractional seconds as input: expected = np.array([0, 500000000, 800000000, 1200000000], dtype='timedelta64[ns]') result = to_timedelta([0., 0.5, 0.8, 1.2], unit='s', box=False) tm.assert_numpy_array_equal(expected, result) def testit(unit, transform): # array result = to_timedelta(np.arange(5),unit=unit) expected = TimedeltaIndex([ np.timedelta64(i,transform(unit)) for i in np.arange(5).tolist() ]) tm.assert_index_equal(result, expected) # scalar result = to_timedelta(2,unit=unit) expected = Timedelta(np.timedelta64(2,transform(unit)).astype('timedelta64[ns]')) self.assertEqual(result, expected) # validate all units # GH 6855 for unit in ['Y','M','W','D','y','w','d']: testit(unit,lambda x: x.upper()) for unit in ['days','day','Day','Days']: testit(unit,lambda x: 'D') for unit in ['h','m','s','ms','us','ns','H','S','MS','US','NS']: testit(unit,lambda x: x.lower()) # offsets # m testit('T',lambda x: 'm') # ms testit('L',lambda x: 'ms') # these will error self.assertRaises(ValueError, lambda : to_timedelta([1,2],unit='foo')) self.assertRaises(ValueError, lambda : to_timedelta(1,unit='foo')) # time not supported ATM self.assertRaises(ValueError, lambda :to_timedelta(time(second=1))) def test_to_timedelta_via_apply(self): # GH 5458 expected = Series([np.timedelta64(1,'s')]) result = Series(['00:00:01']).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta('00:00:01')]) tm.assert_series_equal(result, expected) def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i*i) for i in range(10) ]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600,'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:08') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew','kurt','sem','var','prod']: self.assertRaises(TypeError, lambda : getattr(td,op)()) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10,unit='s'), timedelta(seconds=10), np.timedelta64(10,'s'), np.timedelta64(10000000000,'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1,seconds=10), np.timedelta64(1,'D')+np.timedelta64(10,'s'), pd.offsets.Day()+pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_to_timedelta_on_missing_values(self): # GH5438 timedelta_NaT = np.timedelta64('NaT') actual = pd.to_timedelta(Series(['00:00:01', np.nan])) expected = Series([np.timedelta64(1000000000, 'ns'), timedelta_NaT], dtype='<m8[ns]') assert_series_equal(actual, expected) actual = pd.to_timedelta(Series(['00:00:01', pd.NaT])) assert_series_equal(actual, expected) actual = pd.to_timedelta(np.nan) self.assertEqual(actual.value, timedelta_NaT.astype('int64')) actual = pd.to_timedelta(pd.NaT) self.assertEqual(actual.value, timedelta_NaT.astype('int64')) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = s1 + pd.NaT # NaT is datetime, not timedelta assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1 assert_frame_equal(actual, df2) actual = df2 - scalar1 assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 + NA assert_frame_equal(actual, dfn) actual = df1 - NA assert_frame_equal(actual, dfn) actual = df1 + pd.NaT # NaT is datetime, not timedelta assert_frame_equal(actual, dfn) actual = df1 - pd.NaT assert_frame_equal(actual, dfn) def test_apply_to_timedelta(self): timedelta_NaT = pd.to_timedelta('NaT') list_of_valid_strings = ['00:00:01', '00:00:02'] a = pd.to_timedelta(list_of_valid_strings) b = Series(list_of_valid_strings).apply(pd.to_timedelta) # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b) list_of_strings = ['00:00:01', np.nan, pd.NaT, timedelta_NaT] a = pd.to_timedelta(list_of_strings) b = Series(list_of_strings).apply(pd.to_timedelta) # Can't compare until apply on a Series gives the correct dtype # assert_series_equal(a, b) def test_pickle(self): v = Timedelta('1 days 10:11:12.0123456') v_p = self.round_trip_pickle(v) self.assertEqual(v,v_p) class TestTimedeltaIndex(tm.TestCase): _multiprocess_can_split_ = True def test_pass_TimedeltaIndex_to_index(self): rng = timedelta_range('1 days','10 days') idx = Index(rng, dtype=object) expected = Index(rng.to_pytimedelta(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_pickle(self): rng = timedelta_range('1 days', periods=10) rng_p = self.round_trip_pickle(rng) tm.assert_index_equal(rng,rng_p) def test_hash_error(self): index = timedelta_range('1 days', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_append_join_nondatetimeindex(self): rng = timedelta_range('1 days', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timedelta) # it works rng.join(idx, how='outer') def test_append_numpy_bug_1681(self): td = timedelta_range('1 days','10 days',freq='2D') a = DataFrame() c = DataFrame({'A': 'foo', 'B': td}, index=td) str(c) result = a.append(c) self.assertTrue((result['B'] == td).all()) def test_astype(self): rng = timedelta_range('1 days', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_fields(self): rng = timedelta_range('1 days, 10:11:12', periods=2, freq='s') self.assert_numpy_array_equal(rng.days, np.array([1,1],dtype='int64')) self.assert_numpy_array_equal(rng.hours, np.array([10,10],dtype='int64')) self.assert_numpy_array_equal(rng.minutes, np.array([11,11],dtype='int64')) self.assert_numpy_array_equal(rng.seconds, np.array([12,13],dtype='int64')) self.assert_numpy_array_equal(rng.milliseconds, np.array([0,0],dtype='int64')) self.assert_numpy_array_equal(rng.microseconds, np.array([0,0],dtype='int64')) self.assert_numpy_array_equal(rng.nanoseconds, np.array([0,0],dtype='int64')) # with nat s = Series(rng) s[1] = np.nan tm.assert_series_equal(s.dt.days,Series([1,np.nan],index=[0,1])) tm.assert_series_equal(s.dt.hours,Series([10,np.nan],index=[0,1])) tm.assert_series_equal(s.dt.milliseconds,Series([0,np.nan],index=[0,1])) def test_components(self): rng = timedelta_range('1 days, 10:11:12', periods=2, freq='s') rng.components # with nat s = Series(rng) s[1] = np.nan result = s.dt.components self.assertFalse(result.iloc[0].isnull().all()) self.assertTrue(result.iloc[1].isnull().all()) def test_constructor(self): expected = TimedeltaIndex(['1 days','1 days 00:00:05', '2 days','2 days 00:00:02','0 days 00:00:03']) result = TimedeltaIndex(['1 days','1 days, 00:00:05', np.timedelta64(2,'D'), timedelta(days=2,seconds=2), pd.offsets.Second(3)]) tm.assert_index_equal(result,expected) expected = TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02']) tm.assert_index_equal(TimedeltaIndex(range(3), unit='s'), expected) expected = TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:05', '0 days 00:00:09']) tm.assert_index_equal(TimedeltaIndex([0, 5, 9], unit='s'), expected) expected = TimedeltaIndex(['0 days 00:00:00.400', '0 days 00:00:00.450', '0 days 00:00:01.200']) tm.assert_index_equal(TimedeltaIndex([400, 450, 1200], unit='ms'), expected) def test_constructor_coverage(self): rng = timedelta_range('1 days', periods=10.5) exp = timedelta_range('1 days', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, TimedeltaIndex, start='1 days', periods='foo', freq='D') self.assertRaises(ValueError, TimedeltaIndex, start='1 days', end='10 days') self.assertRaises(ValueError, TimedeltaIndex, '1 days') # generator expression gen = (timedelta(i) for i in range(10)) result = TimedeltaIndex(gen) expected = TimedeltaIndex([timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['1 days', '2 days', '3 days']) result = TimedeltaIndex(strings) expected = to_timedelta([1,2,3],unit='d') self.assertTrue(result.equals(expected)) from_ints = TimedeltaIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming freq self.assertRaises(ValueError, TimedeltaIndex, ['1 days', '2 days', '4 days'], freq='D') self.assertRaises(ValueError, TimedeltaIndex, periods=10, freq='D') def test_constructor_name(self): idx = TimedeltaIndex(start='1 days', periods=1, freq='D', name='TEST') self.assertEqual(idx.name, 'TEST') def test_freq_conversion(self): # doc example # series td = Series(date_range('20130101',periods=4)) - \ Series(date_range('20121201',periods=4)) td[2] += timedelta(minutes=5,seconds=3) td[3] = np.nan result = td / np.timedelta64(1,'D') expected = Series([31,31,(31*86400+5*60+3)/86400.0,np.nan]) assert_series_equal(result,expected) result = td.astype('timedelta64[D]') expected = Series([31,31,31,np.nan]) assert_series_equal(result,expected) result = td / np.timedelta64(1,'s') expected = Series([31*86400,31*86400,31*86400+5*60+3,np.nan]) assert_series_equal(result,expected) result = td.astype('timedelta64[s]') assert_series_equal(result,expected) # tdi td = TimedeltaIndex(td) result = td / np.timedelta64(1,'D') expected = Index([31,31,(31*86400+5*60+3)/86400.0,np.nan]) assert_index_equal(result,expected) result = td.astype('timedelta64[D]') expected = Index([31,31,31,np.nan]) assert_index_equal(result,expected) result = td / np.timedelta64(1,'s') expected = Index([31*86400,31*86400,31*86400+5*60+3,np.nan]) assert_index_equal(result,expected) result = td.astype('timedelta64[s]') assert_index_equal(result,expected) def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] exp = np.array([True, True, True]+[False]*7) self.assert_numpy_array_equal(result, exp) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_comparisons_nat(self): if PY3_2: raise nose.SkipTest('nat comparisons on 3.2 broken') tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2,'D'), np.timedelta64(2,'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1,'D') + np.timedelta64(2,'s'), np.timedelta64(5,'D') + np.timedelta64(3,'s')]) if _np_version_under1p8: # cannot test array because np.datetime('nat') returns today's date cases = [(tdidx1, tdidx2)] else: cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) self.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) self.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) self.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) self.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) self.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) self.assert_numpy_array_equal(result, expected) def test_map(self): rng = timedelta_range('1 day', periods=10) f = lambda x: x.days result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_misc_coverage(self): rng = timedelta_range('1 day', periods=5) result = rng.groupby(rng.days) tm.assert_isinstance(list(result.values())[0][0], Timedelta) idx = TimedeltaIndex(['3d','1d','2d']) self.assertTrue(idx.equals(list(idx))) non_td = Index(list('abc')) self.assertFalse(idx.equals(list(non_td))) def test_union(self): i1 = timedelta_range('1day',periods=5) i2 = timedelta_range('3day',periods=5) result = i1.union(i2) expected = timedelta_range('1day',periods=7) self.assert_numpy_array_equal(result, expected) i1 = Int64Index(np.arange(0, 20, 2)) i2 = TimedeltaIndex(start='1 day', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute" def test_union_coverage(self): idx = TimedeltaIndex(['3d','1d','2d']) ordered = TimedeltaIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = timedelta_range('1 day', periods=4, freq='3H') rng_b = timedelta_range('1 day', periods=4, freq='4H') result = rng_a.union(rng_b) exp = TimedeltaIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = TimedeltaIndex(['1 day 15:19:49.695000']) right = TimedeltaIndex(['2 day 13:04:21.322000', '1 day 15:27:24.873000', '1 day 15:31:05.350000']) result = left.union(right) exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): left = timedelta_range("1 day","30d") right = left + pd.offsets.Minute(15) result = left.union(right) exp = TimedeltaIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): index_1 = timedelta_range('1 day', periods=4, freq='h') index_2 = index_1 + pd.offsets.Hour(5) result = index_1 & index_2 self.assertEqual(len(result), 0) index_1 = timedelta_range('1 day', periods=4, freq='h') index_2 = index_1 + pd.offsets.Hour(1) result = index_1 & index_2 expected = timedelta_range('1 day 01:00:00',periods=3,freq='h') tm.assert_index_equal(result,expected) def test_get_duplicates(self): idx = TimedeltaIndex(['1 day','2 day','2 day','3 day','3day', '4day']) result = idx.get_duplicates() ex = TimedeltaIndex(['2 day','3day']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = TimedeltaIndex(['1 day 00:00:05','1 day 00:00:01','1 day 00:00:02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = TimedeltaIndex(['4d','1d','2d']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = TimedeltaIndex(['4day','1day','2day'], name='idx') result = idx.insert(2, timedelta(days=5)) exp = TimedeltaIndex(['4day','1day','5day','2day'],name='idx') self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([Timedelta('4day'), 'inserted', Timedelta('1day'), Timedelta('2day')], name='idx') self.assertNotIsInstance(result, TimedeltaIndex) tm.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) idx = timedelta_range('1day 00:00:01', periods=3, freq='s', name='idx') # preserve freq expected_0 = TimedeltaIndex(['1day','1day 00:00:01','1day 00:00:02','1day 00:00:03'], name='idx', freq='s') expected_3 = TimedeltaIndex(['1day 00:00:01','1day 00:00:02','1day 00:00:03','1day 00:00:04'], name='idx', freq='s') # reset freq to None expected_1_nofreq = TimedeltaIndex(['1day 00:00:01','1day 00:00:01','1day 00:00:02','1day 00:00:03'], name='idx', freq=None) expected_3_nofreq = TimedeltaIndex(['1day 00:00:01','1day 00:00:02','1day 00:00:03','1day 00:00:05'], name='idx', freq=None) cases = [(0, Timedelta('1day'), expected_0), (-3, Timedelta('1day'), expected_0), (3, Timedelta('1day 00:00:04'), expected_3), (1, Timedelta('1day 00:00:01'), expected_1_nofreq), (3, Timedelta('1day 00:00:05'), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) def test_delete(self): idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx') # prserve freq expected_0 = timedelta_range(start='2 Days', periods=4, freq='D', name='idx') expected_4 = timedelta_range(start='1 Days', periods=4, freq='D', name='idx') # reset freq to None expected_1 = TimedeltaIndex(['1 day','3 day','4 day', '5 day'],freq=None,name='idx') cases ={0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_delete_slice(self): idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D', name='idx') expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = TimedeltaIndex(['1 d','2 d','3 d', '7 d','8 d','9 d','10d'], freq=None, name='idx') cases ={(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) result = idx.delete(slice(n[0], n[-1] + 1)) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) def test_take(self): tds = ['1day 02:00:00','1 day 04:00:00','1 day 10:00:00'] idx = TimedeltaIndex(start='1d',end='2d',freq='H',name='idx') expected = TimedeltaIndex(tds, freq=None, name='idx') taken1 = idx.take([2, 4, 10]) taken2 = idx[[2,4,10]] for taken in [taken1, taken2]: self.assertTrue(taken.equals(expected)) tm.assert_isinstance(taken, TimedeltaIndex) self.assertIsNone(taken.freq) self.assertEqual(taken.name, expected.name) def test_isin(self): index = tm.makeTimedeltaIndex(4) result = index.isin(index) self.assertTrue(result.all()) result = index.isin(list(index)) self.assertTrue(result.all()) assert_almost_equal(index.isin([index[2], 5]), [False, False, True, False]) def test_does_not_convert_mixed_integer(self): df = tm.makeCustomDataframe(10, 10, data_gen_f=lambda *args, **kwargs: randn(), r_idx_type='i', c_idx_type='td') str(df) cols = df.columns.join(df.index, how='outer') joined = cols.join(df.columns) self.assertEqual(cols.dtype, np.dtype('O')) self.assertEqual(cols.dtype, joined.dtype) tm.assert_index_equal(cols, joined) def test_slice_keeps_name(self): # GH4226 dr = pd.timedelta_range('1d','5d', freq='H', name='timebucket') self.assertEqual(dr[1:].name, dr.name) def test_join_self(self): index = timedelta_range('1 day', periods=10) kinds = 'outer', 'inner', 'left', 'right' for kind in kinds: joined = index.join(index, how=kind) self.assertIs(index, joined) def test_factorize(self): idx1 = TimedeltaIndex(['1 day','1 day','2 day', '2 day','3 day','3 day']) exp_arr = np.array([0, 0, 1, 1, 2, 2]) exp_idx = TimedeltaIndex(['1 day','2 day','3 day']) arr, idx = idx1.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) arr, idx = idx1.factorize(sort=True) self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(exp_idx)) # freq must be preserved idx3 = timedelta_range('1 day', periods=4, freq='s') exp_arr = np.array([0, 1, 2, 3]) arr, idx = idx3.factorize() self.assert_numpy_array_equal(arr, exp_arr) self.assertTrue(idx.equals(idx3)) class TestSlicing(tm.TestCase): def test_partial_slice(self): rng = timedelta_range('1 day 10:11:12', freq='h',periods=500) s = Series(np.arange(len(rng)), index=rng) result = s['5 day':'6 day'] expected = s.iloc[86:134] assert_series_equal(result, expected) result = s['5 day':] expected = s.iloc[86:] assert_series_equal(result, expected) result = s[:'6 day'] expected = s.iloc[:134] assert_series_equal(result, expected) result = s['6 days, 23:11:12'] self.assertEqual(result, s.irow(133)) self.assertRaises(KeyError, s.__getitem__, '50 days') def test_partial_slice_high_reso(self): # higher reso rng = timedelta_range('1 day 10:11:12', freq='us',periods=2000) s = Series(np.arange(len(rng)), index=rng) result = s['1 day 10:11:12':] expected = s.iloc[0:] assert_series_equal(result, expected) result = s['1 day 10:11:12.001':] expected = s.iloc[1000:] assert_series_equal(result, expected) result = s['1 days, 10:11:12.001001'] self.assertEqual(result, s.irow(1001)) def test_slice_with_negative_step(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.ix[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1]) assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1]) assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1]) assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1]) assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0]) def test_slice_with_zero_step_raises(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.loc[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: ts.ix[::0]) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
mit
rafwiewiora/msmbuilder
msmbuilder/tests/test_vmhmm.py
6
5110
from __future__ import print_function, division import random from itertools import permutations import numpy as np from scipy.stats.distributions import vonmises import pickle import tempfile from sklearn.pipeline import Pipeline from msmbuilder.example_datasets import AlanineDipeptide from msmbuilder.featurizer import DihedralFeaturizer from msmbuilder.hmm import VonMisesHMM def test_code_works(): # creates a 4-state HMM on the ALA2 data. Nothing fancy, just makes # sure the code runs without erroring out trajectories = AlanineDipeptide().get_cached().trajectories topology = trajectories[0].topology indices = topology.select('symbol C or symbol O or symbol N') featurizer = DihedralFeaturizer(['phi', 'psi'], trajectories[0][0]) sequences = featurizer.transform(trajectories) hmm = VonMisesHMM(n_states=4, n_init=1) hmm.fit(sequences) assert len(hmm.timescales_ == 3) assert np.any(hmm.timescales_ > 50) def circwrap(x): """Wrap an array on (-pi, pi)""" return x - 2 * np.pi * np.floor(x / (2 * np.pi) + 0.5) def create_timeseries(means, kappas, transmat): """Construct a random timeseries based on a specified Markov model.""" numStates = len(means) state = random.randint(0, numStates - 1) cdf = np.cumsum(transmat, 1) numFrames = 1000 X = np.empty((numFrames, 1)) for i in range(numFrames): rand = random.random() state = (cdf[state] > rand).argmax() X[i, 0] = circwrap(vonmises.rvs(kappas[state], means[state])) return X def validate_timeseries(means, kappas, transmat, model, meantol, kappatol, transmattol): """Test our model matches the one used to create the timeseries.""" numStates = len(means) assert len(model.means_) == numStates assert (model.transmat_ >= 0.0).all() assert (model.transmat_ <= 1.0).all() totalProbability = sum(model.transmat_.T) assert (abs(totalProbability - 1.0) < 1e-5).all() # The states may have come out in a different order, # so we need to test all possible permutations. for order in permutations(range(len(means))): match = True for i in range(numStates): if abs(circwrap(means[i] - model.means_[order[i]])) > meantol: match = False break if abs(kappas[i] - model.kappas_[order[i]]) > kappatol: match = False break for j in range(numStates): diff = transmat[i, j] - model.transmat_[order[i], order[j]] if abs(diff) > transmattol: match = False break if match: # It matches. return # No permutation matched. assert False def test_2_state(): transmat = np.array([[0.7, 0.3], [0.4, 0.6]]) means = np.array([[0.0], [2.0]]) kappas = np.array([[4.0], [8.0]]) X = [create_timeseries(means, kappas, transmat) for i in range(10)] # For each value of various options, # create a 2 state HMM and see if it is correct. for reversible_type in ('mle', 'transpose'): model = VonMisesHMM(n_states=2, reversible_type=reversible_type, thresh=1e-4, n_iter=30) model.fit(X) validate_timeseries(means, kappas, transmat, model, 0.1, 0.5, 0.05) assert abs(model.fit_logprob_[-1] - model.score(X)) < 0.5 def test_3_state(): transmat = np.array([[0.2, 0.3, 0.5], [0.4, 0.4, 0.2], [0.8, 0.2, 0.0]]) means = np.array([[0.0], [2.0], [4.0]]) kappas = np.array([[8.0], [8.0], [6.0]]) X = [create_timeseries(means, kappas, transmat) for i in range(20)] # For each value of various options, # create a 3 state HMM and see if it is correct. for reversible_type in ('mle', 'transpose'): model = VonMisesHMM(n_states=3, reversible_type=reversible_type, thresh=1e-4, n_iter=30) model.fit(X) validate_timeseries(means, kappas, transmat, model, 0.1, 0.5, 0.1) assert abs(model.fit_logprob_[-1] - model.score(X)) < 0.5 def test_pipeline(): trajs = AlanineDipeptide().get_cached().trajectories p = Pipeline([ ('diheds', DihedralFeaturizer(['phi', 'psi'], sincos=False)), ('hmm', VonMisesHMM(n_states=4)) ]) predict = p.fit_predict(trajs) p.named_steps['hmm'].summarize() def test_pickle(): """Test pickling an HMM""" trajectories = AlanineDipeptide().get_cached().trajectories topology = trajectories[0].topology indices = topology.select('symbol C or symbol O or symbol N') featurizer = DihedralFeaturizer(['phi', 'psi'], trajectories[0][0]) sequences = featurizer.transform(trajectories) hmm = VonMisesHMM(n_states=4, n_init=1) hmm.fit(sequences) logprob, hidden = hmm.predict(sequences) with tempfile.TemporaryFile() as savefile: pickle.dump(hmm, savefile) savefile.seek(0, 0) hmm2 = pickle.load(savefile) logprob2, hidden2 = hmm2.predict(sequences) assert(logprob == logprob2)
lgpl-2.1
ChinaQuants/zipline
zipline/data/treasuries.py
9
3406
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from operator import itemgetter import re import numpy as np import pandas as pd get_unit_and_periods = itemgetter('unit', 'periods') def parse_treasury_csv_column(column): """ Parse a treasury CSV column into a more human-readable format. Columns start with 'RIFLGFC', followed by Y or M (year or month), followed by a two-digit number signifying number of years/months, followed by _N.B. We only care about the middle two entries, which we turn into a string like 3month or 30year. """ column_re = re.compile( r"^(?P<prefix>RIFLGFC)" "(?P<unit>[YM])" "(?P<periods>[0-9]{2})" "(?P<suffix>_N.B)$" ) match = column_re.match(column) if match is None: raise ValueError("Couldn't parse CSV column %r." % column) unit, periods = get_unit_and_periods(match.groupdict()) # Roundtrip through int to coerce '06' into '6'. return str(int(periods)) + ('year' if unit == 'Y' else 'month') def earliest_possible_date(): """ The earliest date for which we can load data from this module. """ # The US Treasury actually has data going back further than this, but it's # pretty rare to find pricing data going back that far, and there's no # reason to make people download benchmarks back to 1950 that they'll never # be able to use. return pd.Timestamp('1980', tz='UTC') def get_treasury_data(start_date, end_date): return pd.read_csv( "http://www.federalreserve.gov/datadownload/Output.aspx" "?rel=H15" "&series=bf17364827e38702b42a58cf8eaa3f78" "&lastObs=" "&from=" # An unbounded query is ~2x faster than specifying dates. "&to=" "&filetype=csv" "&label=omit" "&layout=seriescolumn" "&type=package", skiprows=1, # First row is a useless header. parse_dates=['Time Period'], na_values=['ND'], # Presumably this stands for "No Data". index_col=0, ).loc[ start_date:end_date ].dropna( how='all' ).rename( columns=parse_treasury_csv_column ).tz_localize('UTC') * 0.01 # Convert from 2.57% to 0.0257. def dataconverter(s): try: return float(s) / 100 except: return np.nan def get_daily_10yr_treasury_data(): """Download daily 10 year treasury rates from the Federal Reserve and return a pandas.Series.""" url = "http://www.federalreserve.gov/datadownload/Output.aspx?rel=H15" \ "&series=bcb44e57fb57efbe90002369321bfb3f&lastObs=&from=&to=" \ "&filetype=csv&label=include&layout=seriescolumn" return pd.read_csv(url, header=5, index_col=0, names=['DATE', 'BC_10YEAR'], parse_dates=True, converters={1: dataconverter}, squeeze=True)
apache-2.0
rexshihaoren/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
twankim/weaksemi
main_local.py
1
8601
# -*- coding: utf-8 -*- # @Author: twankim # @Date: 2017-02-24 17:46:51 # @Last Modified by: twankim # @Last Modified time: 2018-03-09 22:14:15 import numpy as np import time import sys import os import argparse import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from ssac import weakSSAC from gen_data import genData from utils import * weak = "local" delta = 0.99 base_dir= os.path.join('./results',weak) def main(args): plotted = False rep = args.rep k = args.k n = args.n m = args.m std = args.std # qs = [float(q) for q in args.qs.split(',')] etas = [float(eta) for eta in args.etas.split(',')] beta = args.beta i_plot = np.random.randint(0,rep) # Index of experiment to plot the figure verbose = args.verbose cs = [float(q) for q in args.cs.split(',')] res_acc = np.zeros((rep,len(cs),len(etas))) # Accuracy of clustering res_mean_acc = np.zeros((rep,len(cs),len(etas))) # Mean accuracy of clustering (per cluster) # res_err = np.zeros((rep,len(qs),len(etas))) # Number of misclustered points res_fail = np.zeros((rep,len(cs),len(etas))) # Number of Failure gammas = np.zeros(rep) nus = np.zeros((rep,len(cs))) rhos = np.zeros((rep,len(cs))) # Make directories to save results if not os.path.exists(base_dir): os.makedirs(base_dir) res_dir = base_dir + '/{}_{}'.format(args.min_gamma,args.max_gamma) if not os.path.exists(res_dir): os.makedirs(res_dir) for i_rep in xrange(rep): # Generate Synthetic data # m dimensional, n points, k cluster # min_gamma: minimum gamma margin if verbose: print "({}/{})... Generating data".format(i_rep+1,rep) dataset = genData(n,m,k,args.min_gamma,args.max_gamma,std) X,y_true,ris = dataset.gen() gamma = dataset.gamma gammas[i_rep] = gamma print "({}/{})... Synthetic data is generated: gamma={}, (n,m,k,std)=({},{},{},{})".format( i_rep+1,rep,gamma,n,m,k,std) algo = weakSSAC(X,y_true,k,wtype=weak,ris=ris) # Test SSAC algorithm for different c's and eta's (fix beta in this case) for i_c,c_dist in enumerate(cs): assert (c_dist>0.5) & (c_dist<=1.0), "c_dist must be in (0.5,1]" nus[i_rep,i_c] = float(gamma) + 1.5*(1-c_dist) rhos[i_rep,i_c] = c_dist # Calculate proper eta and beta based on parameters including delta if verbose: print " - Proper eta={}, beta={} (delta={})".format( dataset.calc_eta(delta,weak=weak,nu=nus[i_rep,i_c],rho=rhos[i_rep,i_c]), dataset.calc_beta(delta,weak=weak,nu=nus[i_rep,i_c],rho=rhos[i_rep,i_c]), delta) for i_eta,eta in enumerate(etas): if verbose: print " <Test: c_dist={}, eta={}, beta={}>".format(c_dist,eta,beta) algo.set_params(eta,beta,rho=rhos[i_rep,i_c],nu=nus[i_rep,i_c]) if not algo.fit(): # Algorithm has failed res_fail[i_rep,i_c,i_eta] = 1 if not plotted: i_plot = np.random.randint(i_rep+1,rep) # Index of experiment to plot the figure y_pred = algo.y mpps = algo.mpps # Estimated cluster centers # print " ... Clustering is done. Number of binary search steps = {}\n".format(algo.bs_num) # For evaluation & plotting, find best permutation of cluster assignment y_pred_perm = find_permutation(dataset,algo) # Calculate accuracy and mean accuracy res_acc[i_rep,i_c,i_eta] = accuracy(y_true,y_pred_perm) res_mean_acc[i_rep,i_c,i_eta] = mean_accuracy(y_true,y_pred_perm) # # Calculate number of errors # res_err[i_rep,i_c,i_eta] = error(y_true,y_pred_perm) if (i_rep == i_plot) and (m<=2) and (not plotted): if (i_eta==len(etas)-1) and (i_c==len(cs)-1): plotted = True title = r"SSAC with {} weak oracle ($\eta={}, \beta={}, \nu={:.2f}, \rho={:.2f}$)".format( weak,eta,beta,nus[i_rep,i_c],rhos[i_rep,i_c]) f_name = res_dir+'/fig_n{}_m{}_k{}_c{:03d}_e{:d}.png'.format(n,m,k,int(100*c_dist),int(eta)) plot_cluster(X,y_true,y_pred_perm,k,mpps,gamma, title,f_name,verbose) # Write result as table print_eval("Accuracy(%)",res_acc,etas, res_dir+'/res_{}_n{}_m{}_k{}.csv'.format("acc",n,m,k),weak=weak,params=cs) print_eval("Mean Accuracy(%)",res_mean_acc,etas, res_dir+'/res_{}_n{}_m{}_k{}.csv'.format("meanacc",n,m,k),weak=weak,params=cs) # print_eval("# Error(%)",res_err,qs,etas, # res_dir+'/res_{}_n{}_m{}_k{}.csv'.format("err",n,m,k)) print_eval("# Failures",res_fail,etas, res_dir+'/res_{}_n{}_m{}_k{}.csv'.format("fail",n,m,k), is_sum=True,weak=weak,params=cs) # if args.isplot: # Plot Accuracy vs. eta fig_name = res_dir+'/fig_{}_n{}_m{}_k{}.pdf'.format("acc",n,m,k) plot_eval("Accuracy(%)",res_acc,etas,fig_name,weak=weak,params=cs) # Plot Mean Accuracy vs. eta fig_name = res_dir+'/fig_{}_n{}_m{}_k{}.pdf'.format("meanacc",n,m,k) plot_eval("Mean Accuracy(%)",res_mean_acc,etas,fig_name,weak=weak,params=cs) # Plot Failure vs. eta fig_name = res_dir+'/fig_{}_n{}_m{}_k{}.pdf'.format("fail",n,m,k) plot_eval("# Failures",res_fail,etas,fig_name,is_sum=True,weak=weak,params=cs) # Plot histogram of gammas fig_name = res_dir+'/fig_gamma_hist.pdf' plot_hist(gammas,args.min_gamma,args.max_gamma,fig_name) if args.isplot: plt.show() def parse_args(): def str2bool(v): return v.lower() in ('true', '1') parser = argparse.ArgumentParser(description= 'Test Semi-Supervised Active Clustering with Weak Oracles: Random-weak model') parser.add_argument('-rep', dest='rep', help='Number of experiments to repeat', default = 10000, type = int) parser.add_argument('-k', dest='k', help='Number of clusters in synthetic data', default = 3, type = int) parser.add_argument('-n', dest='n', help='Number of data points in synthetic data', default = 600, type = int) parser.add_argument('-m', dest='m', help='Dimension of data points in synthetic data', default = 2, type = int) parser.add_argument('-std', dest='std', help='standard deviation of Gaussian distribution (default:1.5)', default = 2.0, type = float) parser.add_argument('-qs', dest='qs', help='Probabilities q (not-sure with 1-q) ex) 0.7,0.85,1', default = '0.7,0.85,1', type = str) parser.add_argument('-etas', dest='etas', help='etas: parameter for sampling (phase 1) ex) 10,50', default = '2,5,10,20,30', type = str) parser.add_argument('-beta', dest='beta', help='beta: parameter for sampling (phase 2)', default = 1, type = int) parser.add_argument('-g_min', dest='min_gamma', help='minimum gamma margin (default:1)', default = 1.0, type = float) parser.add_argument('-g_max', dest='max_gamma', help='minimum gamma margin (default:1)', default = 1.1, type = float) parser.add_argument('-cs', dest='cs', help='Fractions to set distance-weak parameters (0.5,1] ex) 0.7,0.85,1', default = '0.6,0.8,1', type = str) parser.add_argument('-isplot', dest='isplot', help='plot the result: True/False', default = False, type = str2bool) parser.add_argument('-verbose', dest='verbose', help='verbose: True/False', default = False, type = str2bool) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print "Called with args:" print args sys.exit(main(args))
mit
fengzhyuan/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
gfyoung/pandas
pandas/tests/extension/test_categorical.py
1
9395
""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import string import numpy as np import pytest import pandas as pd from pandas import Categorical, CategoricalIndex, Timestamp import pandas._testing as tm from pandas.api.types import CategoricalDtype from pandas.tests.extension import base def make_data(): while True: values = np.random.choice(list(string.ascii_letters), size=100) # ensure we meet the requirements # 1. first two not null # 2. first and second are different if values[0] != values[1]: break return values @pytest.fixture def dtype(): return CategoricalDtype() @pytest.fixture def data(): """Length-100 array for this type. * data[0] and data[1] should both be non missing * data[0] and data[1] should not gbe equal """ return Categorical(make_data()) @pytest.fixture def data_missing(): """Length 2 array with [NA, Valid]""" return Categorical([np.nan, "A"]) @pytest.fixture def data_for_sorting(): return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True) @pytest.fixture def data_missing_for_sorting(): return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True) @pytest.fixture def na_value(): return np.nan @pytest.fixture def data_for_grouping(): return Categorical(["a", "a", None, None, "b", "b", "a", "c"]) class TestDtype(base.BaseDtypeTests): pass class TestInterface(base.BaseInterfaceTests): @pytest.mark.skip(reason="Memory usage doesn't match") def test_memory_usage(self, data): # Is this deliberate? super().test_memory_usage(data) def test_contains(self, data, data_missing): # GH-37867 # na value handling in Categorical.__contains__ is deprecated. # See base.BaseInterFaceTests.test_contains for more details. na_value = data.dtype.na_value # ensure data without missing values data = data[~data.isna()] # first elements are non-missing assert data[0] in data assert data_missing[0] in data_missing # check the presence of na_value assert na_value in data_missing assert na_value not in data # Categoricals can contain other nan-likes than na_value for na_value_obj in tm.NULL_OBJECTS: if na_value_obj is na_value: continue assert na_value_obj not in data assert na_value_obj in data_missing # this line differs from super method class TestConstructors(base.BaseConstructorsTests): pass class TestReshaping(base.BaseReshapingTests): @pytest.mark.xfail(reason="Deliberately upcast to object?") def test_concat_with_reindex(self, data): super().test_concat_with_reindex(data) class TestGetitem(base.BaseGetitemTests): @pytest.mark.skip(reason="Backwards compatibility") def test_getitem_scalar(self, data): # CategoricalDtype.type isn't "correct" since it should # be a parent of the elements (object). But don't want # to break things by changing. super().test_getitem_scalar(data) class TestSetitem(base.BaseSetitemTests): pass class TestMissing(base.BaseMissingTests): @pytest.mark.skip(reason="Not implemented") def test_fillna_limit_pad(self, data_missing): super().test_fillna_limit_pad(data_missing) @pytest.mark.skip(reason="Not implemented") def test_fillna_limit_backfill(self, data_missing): super().test_fillna_limit_backfill(data_missing) class TestReduce(base.BaseNoReduceTests): pass class TestMethods(base.BaseMethodsTests): @pytest.mark.skip(reason="Unobserved categories included") def test_value_counts(self, all_data, dropna): return super().test_value_counts(all_data, dropna) def test_combine_add(self, data_repeated): # GH 20825 # When adding categoricals in combine, result is a string orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) expected = pd.Series( [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series([a + val for a in list(orig_data1)]) self.assert_series_equal(result, expected) @pytest.mark.skip(reason="Not Applicable") def test_fillna_length_mismatch(self, data_missing): super().test_fillna_length_mismatch(data_missing) class TestCasting(base.BaseCastingTests): @pytest.mark.parametrize("cls", [Categorical, CategoricalIndex]) @pytest.mark.parametrize("values", [[1, np.nan], [Timestamp("2000"), pd.NaT]]) def test_cast_nan_to_int(self, cls, values): # GH 28406 s = cls(values) msg = "Cannot (cast|convert)" with pytest.raises((ValueError, TypeError), match=msg): s.astype(int) @pytest.mark.parametrize( "expected", [ pd.Series(["2019", "2020"], dtype="datetime64[ns, UTC]"), pd.Series([0, 0], dtype="timedelta64[ns]"), pd.Series([pd.Period("2019"), pd.Period("2020")], dtype="period[A-DEC]"), pd.Series([pd.Interval(0, 1), pd.Interval(1, 2)], dtype="interval"), pd.Series([1, np.nan], dtype="Int64"), ], ) def test_cast_category_to_extension_dtype(self, expected): # GH 28668 result = expected.astype("category").astype(expected.dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype, expected", [ ( "datetime64[ns]", np.array(["2015-01-01T00:00:00.000000000"], dtype="datetime64[ns]"), ), ( "datetime64[ns, MET]", pd.DatetimeIndex( [Timestamp("2015-01-01 00:00:00+0100", tz="MET")] ).array, ), ], ) def test_consistent_casting(self, dtype, expected): # GH 28448 result = Categorical(["2015-01-01"]).astype(dtype) assert result == expected class TestArithmeticOps(base.BaseArithmeticOpsTests): def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): # frame & scalar op_name = all_arithmetic_operators if op_name == "__rmod__": request.node.add_marker( pytest.mark.xfail( reason="rmod never called when string is first argument" ) ) super().test_arith_frame_with_scalar(data, op_name) def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request): op_name = all_arithmetic_operators if op_name == "__rmod__": request.node.add_marker( pytest.mark.xfail( reason="rmod never called when string is first argument" ) ) super().test_arith_series_with_scalar(data, op_name) def test_add_series_with_extension_array(self, data): ser = pd.Series(data) with pytest.raises(TypeError, match="cannot perform|unsupported operand"): ser + data def test_divmod_series_array(self): # GH 23287 # skipping because it is not implemented pass def _check_divmod_op(self, s, op, other, exc=NotImplementedError): return super()._check_divmod_op(s, op, other, exc=TypeError) class TestComparisonOps(base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) if op_name == "__eq__": result = op(s, other) expected = s.combine(other, lambda x, y: x == y) assert (result == expected).all() elif op_name == "__ne__": result = op(s, other) expected = s.combine(other, lambda x, y: x != y) assert (result == expected).all() else: msg = "Unordered Categoricals can only compare equality or not" with pytest.raises(TypeError, match=msg): op(data, other) @pytest.mark.parametrize( "categories", [["a", "b"], [0, 1], [Timestamp("2019"), Timestamp("2020")]], ) def test_not_equal_with_na(self, categories): # https://github.com/pandas-dev/pandas/issues/32276 c1 = Categorical.from_codes([-1, 0], categories=categories) c2 = Categorical.from_codes([0, 1], categories=categories) result = c1 != c2 assert result.all() class TestParsing(base.BaseParsingTests): pass
bsd-3-clause
FRidh/python-acoustics
acoustics/aio.py
1
3402
from __future__ import unicode_literals import csv import io import re import pandas as pd def read_csv_cirrus(filename): """Read a Cirrus CSV file. Currently exists support for some types of CSV files extracted with NoiseTools. There is no support for CSVs related with occupational noise. If there are NC and NR values in the csv file, they will be stored in the returned object with attributes ``nc`` and ``nr``. If the CSV file contains time history, you can access to date and time with the ``time`` attribute. Also, it is possible to know the integration time with the ``integration_time`` attribute. :param filename: CSV file name. :returns: Pandas dataframe with all data extracted from the CSV file. :rtype: Pandas dataframe. """ with open(filename, "r") as csvfile: csvreader = csvfile.read() csvreader = re.sub(r" dB", "", csvreader) # Clean " dB" from data dialect = csv.Sniffer().sniff(csvreader, delimiters=",;") separator = dialect.delimiter # Guess decimal separator decimal_sep = re.search(r"\"\d{2,3}" r"(\.|,)" # Decimal separator r"\d{1,2}\"", csvreader).group(1) n_cols = re.search("(.+)\n", csvreader).group(1).count(separator) + 1 if n_cols < 5: unsorted_data = [] pdindex = ["Z"] for i, c in enumerate(csvreader.splitlines()): if c[:4] == '"NR"': nr = int(re.search(r"\d{2}", c).group(0)) continue elif c[:4] == '"NC"': nc = int(re.search(r"\d{2}", c).group(0)) continue if i != 0: unsorted_data.append(c.split(separator)) else: if n_cols == 3: pdindex.append(c[-2:-1]) elif n_cols == 4: pdindex.append("A") pdindex.append("C") # Create a sorted temporary csv-like file csv_data = list(zip(*unsorted_data)) temp_csv = "" for row in csv_data: temp_csv += separator.join(row) + "\n" # Then, read it with pandas data = pd.read_csv(io.StringIO(temp_csv), sep=separator, decimal=decimal_sep) # Assign NC and NR data if they are present try: data.nc = nc data.nr = nr except: pass # If the csv file contains global data from the "Details" tab in # NoiseTools, skip row names if n_cols != 2: data.index = pdindex else: data = pd.read_csv(filename, parse_dates=[[0, 1]], sep=separator, decimal=decimal_sep) # Fix time name column en_columns = data.columns.values en_columns[0] = "time" data.columns = en_columns # Guess integration time with statistical mode because the csv could # have been cleaned from unwanted noise data["time"] = pd.to_datetime(data.time) delta = data.time.diff().fillna(0) # Mode and change from ns to s int_time = int(delta.mode().astype(int) * 1e-9) if round(int_time, 2) == 0.06: # Fix for 1/16 s int_time = 0.0625 data.integration_time = int_time return data
bsd-3-clause
marionleborgne/nupic.research
projects/sequence_prediction/continuous_sequence/data/processSantaFeDataset.py
13
2104
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import pandas as pd import csv def convertDatToCSV(inputFileName, outputFileName, Nrpts=1, maxLength=None): df = pd.read_table(inputFileName, header=None, names=['value']) if maxLength is None: maxLength = len(df) outputFile = open(outputFileName,"w") csvWriter = csv.writer(outputFile) if Nrpts==1: csvWriter.writerow(['step', 'data']) csvWriter.writerow(['float', 'float']) csvWriter.writerow(['', '']) for i in xrange(maxLength): csvWriter.writerow([i,df['value'][i]]) else: csvWriter.writerow(['step', 'data', 'reset']) csvWriter.writerow(['float', 'float', 'int']) csvWriter.writerow(['', '', 'R']) for _ in xrange(Nrpts): for i in xrange(maxLength): if i==0: reset = 1 else: reset = 0 csvWriter.writerow([i, df['value'][i], reset]) outputFile.close() inputFileName = 'SantaFe_A_cont.dat' outputFileName = 'SantaFe_A_cont.csv' convertDatToCSV(inputFileName, outputFileName, maxLength=100) inputFileName = 'SantaFe_A.dat' outputFileName = 'SantaFe_A.csv' convertDatToCSV(inputFileName, outputFileName, Nrpts=1)
agpl-3.0
ajrichards/bayesian-examples
munging/missing-values/imputation-improves-classification.py
1
2206
""" http://scikit-learn.org/stable/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot-missing-values-py """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.model_selection import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = int(np.floor(n_samples * missing_rate)) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
sammosummo/sammosummo.github.io
assets/scripts/neals-funnel-c.py
1
1700
"""Generate data and sample from Neal's funnel distribution. """ import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams import pymc3 as pm from scipy.stats import norm def main(): with pm.Model(): # set up figure fs = rcParams["figure.figsize"] rcParams["figure.figsize"] = (fs[0], fs[0] / 2) rcParams["lines.linewidth"] = 2 rcParams["font.size"] = 14 # simulate data np.random.seed(0) k = 9 n = 10000 v = norm.rvs(0, 3, n) x = norm.rvs(0, np.exp(v / 2), (k, n)) # set up model v_ = pm.Normal("v", mu=0, sd=3) xt_ = pm.Normal("xt", mu=0, sd=1, shape=k) x_ = pm.Deterministic("x", pm.math.exp(v_ / 2) * xt_) # sample and save samples trace = pm.sample(n, chains=1) v_samples = trace["v"][:] xt_samples = trace["xt"][:].T x_samples = trace["x"][:].T # plot samples # plot simulated data fig, axes = plt.subplots(1, 2, constrained_layout=True) ax = axes[0] ax.scatter( xt_samples[0], v_samples, marker=".", alpha=0.05, rasterized=True, color="r" ) ax.set_xlim(-3.5, 3.5) ax.set_ylim(-9, 9) ax.set_xlabel(r"$\tilde{x}_0$") ax.set_ylabel("$v$") ax = axes[1] ax.scatter( x_samples[0], v_samples, marker=".", alpha=0.05, rasterized=True, color="r" ) ax.set_xlabel("$x_0$") ax.set_xlim(-20, 20) ax.set_ylim(-9, 9) # save plt.savefig("../images/neals-funnel-c.svg", bbox_inches=0, transparent=True) if __name__ == "__main__": main()
mit
dvro/imbalanced-learn
examples/pipeline/plot_pipeline_classification.py
3
1421
""" ========================= Pipeline Object ========================= An example of the Pipeline object working with transformers and resamplers. """ print(__doc__) from sklearn.cross_validation import train_test_split as tts from sklearn.datasets import make_classification from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier as KNN from sklearn.metrics import classification_report from imblearn.pipeline import make_pipeline from imblearn.under_sampling import EditedNearestNeighbours from imblearn.under_sampling import RepeatedEditedNearestNeighbours # Generate the dataset X, y = make_classification(n_classes=2, class_sep=1.25, weights=[0.3, 0.7], n_informative=3, n_redundant=1, flip_y=0, n_features=5, n_clusters_per_class=1, n_samples=5000, random_state=10) # Instanciate a PCA object for the sake of easy visualisation pca = PCA(n_components=2) # Create the samplers enn = EditedNearestNeighbours() renn = RepeatedEditedNearestNeighbours() # Create teh classifier knn = KNN(1) # Make the splits X_train, X_test, y_train, y_test = tts(X, y, random_state=42) # Add one transformers and two samplers in the pipeline object pipeline = make_pipeline(pca, enn, renn, knn) pipeline.fit(X_train, y_train) y_hat = pipeline.predict(X_test) print(classification_report(y_test, y_hat))
mit
kubeflow/examples
github_issue_summarization/pipelines/components/t2t/t2t-app/app/main.py
1
5290
# -*- coding: utf-8 -*- # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import logging import os import random import re import requests from flask import Flask from flask import jsonify from flask import render_template from flask import g, request import pandas as pd import tensorflow as tf # similar to T2T's query.py # https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/serving/query.py from tensor2tensor import problems as problems_lib # pylint: disable=unused-import from tensor2tensor.utils import registry from tensor2tensor.utils import usr_dir from tensor2tensor.serving import serving_utils app = Flask(__name__) model_name = os.getenv('MODEL_NAME', 'ghsumm') problem_name = os.getenv('PROBLEM_NAME', 'gh_problem') t2t_usr_dir = os.getenv('T2T_USR_DIR', 'ghsumm/trainer') hparams_name = os.getenv('HPARAMS', 'transformer_prepend') data_dir = os.getenv('DATADIR', 'gs://aju-dev-demos-codelabs/kubecon/t2t_data_gh_all/') github_token = os.getenv('GH_TOKEN', 'xxx') SERVER = os.getenv('TFSERVING_HOST', 'ghsumm.kubeflow') print("using server: %s" % SERVER) SERVABLE_NAME = os.getenv('TF_SERVABLE_NAME', 'ghsumm') print("using model servable name: %s" % SERVABLE_NAME) SAMPLE_ISSUES = './github_issues_sample.csv' SERVER_URL = 'http://' + SERVER + ':8500/v1/models/' + SERVABLE_NAME + ':predict' def get_issue_body(issue_url): issue_url = re.sub('.*github.com/', 'https://api.github.com/repos/', issue_url) tf.logging.info("issue url: %s", issue_url) # tf.logging.info("using GH token: %s", github_token) response = requests.get( issue_url, headers={ 'Authorization': 'token {}'.format(github_token) }).json() tf.logging.info("----response from url fetch: %s", response) return response['body'] @app.route('/') def index(): return render_template('index.html') @app.route("/random_github_issue", methods=['GET']) def random_github_issue(): github_issues = getattr(g, '_github_issues', None) if github_issues is None: github_issues = g._github_issues = pd.read_csv( SAMPLE_ISSUES).body.tolist() random_issue = github_issues[random.randint(0, len(github_issues) - 1)] tf.logging.info("----random issue text: %s", random_issue) return jsonify({'body': random_issue}) @app.route("/summary", methods=['POST']) def summary(): """Main prediction route. Provides a machine-generated summary of the given text. Sends a request to a live model trained on GitHub issues. """ global problem #pylint: disable=global-statement if problem is None: init() request_fn = make_tfserving_rest_request_fn() if request.method == 'POST': issue_text = request.form["issue_text"] issue_url = request.form["issue_url"] if issue_url: print("fetching issue from URL...") issue_text = get_issue_body(issue_url) tf.logging.info("issue_text: %s", issue_text) outputs = serving_utils.predict([issue_text], problem, request_fn) outputs, = outputs output, score = outputs #pylint: disable=unused-variable tf.logging.info("output: %s", output) return jsonify({'summary': output, 'body': issue_text}) return ('', 204) problem = None def init(): # global input_encoder, output_decoder, fname, problem global problem #pylint: disable=global-statement tf.logging.set_verbosity(tf.logging.INFO) tf.logging.info("importing ghsumm/trainer from {}".format(t2t_usr_dir)) usr_dir.import_usr_dir(t2t_usr_dir) print(t2t_usr_dir) problem = registry.problem(problem_name) hparams = tf.contrib.training.HParams(data_dir=os.path.expanduser(data_dir)) problem.get_hparams(hparams) def make_tfserving_rest_request_fn(): """Wraps function to make CloudML Engine requests with runtime args.""" def _make_tfserving_rest_request_fn(examples): """...""" # api = discovery.build("ml", "v1", credentials=credentials) # parent = "projects/%s/models/%s/versions/%s" % (cloud.default_project(), # model_name, version) input_data = { "instances": [{ "input": { "b64": base64.b64encode(ex.SerializeToString()) } } for ex in examples] } response = requests.post(SERVER_URL, json=input_data) predictions = response.json()['predictions'] tf.logging.info("Predictions: %s", predictions) return predictions return _make_tfserving_rest_request_fn @app.errorhandler(500) def server_error(e): logging.exception('An error occurred during a request.') return """ An internal error occurred: <pre>{}</pre> See logs for full stacktrace. """.format(e), 500 if __name__ == '__main__': app.run(port=8080, debug=True)
apache-2.0
codrut3/tensorflow
tensorflow/contrib/timeseries/examples/multivariate.py
67
5155
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A multivariate TFTS example. Fits a multivariate model, exports it, and visualizes the learned correlations by iteratively predicting and sampling from the predictions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from os import path import tempfile import numpy import tensorflow as tf try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example, namely train_and_predict. HAS_MATPLOTLIB = False _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/multivariate_level.csv") def multivariate_train_and_sample( csv_file_name=_DATA_FILE, export_directory=None, training_steps=500): """Trains, evaluates, and exports a multivariate model.""" estimator = tf.contrib.timeseries.StructuralEnsembleRegressor( periodicities=[], num_features=5) reader = tf.contrib.timeseries.CSVReader( csv_file_name, column_names=((tf.contrib.timeseries.TrainEvalFeatures.TIMES,) + (tf.contrib.timeseries.TrainEvalFeatures.VALUES,) * 5)) train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( # Larger window sizes generally produce a better covariance matrix. reader, batch_size=4, window_size=64) estimator.train(input_fn=train_input_fn, steps=training_steps) evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) current_state = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) values = [current_state["observed"]] times = [current_state[tf.contrib.timeseries.FilteringResults.TIMES]] # Export the model so we can do iterative prediction and filtering without # reloading model checkpoints. if export_directory is None: export_directory = tempfile.mkdtemp() input_receiver_fn = estimator.build_raw_serving_input_receiver_fn() export_location = estimator.export_savedmodel( export_directory, input_receiver_fn) with tf.Graph().as_default(): numpy.random.seed(1) # Make the example a bit more deterministic with tf.Session() as session: signatures = tf.saved_model.loader.load( session, [tf.saved_model.tag_constants.SERVING], export_location) for _ in range(100): current_prediction = ( tf.contrib.timeseries.saved_model_utils.predict_continuation( continue_from=current_state, signatures=signatures, session=session, steps=1)) next_sample = numpy.random.multivariate_normal( # Squeeze out the batch and series length dimensions (both 1). mean=numpy.squeeze(current_prediction["mean"], axis=[0, 1]), cov=numpy.squeeze(current_prediction["covariance"], axis=[0, 1])) # Update model state so that future predictions are conditional on the # value we just sampled. filtering_features = { tf.contrib.timeseries.TrainEvalFeatures.TIMES: current_prediction[ tf.contrib.timeseries.FilteringResults.TIMES], tf.contrib.timeseries.TrainEvalFeatures.VALUES: next_sample[ None, None, :]} current_state = ( tf.contrib.timeseries.saved_model_utils.filter_continuation( continue_from=current_state, session=session, signatures=signatures, features=filtering_features)) values.append(next_sample[None, None, :]) times.append(current_state["times"]) all_observations = numpy.squeeze(numpy.concatenate(values, axis=1), axis=0) all_times = numpy.squeeze(numpy.concatenate(times, axis=1), axis=0) return all_times, all_observations def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") all_times, all_observations = multivariate_train_and_sample() # Show where sampling starts on the plot pyplot.axvline(1000, linestyle="dotted") pyplot.plot(all_times, all_observations) pyplot.show() if __name__ == "__main__": tf.app.run(main=main)
apache-2.0
tosolveit/scikit-learn
examples/mixture/plot_gmm.py
248
2817
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process. Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all five components while the DP model will effectively only use as many as are needed for a good fit. This is a property of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a mixture of Gaussians with EM using five components gmm = mixture.GMM(n_components=5, covariance_type='full') gmm.fit(X) # Fit a Dirichlet process mixture of Gaussians using five components dpgmm = mixture.DPGMM(n_components=5, covariance_type='full') dpgmm.fit(X) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([(gmm, 'GMM'), (dpgmm, 'Dirichlet Process GMM')]): splot = plt.subplot(2, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show()
bsd-3-clause
shakamunyi/tensorflow
tensorflow/examples/learn/iris_run_config.py
76
2565
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with run config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # You can define you configurations by providing a RunConfig object to # estimator to control session configurations, e.g. tf_random_seed. run_config = tf.estimator.RunConfig().replace(tf_random_seed=1) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = [ tf.feature_column.numeric_column( X_FEATURE, shape=np.array(x_train).shape[1:])] classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, config=run_config) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=200) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class_ids'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
PMitura/smiles-neural-network
baselines/rdkit_comp.py
1
2737
#! /usr/bin/env python import db import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys from sets import Set from rdkit import Chem from rdkit.Chem import rdMolDescriptors from rdkit.Chem import SDWriter from sklearn.feature_selection import VarianceThreshold data = db.getTarget_206_1977() SDF_FILE_MAX_LINES = 1000 # read db and write .sdf files split to 1000 mols per file ''' sdf_name_suffix = '.sdf' sdf_name_prefix = 'sdf_206_1977' for step in range(int((len(data)+SDF_FILE_MAX_LINES-1)/SDF_FILE_MAX_LINES)): lo = step*SDF_FILE_MAX_LINES hi = min((step+1)*SDF_FILE_MAX_LINES,len(data)) sdf_name = sdf_name_prefix + '_' + str(step) + sdf_name_suffix writer = SDWriter(sdf_name) for i in range(lo, hi): smiles = data[i][0] mol = Chem.MolFromSmiles(smiles) writer.write(mol) writer.close() ''' # maccs sparse to dense representation ''' df_data = {} df_data['canonical_smiles'] = [] for i in range(166): df_data['maccs'+str(i)] = [] rdkit_maccs_csv_files = ['rdkit_maccs_206_1977_0.csv', 'rdkit_maccs_206_1977_1.csv'] db_idx = 0 for fname in rdkit_maccs_csv_files: file = open(fname) lines = file.readlines() for line in lines: vals = Set([int(x) for x in line.split(',')]) df_data['canonical_smiles'].append(data[db_idx][0]) for i in range(166): df_data['maccs'+str(i)].append(int(i in vals)) db_idx = db_idx+1 df = pd.DataFrame(df_data) df.set_index('canonical_smiles', inplace=True) print(df.describe()) df = df.loc[:,df.apply(pd.Series.nunique) != 1] print(df.describe()) # print(df.to_csv('rdkit_maccs_206_1977_dense.csv')) ''' # cdk klekota roth sparse to dense representation ''' df_data = {} df_data['canonical_smiles'] = [] for i in range(4680): df_data['kr'+str(i)] = [] kr_csv_files = ['cdk_kr_206_1977_0.csv', 'cdk_kr_206_1977_1.csv'] db_idx = 0 for fname in kr_csv_files: file = open(fname) lines = file.readlines() for line in lines: # print(db_idx,len(data)) df_data['canonical_smiles'].append(data[db_idx][0]) line = line.rstrip() if len(line) !=0: vals = Set([int(x) for x in line.split(',')]) for i in range(4680): df_data['kr'+str(i)].append(int(i in vals)) else: for i in range(4680): df_data['kr'+str(i)].append(0) db_idx = db_idx+1 df = pd.DataFrame(df_data) df.set_index('canonical_smiles', inplace=True) print(df.describe()) df = df.loc[:,df.apply(pd.Series.nunique) != 1] print(df.describe()) print(df.to_csv('cdk_kr_206_1977_dense_pruned.csv')) '''
bsd-3-clause
plowman/python-mcparseface
models/syntaxnet/tensorflow/tensorflow/contrib/learn/python/learn/tests/test_grid_search.py
7
1877
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random HAS_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False) if HAS_SKLEARN: try: from sklearn import datasets from sklearn.grid_search import GridSearchCV from sklearn.metrics import accuracy_score, mean_squared_error except ImportError: HAS_SKLEARN = False import tensorflow as tf from tensorflow.contrib.learn.python import learn class GridSearchTest(tf.test.TestCase): def testIrisDNN(self): if HAS_SKLEARN: random.seed(42) iris = datasets.load_iris() classifier = learn.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=50) grid_search = GridSearchCV(classifier, {'hidden_units': [[5, 5], [10, 10]], 'learning_rate': [0.1, 0.01]}) grid_search.fit(iris.data, iris.target) score = accuracy_score(iris.target, grid_search.predict(iris.data)) self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score)) if __name__ == '__main__': tf.test.main()
apache-2.0
datapythonista/pandas
pandas/core/ops/missing.py
3
5186
""" Missing data handling for arithmetic operations. In particular, pandas conventions regarding division by zero differ from numpy in the following ways: 1) np.array([-1, 0, 1], dtype=dtype1) // np.array([0, 0, 0], dtype=dtype2) gives [nan, nan, nan] for most dtype combinations, and [0, 0, 0] for the remaining pairs (the remaining being dtype1==dtype2==intN and dtype==dtype2==uintN). pandas convention is to return [-inf, nan, inf] for all dtype combinations. Note: the numpy behavior described here is py3-specific. 2) np.array([-1, 0, 1], dtype=dtype1) % np.array([0, 0, 0], dtype=dtype2) gives precisely the same results as the // operation. pandas convention is to return [nan, nan, nan] for all dtype combinations. 3) divmod behavior consistent with 1) and 2). """ import operator import numpy as np from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, is_scalar, ) from pandas.core.ops import roperator def fill_zeros(result, x, y): """ If this is a reversed op, then flip x,y If we have an integer value (or array in y) and we have 0's, fill them with np.nan, return the result. Mask the nan's from x. """ if is_float_dtype(result.dtype): return result is_variable_type = hasattr(y, "dtype") or hasattr(y, "type") is_scalar_type = is_scalar(y) if not is_variable_type and not is_scalar_type: return result if is_scalar_type: y = np.array(y) if is_integer_dtype(y.dtype): if (y == 0).any(): # GH#7325, mask and nans must be broadcastable (also: GH#9308) # Raveling and then reshaping makes np.putmask faster mask = ((y == 0) & ~np.isnan(result)).ravel() shape = result.shape result = result.astype("float64", copy=False).ravel() np.putmask(result, mask, np.nan) result = result.reshape(shape) return result def mask_zero_div_zero(x, y, result): """ Set results of 0 // 0 to np.nan, regardless of the dtypes of the numerator or the denominator. Parameters ---------- x : ndarray y : ndarray result : ndarray Returns ------- ndarray The filled result. Examples -------- >>> x = np.array([1, 0, -1], dtype=np.int64) >>> x array([ 1, 0, -1]) >>> y = 0 # int 0; numpy behavior is different with float >>> result = x // y >>> result # raw numpy result does not fill division by zero array([0, 0, 0]) >>> mask_zero_div_zero(x, y, result) array([ inf, nan, -inf]) """ if not isinstance(result, np.ndarray): # FIXME: SparseArray would raise TypeError with np.putmask return result if is_scalar(y): y = np.array(y) zmask = y == 0 if isinstance(zmask, bool): # FIXME: numpy did not evaluate pointwise, seen in docs build return result if zmask.any(): # Flip sign if necessary for -0.0 zneg_mask = zmask & np.signbit(y) zpos_mask = zmask & ~zneg_mask nan_mask = zmask & (x == 0) with np.errstate(invalid="ignore"): neginf_mask = (zpos_mask & (x < 0)) | (zneg_mask & (x > 0)) posinf_mask = (zpos_mask & (x > 0)) | (zneg_mask & (x < 0)) if nan_mask.any() or neginf_mask.any() or posinf_mask.any(): # Fill negative/0 with -inf, positive/0 with +inf, 0/0 with NaN result = result.astype("float64", copy=False) result[nan_mask] = np.nan result[posinf_mask] = np.inf result[neginf_mask] = -np.inf return result def dispatch_fill_zeros(op, left, right, result): """ Call fill_zeros with the appropriate fill value depending on the operation, with special logic for divmod and rdivmod. Parameters ---------- op : function (operator.add, operator.div, ...) left : object (np.ndarray for non-reversed ops) right : object (np.ndarray for reversed ops) result : ndarray Returns ------- result : np.ndarray Notes ----- For divmod and rdivmod, the `result` parameter and returned `result` is a 2-tuple of ndarray objects. """ if op is divmod: result = ( mask_zero_div_zero(left, right, result[0]), fill_zeros(result[1], left, right), ) elif op is roperator.rdivmod: result = ( mask_zero_div_zero(right, left, result[0]), fill_zeros(result[1], right, left), ) elif op is operator.floordiv: # Note: no need to do this for truediv; in py3 numpy behaves the way # we want. result = mask_zero_div_zero(left, right, result) elif op is roperator.rfloordiv: # Note: no need to do this for rtruediv; in py3 numpy behaves the way # we want. result = mask_zero_div_zero(right, left, result) elif op is operator.mod: result = fill_zeros(result, left, right) elif op is roperator.rmod: result = fill_zeros(result, right, left) return result
bsd-3-clause
hugobowne/scikit-learn
sklearn/decomposition/nmf.py
8
47008
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck # Mathieu Blondel <[email protected]> # Tom Dupre la Tour # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (Projected gradient, Python and NumPy port) # License: BSD 3 clause from __future__ import division, print_function from math import sqrt import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted, check_non_negative from ..utils import deprecated from ..exceptions import ConvergenceWarning from .cdnmf_fast import _update_cdnmf_fast def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _check_init(A, shape, whom): A = check_array(A) if np.shape(A) != shape: raise ValueError('Array with wrong shape passed to %s. Expected %s, ' 'but got %s ' % (whom, shape, np.shape(A))) check_non_negative(A, whom) if np.max(A) == 0: raise ValueError('Array passed to %s is full of zeros.' % whom) def _safe_compute_error(X, W, H): """Frobenius norm between X and WH, safe for sparse array""" if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: norm_X = np.dot(X.data, X.data) norm_WH = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(norm_X + norm_WH - 2. * cross_prod) return error def _check_string_param(sparseness, solver): allowed_sparseness = (None, 'data', 'components') if sparseness not in allowed_sparseness: raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, allowed_sparseness)) allowed_solver = ('pg', 'cd') if solver not in allowed_solver: raise ValueError( 'Invalid solver parameter: got %r instead of one of %r' % (solver, allowed_solver)) def _initialize_nmf(X, n_components, init=None, eps=1e-6, random_state=None): """Algorithms for NMF initialization. Computes an initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix to be decomposed. n_components : integer The number of components desired in the approximation. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise 'random'. Valid options: - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H eps : float Truncate all values less then this in output to zero. random_state : int seed, RandomState instance, or None (default) Random number generator seed control, used in 'nndsvdar' and 'random' modes. Returns ------- W : array-like, shape (n_samples, n_components) Initial guesses for solving X ~= WH H : array-like, shape (n_components, n_features) Initial guesses for solving X ~= WH References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") n_samples, n_features = X.shape if init is None: if n_components < n_features: init = 'nndsvd' else: init = 'random' # Random initialization if init == 'random': avg = np.sqrt(X.mean() / n_components) rng = check_random_state(random_state) H = avg * rng.randn(n_components, n_features) W = avg * rng.randn(n_samples, n_components) # we do not write np.abs(H, out=H) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(H, H) np.abs(W, W) return W, H # NNDSVD initialization U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if init == "nndsvd": pass elif init == "nndsvda": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif init == "nndsvdar": rng = check_random_state(random_state) avg = X.mean() W[W == 0] = abs(avg * rng.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * rng.randn(len(H[H == 0])) / 100) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar'))) return W, H def _nls_subproblem(V, W, H, tol, max_iter, alpha=0., l1_ratio=0., sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. Parameters ---------- V : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Constant matrix. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. grad : array-like, shape (n_components, n_features) The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = fast_dot(W.T, W) # values justified in the paper (alpha is renamed gamma) gamma = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV if alpha > 0 and l1_ratio == 1.: grad += alpha elif alpha > 0: grad += alpha * (l1_ratio + (1 - l1_ratio) * H) # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(20): # Gradient step. Hn = H - gamma * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_gamma = not suff_decr if decr_gamma: if suff_decr: H = Hn break else: gamma *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: gamma /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter def _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Helper function for _fit_projected_gradient""" n_samples, n_features = X.shape n_components_ = H.shape[0] if sparseness is None: Wt, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'data': Wt, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(beta) * np.ones((1, n_components_))]), W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'components': Wt, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(eta) * np.eye(n_components_)]), W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) return Wt.T, gradW.T, iterW def _update_projected_gradient_h(X, W, H, tolH, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Helper function for _fit_projected_gradient""" n_samples, n_features = X.shape n_components_ = W.shape[1] if sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((n_components_, n_features))]), safe_vstack([W, np.sqrt(eta) * np.eye(n_components_)]), H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) elif sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(beta) * np.ones((1, n_components_))]), H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) return H, gradH, iterH def _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta): """Compute Non-negative Matrix Factorization (NMF) with Projected Gradient References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. """ gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = squared_norm(gradW) + squared_norm(gradH.T) # max(0.001, tol) to force alternating minimizations of W and H tolW = max(0.001, tol) * np.sqrt(init_grad) tolH = tolW for n_iter in range(1, max_iter + 1): # stopping condition # as discussed in paper proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0)) proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0)) if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2: break # update W W, gradW, iterW = _update_projected_gradient_w(X, W, H, tolW, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = _update_projected_gradient_h(X, W, H, tolH, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) if iterH == 1: tolH = 0.1 * tolH H[H == 0] = 0 # fix up negative zeros if n_iter == max_iter: W, _, _ = _update_projected_gradient_w(X, W, H, tol, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) return W, H, n_iter def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle, random_state): """Helper function for _fit_coordinate_descent Update W to minimize the objective function, iterating once over all coordinates. By symmetry, to update H, one can call _update_coordinate_descent(X.T, Ht, W, ...) """ n_components = Ht.shape[1] HHt = fast_dot(Ht.T, Ht) XHt = safe_sparse_dot(X, Ht) # L2 regularization corresponds to increase of the diagonal of HHt if l2_reg != 0.: # adds l2_reg only on the diagonal HHt.flat[::n_components + 1] += l2_reg # L1 regularization corresponds to decrease of each element of XHt if l1_reg != 0.: XHt -= l1_reg if shuffle: permutation = random_state.permutation(n_components) else: permutation = np.arange(n_components) # The following seems to be required on 64-bit Windows w/ Python 3.5. permutation = np.asarray(permutation, dtype=np.intp) return _update_cdnmf_fast(W, HHt, XHt, permutation) def _fit_coordinate_descent(X, W, H, tol=1e-4, max_iter=200, alpha=0.001, l1_ratio=0., regularization=None, update_H=True, verbose=0, shuffle=False, random_state=None): """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent The objective function is minimized with an alternating minimization of W and H. Each minimization is done with a cyclic (up to a permutation of the features) Coordinate Descent. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Initial guess for the solution. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them. update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int The number of iterations done by the algorithm. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ # so W and Ht are both in C order in memory Ht = check_array(H.T, order='C') X = check_array(X, accept_sparse='csr') # L1 and L2 regularization l1_H, l2_H, l1_W, l2_W = 0, 0, 0, 0 if regularization in ('both', 'components'): alpha = float(alpha) l1_H = l1_ratio * alpha l2_H = (1. - l1_ratio) * alpha if regularization in ('both', 'transformation'): alpha = float(alpha) l1_W = l1_ratio * alpha l2_W = (1. - l1_ratio) * alpha rng = check_random_state(random_state) for n_iter in range(max_iter): violation = 0. # Update W violation += _update_coordinate_descent(X, W, Ht, l1_W, l2_W, shuffle, rng) # Update H if update_H: violation += _update_coordinate_descent(X.T, Ht, W, l1_H, l2_H, shuffle, rng) if n_iter == 0: violation_init = violation if violation_init == 0: break if verbose: print("violation:", violation / violation_init) if violation / violation_init <= tol: if verbose: print("Converged at iteration", n_iter + 1) break return W, Ht.T, n_iter def non_negative_factorization(X, W=None, H=None, n_components=None, init='random', update_H=True, solver='cd', tol=1e-4, max_iter=200, alpha=0., l1_ratio=0., regularization=None, random_state=None, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): """Compute Non-negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. If H is given and update_H=False, it solves for W only. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. If update_H=False, it is used as a constant, to solve for W only. n_components : integer Number of components, if n_components is not set all features are kept. init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options: - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated. solver : 'pg' | 'cd' Numerical solver to use: 'pg' is a (deprecated) Projected Gradient solver. 'cd' is a Coordinate Descent solver. tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. verbose : integer, default: 0 The verbosity level. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated 'pg' solver. sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. Used only in the deprecated 'pg' solver. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated 'pg' solver. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated 'pg' solver. Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem. H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. n_iter : int Actual number of iterations. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ X = check_array(X, accept_sparse=('csr', 'csc')) check_non_negative(X, "NMF (input X)") _check_string_param(sparseness, solver) n_samples, n_features = X.shape if n_components is None: n_components = n_features if not isinstance(n_components, six.integer_types) or n_components <= 0: raise ValueError("Number of components must be positive;" " got (n_components=%r)" % n_components) if not isinstance(max_iter, numbers.Number) or max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % max_iter) if not isinstance(tol, numbers.Number) or tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % tol) # check W and H, or initialize them if init == 'custom': _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") elif not update_H: _check_init(H, (n_components, n_features), "NMF (input H)") W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=init, random_state=random_state) if solver == 'pg': warnings.warn("'pg' solver will be removed in release 0.19." " Use 'cd' solver instead.", DeprecationWarning) if update_H: # fit_transform W, H, n_iter = _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) else: # transform W, H, n_iter = _update_projected_gradient_w(X, W, H, tol, nls_max_iter, alpha, l1_ratio, sparseness, beta, eta) elif solver == 'cd': W, H, n_iter = _fit_coordinate_descent(X, W, H, tol, max_iter, alpha, l1_ratio, regularization, update_H=update_H, verbose=verbose, shuffle=shuffle, random_state=random_state) else: raise ValueError("Invalid solver parameter '%s'." % solver) if n_iter == max_iter: warnings.warn("Maximum number of iteration %d reached. Increase it to" " improve convergence." % max_iter, ConvergenceWarning) return W, H, n_iter class NMF(BaseEstimator, TransformerMixin): """Non-Negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all features are kept. init : 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options: - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H solver : 'pg' | 'cd' Numerical solver to use: 'pg' is a Projected Gradient solver (deprecated). 'cd' is a Coordinate Descent solver (recommended). .. versionadded:: 0.17 Coordinate Descent solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : integer, default: 200 Number of iterations to compute. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. .. versionadded:: 0.17 *alpha* used in the Coordinate Descent solver. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. .. versionadded:: 0.17 Regularization parameter *l1_ratio* used in the Coordinate Descent solver. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. .. versionadded:: 0.17 *shuffle* parameter used in the Coordinate Descent solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Actual number of iterations. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0) >>> model.components_ array([[ 2.09783018, 0.30560234], [ 2.13443044, 2.13171694]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00115993... References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ def __init__(self, n_components=None, init=None, solver='cd', tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): self.n_components = n_components self.init = init self.solver = solver self.tol = tol self.max_iter = max_iter self.random_state = random_state self.alpha = alpha self.l1_ratio = l1_ratio self.verbose = verbose self.shuffle = shuffle if sparseness is not None: warnings.warn("Controlling regularization through the sparseness," " beta and eta arguments is only available" " for 'pg' solver, which will be removed" " in release 0.19. Use another solver with L1 or L2" " regularization instead.", DeprecationWarning) self.nls_max_iter = nls_max_iter self.sparseness = sparseness self.beta = beta self.eta = eta def fit_transform(self, X, y=None, W=None, H=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution. H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. Attributes ---------- components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called 'dictionary'. n_iter_ : int Actual number of iterations for the transform. Returns ------- W: array, shape (n_samples, n_components) Transformed data. """ X = check_array(X, accept_sparse=('csr', 'csc')) W, H, n_iter_ = non_negative_factorization( X=X, W=W, H=H, n_components=self.n_components, init=self.init, update_H=True, solver=self.solver, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle, nls_max_iter=self.nls_max_iter, sparseness=self.sparseness, beta=self.beta, eta=self.eta) if self.solver == 'pg': self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) self.reconstruction_err_ = _safe_compute_error(X, W, H) self.n_components_ = H.shape[0] self.components_ = H self.n_iter_ = n_iter_ return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be decomposed Attributes ---------- components_ : array-like, shape (n_components, n_features) Factorization matrix, sometimes called 'dictionary'. n_iter_ : int Actual number of iterations for the transform. Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix to be transformed by the model Attributes ---------- n_iter_ : int Actual number of iterations for the transform. Returns ------- W: array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'n_components_') W, _, n_iter_ = non_negative_factorization( X=X, W=None, H=self.components_, n_components=self.n_components_, init=self.init, update_H=False, solver=self.solver, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both', random_state=self.random_state, verbose=self.verbose, shuffle=self.shuffle, nls_max_iter=self.nls_max_iter, sparseness=self.sparseness, beta=self.beta, eta=self.eta) self.n_iter_ = n_iter_ return W def inverse_transform(self, W): """ Parameters ---------- W: {array-like, sparse matrix}, shape (n_samples, n_components) Transformed Data matrix Returns ------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Data matrix of original shape .. versionadded:: 0.18 """ check_is_fitted(self, 'n_components_') return np.dot(W, self.components_) @deprecated("It will be removed in release 0.19. Use NMF instead." "'pg' solver is still available until release 0.19.") class ProjectedGradientNMF(NMF): """Non-Negative Matrix Factorization (NMF) Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction. The objective function is:: 0.5 * ||X - WH||_Fro^2 + alpha * l1_ratio * ||vec(W)||_1 + alpha * l1_ratio * ||vec(H)||_1 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2 Where:: ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm) ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm) The objective function is minimized with an alternating minimization of W and H. Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all features are kept. init : 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: 'nndsvdar' if n_components < n_features, otherwise random. Valid options: - 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components) - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) - 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) - 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) - 'custom': use custom matrices W and H solver : 'pg' | 'cd' Numerical solver to use: 'pg' is a Projected Gradient solver (deprecated). 'cd' is a Coordinate Descent solver (recommended). .. versionadded:: 0.17 Coordinate Descent solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : integer, default: 200 Number of iterations to compute. random_state : integer seed, RandomState instance, or None (default) Random number generator seed control. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. .. versionadded:: 0.17 *alpha* used in the Coordinate Descent solver. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. .. versionadded:: 0.17 Regularization parameter *l1_ratio* used in the Coordinate Descent solver. shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver. .. versionadded:: 0.17 *shuffle* parameter used in the Coordinate Descent solver. nls_max_iter : integer, default: 2000 Number of iterations in NLS subproblem. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated 'pg' solver. .. versionchanged:: 0.17 Deprecated Projected Gradient solver. Use Coordinate Descent solver instead. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Actual number of iterations. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import NMF >>> model = NMF(n_components=2, init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE NMF(alpha=0.0, beta=1, eta=0.1, init='random', l1_ratio=0.0, max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, shuffle=False, solver='cd', sparseness=None, tol=0.0001, verbose=0) >>> model.components_ array([[ 2.09783018, 0.30560234], [ 2.13443044, 2.13171694]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00115993... References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. """ def __init__(self, n_components=None, solver='pg', init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., verbose=0, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1): super(ProjectedGradientNMF, self).__init__( n_components=n_components, init=init, solver='pg', tol=tol, max_iter=max_iter, random_state=random_state, alpha=alpha, l1_ratio=l1_ratio, verbose=verbose, nls_max_iter=nls_max_iter, sparseness=sparseness, beta=beta, eta=eta)
bsd-3-clause
ZENGXH/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
ruleant/buildtime-trend
generate_trend.py
1
2619
#!/usr/bin/env python # vim: set expandtab sw=4 ts=4: ''' Generates a trend (graph) from the buildtimes in buildtimes.xml Usage : generate_trend.py -h --mode=native,keen Copyright (C) 2014 Dieter Adriaenssens <[email protected]> This file is part of buildtime-trend <https://github.com/ruleant/buildtime-trend/> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import os import sys from buildtimetrend.tools import get_logger from buildtimetrend.travis import load_travis_env_vars from buildtimetrend.settings import Settings from buildtimetrend.settings import process_argv def generate_trend(argv): ''' Generate trends from analised buildtime data ''' settings = Settings() # load Travis environment variables and save them in settings load_travis_env_vars() # process command line arguments process_argv(argv) # run trend_keen() always, # if $KEEN_PROJECT_ID variable is set (checked later), it will be executed if settings.get_setting("mode_native") is True: trend_native() if settings.get_setting("mode_keen") is True: trend_keen() def trend_native(): ''' Generate native trend with matplotlib : chart in PNG format ''' from buildtimetrend.trend import Trend # use parameter for timestamps file and check if file exists result_file = os.getenv('BUILD_TREND_OUTPUTFILE', 'trends/buildtimes.xml') chart_file = os.getenv('BUILD_TREND_TRENDFILE', 'trends/trend.png') trend = Trend() if trend.gather_data(result_file): logger = get_logger() # log number of builds and list of buildnames logger.info('Builds (%d) : %s', len(trend.builds), trend.builds) logger.info('Stages (%d) : %s', len(trend.stages), trend.stages) trend.generate(chart_file) def trend_keen(): ''' Setup trends using Keen.io API ''' from buildtimetrend.keenio import generate_overview_config_file generate_overview_config_file(Settings().get_project_name()) if __name__ == "__main__": generate_trend(sys.argv)
gpl-3.0
martydill/url_shortener
code/venv/lib/python2.7/site-packages/IPython/core/pylabtools.py
4
12815
# -*- coding: utf-8 -*- """Pylab (matplotlib) support utilities.""" from __future__ import print_function # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from io import BytesIO from IPython.core.display import _pngxy from IPython.utils.decorators import flag_calls from IPython.utils import py3compat # If user specifies a GUI, that dictates the backend, otherwise we read the # user's mpl default from the mpl rc structure backends = {'tk': 'TkAgg', 'gtk': 'GTKAgg', 'gtk3': 'GTK3Agg', 'wx': 'WXAgg', 'qt': 'Qt4Agg', # qt3 not supported 'qt4': 'Qt4Agg', 'qt5': 'Qt5Agg', 'osx': 'MacOSX', 'nbagg': 'nbAgg', 'notebook': 'nbAgg', 'inline' : 'module://IPython.kernel.zmq.pylab.backend_inline'} # We also need a reverse backends2guis mapping that will properly choose which # GUI support to activate based on the desired matplotlib backend. For the # most part it's just a reverse of the above dict, but we also need to add a # few others that map to the same GUI manually: backend2gui = dict(zip(backends.values(), backends.keys())) # Our tests expect backend2gui to just return 'qt' backend2gui['Qt4Agg'] = 'qt' # In the reverse mapping, there are a few extra valid matplotlib backends that # map to the same GUI support backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk' backend2gui['GTK3Cairo'] = 'gtk3' backend2gui['WX'] = 'wx' backend2gui['CocoaAgg'] = 'osx' #----------------------------------------------------------------------------- # Matplotlib utilities #----------------------------------------------------------------------------- def getfigs(*fig_nums): """Get a list of matplotlib figures by figure numbers. If no arguments are given, all available figures are returned. If the argument list contains references to invalid figures, a warning is printed but the function continues pasting further figures. Parameters ---------- figs : tuple A tuple of ints giving the figure numbers of the figures to return. """ from matplotlib._pylab_helpers import Gcf if not fig_nums: fig_managers = Gcf.get_all_fig_managers() return [fm.canvas.figure for fm in fig_managers] else: figs = [] for num in fig_nums: f = Gcf.figs.get(num) if f is None: print('Warning: figure %s not available.' % num) else: figs.append(f.canvas.figure) return figs def figsize(sizex, sizey): """Set the default figure size to be [sizex, sizey]. This is just an easy to remember, convenience wrapper that sets:: matplotlib.rcParams['figure.figsize'] = [sizex, sizey] """ import matplotlib matplotlib.rcParams['figure.figsize'] = [sizex, sizey] def print_figure(fig, fmt='png', bbox_inches='tight', **kwargs): """Print a figure to an image, and return the resulting file data Returned data will be bytes unless ``fmt='svg'``, in which case it will be unicode. Any keyword args are passed to fig.canvas.print_figure, such as ``quality`` or ``bbox_inches``. """ from matplotlib import rcParams # When there's an empty figure, we shouldn't return anything, otherwise we # get big blank areas in the qt console. if not fig.axes and not fig.lines: return dpi = rcParams['savefig.dpi'] if fmt == 'retina': dpi = dpi * 2 fmt = 'png' # build keyword args kw = dict( format=fmt, facecolor=fig.get_facecolor(), edgecolor=fig.get_edgecolor(), dpi=dpi, bbox_inches=bbox_inches, ) # **kwargs get higher priority kw.update(kwargs) bytes_io = BytesIO() fig.canvas.print_figure(bytes_io, **kw) data = bytes_io.getvalue() if fmt == 'svg': data = data.decode('utf-8') return data def retina_figure(fig, **kwargs): """format a figure as a pixel-doubled (retina) PNG""" pngdata = print_figure(fig, fmt='retina', **kwargs) w, h = _pngxy(pngdata) metadata = dict(width=w//2, height=h//2) return pngdata, metadata # We need a little factory function here to create the closure where # safe_execfile can live. def mpl_runner(safe_execfile): """Factory to return a matplotlib-enabled runner for %run. Parameters ---------- safe_execfile : function This must be a function with the same interface as the :meth:`safe_execfile` method of IPython. Returns ------- A function suitable for use as the ``runner`` argument of the %run magic function. """ def mpl_execfile(fname,*where,**kw): """matplotlib-aware wrapper around safe_execfile. Its interface is identical to that of the :func:`execfile` builtin. This is ultimately a call to execfile(), but wrapped in safeties to properly handle interactive rendering.""" import matplotlib import matplotlib.pylab as pylab #print '*** Matplotlib runner ***' # dbg # turn off rendering until end of script is_interactive = matplotlib.rcParams['interactive'] matplotlib.interactive(False) safe_execfile(fname,*where,**kw) matplotlib.interactive(is_interactive) # make rendering call now, if the user tried to do it if pylab.draw_if_interactive.called: pylab.draw() pylab.draw_if_interactive.called = False return mpl_execfile def select_figure_formats(shell, formats, **kwargs): """Select figure formats for the inline backend. Parameters ========== shell : InteractiveShell The main IPython instance. formats : str or set One or a set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. **kwargs : any Extra keyword arguments to be passed to fig.canvas.print_figure. """ from matplotlib.figure import Figure from IPython.kernel.zmq.pylab import backend_inline svg_formatter = shell.display_formatter.formatters['image/svg+xml'] png_formatter = shell.display_formatter.formatters['image/png'] jpg_formatter = shell.display_formatter.formatters['image/jpeg'] pdf_formatter = shell.display_formatter.formatters['application/pdf'] if isinstance(formats, py3compat.string_types): formats = {formats} # cast in case of list / tuple formats = set(formats) [ f.pop(Figure, None) for f in shell.display_formatter.formatters.values() ] supported = {'png', 'png2x', 'retina', 'jpg', 'jpeg', 'svg', 'pdf'} bad = formats.difference(supported) if bad: bs = "%s" % ','.join([repr(f) for f in bad]) gs = "%s" % ','.join([repr(f) for f in supported]) raise ValueError("supported formats are: %s not %s" % (gs, bs)) if 'png' in formats: png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs)) if 'retina' in formats or 'png2x' in formats: png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs)) if 'jpg' in formats or 'jpeg' in formats: jpg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'jpg', **kwargs)) if 'svg' in formats: svg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'svg', **kwargs)) if 'pdf' in formats: pdf_formatter.for_type(Figure, lambda fig: print_figure(fig, 'pdf', **kwargs)) #----------------------------------------------------------------------------- # Code for initializing matplotlib and importing pylab #----------------------------------------------------------------------------- def find_gui_and_backend(gui=None, gui_select=None): """Given a gui string return the gui and mpl backend. Parameters ---------- gui : str Can be one of ('tk','gtk','wx','qt','qt4','inline'). gui_select : str Can be one of ('tk','gtk','wx','qt','qt4','inline'). This is any gui already selected by the shell. Returns ------- A tuple of (gui, backend) where backend is one of ('TkAgg','GTKAgg', 'WXAgg','Qt4Agg','module://IPython.kernel.zmq.pylab.backend_inline'). """ import matplotlib if gui and gui != 'auto': # select backend based on requested gui backend = backends[gui] else: # We need to read the backend from the original data structure, *not* # from mpl.rcParams, since a prior invocation of %matplotlib may have # overwritten that. # WARNING: this assumes matplotlib 1.1 or newer!! backend = matplotlib.rcParamsOrig['backend'] # In this case, we need to find what the appropriate gui selection call # should be for IPython, so we can activate inputhook accordingly gui = backend2gui.get(backend, None) # If we have already had a gui active, we need it and inline are the # ones allowed. if gui_select and gui != gui_select: gui = gui_select backend = backends[gui] return gui, backend def activate_matplotlib(backend): """Activate the given backend and set interactive to True.""" import matplotlib matplotlib.interactive(True) # Matplotlib had a bug where even switch_backend could not force # the rcParam to update. This needs to be set *before* the module # magic of switch_backend(). matplotlib.rcParams['backend'] = backend import matplotlib.pyplot matplotlib.pyplot.switch_backend(backend) # This must be imported last in the matplotlib series, after # backend/interactivity choices have been made import matplotlib.pylab as pylab pylab.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive) def import_pylab(user_ns, import_all=True): """Populate the namespace with pylab-related values. Imports matplotlib, pylab, numpy, and everything from pylab and numpy. Also imports a few names from IPython (figsize, display, getfigs) """ # Import numpy as np/pyplot as plt are conventions we're trying to # somewhat standardize on. Making them available to users by default # will greatly help this. s = ("import numpy\n" "import matplotlib\n" "from matplotlib import pylab, mlab, pyplot\n" "np = numpy\n" "plt = pyplot\n" ) exec(s, user_ns) if import_all: s = ("from matplotlib.pylab import *\n" "from numpy import *\n") exec(s, user_ns) # IPython symbols to add user_ns['figsize'] = figsize from IPython.core.display import display # Add display and getfigs to the user's namespace user_ns['display'] = display user_ns['getfigs'] = getfigs def configure_inline_support(shell, backend): """Configure an IPython shell object for matplotlib use. Parameters ---------- shell : InteractiveShell instance backend : matplotlib backend """ # If using our svg payload backend, register the post-execution # function that will pick up the results for display. This can only be # done with access to the real shell object. # Note: if we can't load the inline backend, then there's no point # continuing (such as in terminal-only shells in environments without # zeromq available). try: from IPython.kernel.zmq.pylab.backend_inline import InlineBackend except ImportError: return from matplotlib import pyplot cfg = InlineBackend.instance(parent=shell) cfg.shell = shell if cfg not in shell.configurables: shell.configurables.append(cfg) if backend == backends['inline']: from IPython.kernel.zmq.pylab.backend_inline import flush_figures shell.events.register('post_execute', flush_figures) # Save rcParams that will be overwrittern shell._saved_rcParams = dict() for k in cfg.rc: shell._saved_rcParams[k] = pyplot.rcParams[k] # load inline_rc pyplot.rcParams.update(cfg.rc) else: from IPython.kernel.zmq.pylab.backend_inline import flush_figures try: shell.events.unregister('post_execute', flush_figures) except ValueError: pass if hasattr(shell, '_saved_rcParams'): pyplot.rcParams.update(shell._saved_rcParams) del shell._saved_rcParams # Setup the default figure format select_figure_formats(shell, cfg.figure_formats, **cfg.print_figure_kwargs)
mit
larsmans/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <[email protected]> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
Eigenstate/msmbuilder
msmbuilder/project_templates/analysis/gather-metadata-plot.py
9
1969
"""Plot metadata info {{header}} """ # ? include "plot_header.template" # ? from "plot_macros.template" import xdg_open with context import numpy as np import seaborn as sns from matplotlib import pyplot as plt from msmbuilder.io import load_meta, render_meta sns.set_style('ticks') colors = sns.color_palette() ## Load meta = load_meta() ## Histogram of trajectory lengths def plot_lengths(ax): lengths_ns = meta['nframes'] * (meta['step_ps'] / 1000) ax.hist(lengths_ns) ax.set_xlabel("Lenths / ns", fontsize=16) ax.set_ylabel("Count", fontsize=16) total_label = ("Total length: {us:.2f}" .format(us=np.sum(lengths_ns) / 1000)) total_label += r" / $\mathrm{\mu s}$" ax.annotate(total_label, xy=(0.05, 0.95), xycoords='axes fraction', fontsize=18, va='top', ) ## Pie graph def plot_pie(ax): lengths_ns = meta['nframes'] * (meta['step_ps'] / 1000) sampling = lengths_ns.groupby(level=0).sum() ax.pie(sampling, shadow=True, labels=sampling.index, colors=sns.color_palette(), ) ax.axis('equal') ## Box plot def plot_boxplot(ax): meta2 = meta.copy() meta2['ns'] = meta['nframes'] * (meta['step_ps'] / 1000) sns.boxplot( x=meta2.index.names[0], y='ns', data=meta2.reset_index(), ax=ax, ) ## Plot hist fig, ax = plt.subplots(figsize=(7, 5)) plot_lengths(ax) fig.tight_layout() fig.savefig("lengths-hist.pdf") # {{xdg_open('lengths-hist.pdf')}} ## Plot pie fig, ax = plt.subplots(figsize=(7, 5)) plot_pie(ax) fig.tight_layout() fig.savefig("lengths-pie.pdf") # {{xdg_open('lengths-pie.pdf')}} ## Plot box fig, ax = plt.subplots(figsize=(7, 5)) plot_boxplot(ax) fig.tight_layout() fig.savefig("lengths-boxplot.pdf") # {{xdg_open('lengths-boxplot.pdf')}} ## Save metadata as html table render_meta(meta, 'meta.pandas.html')
lgpl-2.1
tunneff/tef
deps/boost_1_63_0/libs/metaparse/tools/benchmark/benchmark.py
5
9313
#!/usr/bin/python """Utility to benchmark the generated source files""" # Copyright Abel Sinkovics ([email protected]) 2016. # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import argparse import os import subprocess import json import math import platform import matplotlib import random import re import time import psutil import PIL matplotlib.use('Agg') import matplotlib.pyplot # pylint:disable=I0011,C0411,C0412,C0413 def benchmark_command(cmd, progress): """Benchmark one command execution""" full_cmd = '/usr/bin/time --format="%U %M" {0}'.format(cmd) print '{0:6.2f}% Running {1}'.format(100.0 * progress, full_cmd) (_, err) = subprocess.Popen( ['/bin/bash', '-c', full_cmd], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate('') values = err.strip().split(' ') if len(values) == 2: try: return (float(values[0]), float(values[1])) except: # pylint:disable=I0011,W0702 pass # Handled by the code after the "if" print err raise Exception('Error during benchmarking') def benchmark_file( filename, compiler, include_dirs, (progress_from, progress_to), iter_count): """Benchmark one file""" time_sum = 0 mem_sum = 0 for nth_run in xrange(0, iter_count): (time_spent, mem_used) = benchmark_command( '{0} -std=c++11 {1} -c {2}'.format( compiler, ' '.join('-I{0}'.format(i) for i in include_dirs), filename ), ( progress_to * nth_run + progress_from * (iter_count - nth_run) ) / iter_count ) os.remove(os.path.splitext(os.path.basename(filename))[0] + '.o') time_sum = time_sum + time_spent mem_sum = mem_sum + mem_used return { "time": time_sum / iter_count, "memory": mem_sum / (iter_count * 1024) } def compiler_info(compiler): """Determine the name + version of the compiler""" (out, err) = subprocess.Popen( ['/bin/bash', '-c', '{0} -v'.format(compiler)], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate('') gcc_clang = re.compile('(gcc|clang) version ([0-9]+(\\.[0-9]+)*)') for line in (out + err).split('\n'): mtch = gcc_clang.search(line) if mtch: return mtch.group(1) + ' ' + mtch.group(2) return compiler def string_char(char): """Turn the character into one that can be part of a filename""" return '_' if char in [' ', '~', '(', ')', '/', '\\'] else char def make_filename(string): """Turn the string into a filename""" return ''.join(string_char(c) for c in string) def files_in_dir(path, extension): """Enumartes the files in path with the given extension""" ends = '.{0}'.format(extension) return (f for f in os.listdir(path) if f.endswith(ends)) def format_time(seconds): """Format a duration""" minute = 60 hour = minute * 60 day = hour * 24 week = day * 7 result = [] for name, dur in [ ('week', week), ('day', day), ('hour', hour), ('minute', minute), ('second', 1) ]: if seconds > dur: value = seconds // dur result.append( '{0} {1}{2}'.format(int(value), name, 's' if value > 1 else '') ) seconds = seconds % dur return ' '.join(result) def benchmark(src_dir, compiler, include_dirs, iter_count): """Do the benchrmarking""" files = list(files_in_dir(src_dir, 'cpp')) random.shuffle(files) started_at = time.time() result = {} for filename in files: progress = len(result) result[filename] = benchmark_file( os.path.join(src_dir, filename), compiler, include_dirs, (float(progress) / len(files), float(progress + 1) / len(files)), iter_count ) elapsed = time.time() - started_at total = float(len(files) * elapsed) / len(result) print 'Elapsed time: {0}, Remaining time: {1}'.format( format_time(elapsed), format_time(total - elapsed) ) return result def plot(values, mode_names, title, (xlabel, ylabel), out_file): """Plot a diagram""" matplotlib.pyplot.clf() for mode, mode_name in mode_names.iteritems(): vals = values[mode] matplotlib.pyplot.plot( [x for x, _ in vals], [y for _, y in vals], label=mode_name ) matplotlib.pyplot.title(title) matplotlib.pyplot.xlabel(xlabel) matplotlib.pyplot.ylabel(ylabel) if len(mode_names) > 1: matplotlib.pyplot.legend() matplotlib.pyplot.savefig(out_file) def mkdir_p(path): """mkdir -p path""" try: os.makedirs(path) except OSError: pass def configs_in(src_dir): """Enumerate all configs in src_dir""" for filename in files_in_dir(src_dir, 'json'): with open(os.path.join(src_dir, filename), 'rb') as in_f: yield json.load(in_f) def byte_to_gb(byte): """Convert bytes to GB""" return byte / (1024.0 * 1024 * 1024) def join_images(img_files, out_file): """Join the list of images into the out file""" images = [PIL.Image.open(f) for f in img_files] joined = PIL.Image.new( 'RGB', (sum(i.size[0] for i in images), max(i.size[1] for i in images)) ) left = 0 for img in images: joined.paste(im=img, box=(left, 0)) left = left + img.size[0] joined.save(out_file) def plot_temp_diagrams(config, results, temp_dir): """Plot temporary diagrams""" display_name = { 'time': 'Compilation time (s)', 'memory': 'Compiler memory usage (MB)', } files = config['files'] img_files = [] for measured in ['time', 'memory']: mpts = sorted(int(k) for k in files.keys()) img_files.append(os.path.join(temp_dir, '_{0}.png'.format(measured))) plot( { m: [(x, results[files[str(x)][m]][measured]) for x in mpts] for m in config['modes'].keys() }, config['modes'], display_name[measured], (config['x_axis_label'], display_name[measured]), img_files[-1] ) return img_files def plot_diagram(config, results, images_dir, out_filename): """Plot one diagram""" img_files = plot_temp_diagrams(config, results, images_dir) join_images(img_files, out_filename) for img_file in img_files: os.remove(img_file) def plot_diagrams(results, configs, compiler, out_dir): """Plot all diagrams specified by the configs""" compiler_fn = make_filename(compiler) total = psutil.virtual_memory().total # pylint:disable=I0011,E1101 memory = int(math.ceil(byte_to_gb(total))) images_dir = os.path.join(out_dir, 'images') for config in configs: out_prefix = '{0}_{1}'.format(config['name'], compiler_fn) plot_diagram( config, results, images_dir, os.path.join(images_dir, '{0}.png'.format(out_prefix)) ) with open( os.path.join(out_dir, '{0}.qbk'.format(out_prefix)), 'wb' ) as out_f: qbk_content = """{0} Measured on a {2} host with {3} GB memory. Compiler used: {4}. [$images/metaparse/{1}.png [width 100%]] """.format(config['desc'], out_prefix, platform.platform(), memory, compiler) out_f.write(qbk_content) def main(): """The main function of the script""" desc = 'Benchmark the files generated by generate.py' parser = argparse.ArgumentParser(description=desc) parser.add_argument( '--src', dest='src_dir', default='generated', help='The directory containing the sources to benchmark' ) parser.add_argument( '--out', dest='out_dir', default='../../doc', help='The output directory' ) parser.add_argument( '--include', dest='include', default='include', help='The directory containing the headeres for the benchmark' ) parser.add_argument( '--boost_headers', dest='boost_headers', default='../../../..', help='The directory containing the Boost headers (the boost directory)' ) parser.add_argument( '--compiler', dest='compiler', default='g++', help='The compiler to do the benchmark with' ) parser.add_argument( '--repeat_count', dest='repeat_count', type=int, default=5, help='How many times a measurement should be repeated.' ) args = parser.parse_args() compiler = compiler_info(args.compiler) results = benchmark( args.src_dir, args.compiler, [args.include, args.boost_headers], args.repeat_count ) plot_diagrams(results, configs_in(args.src_dir), compiler, args.out_dir) if __name__ == '__main__': main()
lgpl-3.0
Clyde-fare/scikit-learn
sklearn/preprocessing/tests/test_data.py
71
38516
import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils.testing import assert_almost_equal, clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.utils.validation import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) @ignore_warnings def test_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X = np.ones(5) assert_array_equal(scale(X, with_mean=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), 4 * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) @ignore_warnings def test_min_max_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # Constant feature. X = np.zeros(5) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): """Check MaxAbsScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # sparse data X_csr = sparse.csr_matrix(X) X_trans = scaler.fit_transform(X_csr) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans.A, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv.A) def test_maxabs_scaler_large_negative_value(): """Check MaxAbsScaler on toy data with a large negative value""" X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y)
bsd-3-clause
liangz0707/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
mengyun1993/RNN-binary
rnn12-new.py
1
30238
""" Vanilla RNN @author Graham Taylor """ import numpy as np import theano import theano.tensor as T from sklearn.base import BaseEstimator import logging import time import os import datetime import pickle as pickle import math import matplotlib.pyplot as plt plt.ion() mode = theano.Mode(linker='cvm') #mode = 'DEBUG_MODE' class RNN(object): """ Recurrent neural network class Supported output types: real : linear output units, use mean-squared error binary : binary output units, use cross-entropy error softmax : single softmax out, use cross-entropy error """ def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh, output_type='real', use_symbolic_softmax=False): self.input = input self.activation = activation self.output_type = output_type # when using HF, SoftmaxGrad.grad is not implemented # use a symbolic softmax which is slightly slower than T.nnet.softmax # See: http://groups.google.com/group/theano-dev/browse_thread/ # thread/3930bd5a6a67d27a if use_symbolic_softmax: def symbolic_softmax(x): e = T.exp(x) return e / T.sum(e, axis=1).dimshuffle(0, 'x') self.softmax = symbolic_softmax else: self.softmax = T.nnet.softmax # recurrent weights as a shared variable W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden), low=-.01, high=.01), dtype=theano.config.floatX) self.W = theano.shared(value=W_init, name='W') # input to hidden layer weights W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden), low=-.01, high=.01), dtype=theano.config.floatX) self.W_in = theano.shared(value=W_in_init, name='W_in') # hidden to output layer weights W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out), low=-.01, high=.01), dtype=theano.config.floatX) self.W_out = theano.shared(value=W_out_init, name='W_out') h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX) self.h0 = theano.shared(value=h0_init, name='h0') bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX) self.bh = theano.shared(value=bh_init, name='bh') by_init = np.zeros((n_out,), dtype=theano.config.floatX) self.by = theano.shared(value=by_init, name='by') self.params = [self.W, self.W_in, self.W_out, self.h0, self.bh, self.by] # for every parameter, we maintain it's last update # the idea here is to use "momentum" # keep moving mostly in the same direction self.updates = {} for param in self.params: init = np.zeros(param.get_value(borrow=True).shape, dtype=theano.config.floatX) self.updates[param] = theano.shared(init) # recurrent function (using tanh activation function) and linear output # activation function def step(x_t, h_tm1): h_t = self.activation(T.dot(x_t, self.W_in) + \ T.dot(h_tm1, self.W) + self.bh) y_t = T.dot(h_t, self.W_out) + self.by return h_t, y_t # the hidden state `h` for the entire sequence, and the output for the # entire sequence `y` (first dimension is always time) [self.h, self.y_pred], _ = theano.scan(step, sequences=self.input, outputs_info=[self.h0, None]) # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = 0 self.L1 += abs(self.W.sum()) self.L1 += abs(self.W_in.sum()) self.L1 += abs(self.W_out.sum()) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = 0 self.L2_sqr += (self.W ** 2).sum() self.L2_sqr += (self.W_in ** 2).sum() self.L2_sqr += (self.W_out ** 2).sum() if self.output_type == 'real': self.loss = lambda y: self.mse(y) elif self.output_type == 'binary': # push through sigmoid self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid self.y_out = T.round(self.p_y_given_x) # round to {0,1} self.loss = lambda y: self.nll_binary(y) elif self.output_type == 'softmax': # push through softmax, computing vector of class-membership # probabilities in symbolic form self.p_y_given_x = self.softmax(self.y_pred) # compute prediction as class whose probability is maximal self.y_out = T.argmax(self.p_y_given_x, axis=-1) self.loss = lambda y: self.nll_multiclass(y) else: raise NotImplementedError def mse(self, y): # error between output and target return T.mean((self.y_pred - y) ** 2) def nll_binary(self, y): # negative log likelihood based on binary cross entropy error return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y)) def nll_multiclass(self, y): # negative log likelihood based on multiclass cross entropy error # y.shape[0] is (symbolically) the number of rows in y, i.e., # number of time steps (call it T) in the sequence # T.arange(y.shape[0]) is a symbolic vector which will contain # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of # Log-Probabilities (call it LP) with one row per example and # one column per class LP[T.arange(y.shape[0]),y] is a vector # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is # the mean (across minibatch examples) of the elements in v, # i.e., the mean log-likelihood across the minibatch. return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y]) def errors(self, y): """Return a float representing the number of errors in the sequence over the total number of examples in the sequence ; zero one loss over the size of the sequence :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_out.ndim: raise TypeError('y should have the same shape as self.y_out', ('y', y.type, 'y_out', self.y_out.type)) if self.output_type in ('binary', 'softmax'): # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_out, y)) else: raise NotImplementedError() class MetaRNN(BaseEstimator): def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01, n_epochs=100, L1_reg=0.00, L2_reg=0.00005, learning_rate_decay=1, activation='tanh', output_type='real', final_momentum=0.9, initial_momentum=0.5, momentum_switchover=5, use_symbolic_softmax=False): self.n_in = int(n_in) self.n_hidden = int(n_hidden) self.n_out = int(n_out) self.learning_rate = float(learning_rate) self.learning_rate_decay = float(learning_rate_decay) self.n_epochs = int(n_epochs) self.L1_reg = float(L1_reg) self.L2_reg = float(L2_reg) self.activation = activation self.output_type = output_type self.initial_momentum = float(initial_momentum) self.final_momentum = float(final_momentum) self.momentum_switchover = int(momentum_switchover) self.use_symbolic_softmax = use_symbolic_softmax self.ready() def ready(self): # input (where first dimension is time) self.x = T.matrix() # target (where first dimension is time) if self.output_type == 'real': self.y = T.matrix(name='y', dtype=theano.config.floatX) elif self.output_type == 'binary': self.y = T.matrix(name='y', dtype='int32') elif self.output_type == 'softmax': # only vector labels supported self.y = T.vector(name='y', dtype='int32') else: raise NotImplementedError # initial hidden state of the RNN self.h0 = T.vector() # learning rate self.lr = T.scalar() if self.activation == 'tanh': activation = T.tanh elif self.activation == 'sigmoid': activation = T.nnet.sigmoid elif self.activation == 'relu': activation = lambda x: x * (x > 0) elif self.activation == 'cappedrelu': activation = lambda x: T.minimum(x * (x > 0), 6) else: raise NotImplementedError self.rnn = RNN(input=self.x, n_in=self.n_in, n_hidden=self.n_hidden, n_out=self.n_out, activation=activation, output_type=self.output_type, use_symbolic_softmax=self.use_symbolic_softmax) if self.output_type == 'real': self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_pred, mode=mode) elif self.output_type == 'binary': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=T.round(self.rnn.p_y_given_x), mode=mode) elif self.output_type == 'softmax': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_out, mode=mode) else: raise NotImplementedError def shared_dataset(self, data_xy): """ Load the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX)) if self.output_type in ('binary', 'softmax'): return shared_x, T.cast(shared_y, 'int32') else: return shared_x, shared_y def __getstate__(self): """ Return state sequence.""" params = self._get_params() # parameters set in constructor weights = [p.get_value() for p in self.rnn.params] state = (params, weights) return state def _set_weights(self, weights): """ Set fittable parameters from weights sequence. Parameters must be in the order defined by self.params: W, W_in, W_out, h0, bh, by """ i = iter(weights) for param in self.rnn.params: param.set_value(i.next()) def __setstate__(self, state): """ Set parameters from state sequence. Parameters must be in the order defined by self.params: W, W_in, W_out, h0, bh, by """ params, weights = state self.set_params(**params) self.ready() self._set_weights(weights) def save(self, fpath='.', fname=None): """ Save a pickled representation of Model state. """ fpathstart, fpathext = os.path.splitext(fpath) if fpathext == '.pkl': # User supplied an absolute path to a pickle file fpath, fname = os.path.split(fpath) elif fname is None: # Generate filename based on date date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s.pkl' % (class_name, date_str) fabspath = os.path.join(fpath, fname) logging.info("Saving to %s ..." % fabspath) file = open(fabspath, 'wb') state = self.__getstate__() pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def load(self, path): """ Load model parameters from path. """ logging.info("Loading from %s ..." % path) file = open(path, 'rb') state = pickle.load(file) self.__setstate__(state) file.close() def fit(self, X_train, Y_train, X_test=None, Y_test=None, validation_frequency=100): """ Fit model Pass in X_test, Y_test to compute test error and report during training. X_train : ndarray (n_seq x n_steps x n_in) Y_train : ndarray (n_seq x n_steps x n_out) validation_frequency : int in terms of number of sequences (or number of weight updates) """ f = file('../RNN-data/trainProcess/trainOutput-b15-2220-720-60.txt','a+') if X_test is not None: assert(Y_test is not None) self.interactive = True test_set_x, test_set_y = self.shared_dataset((X_test, Y_test)) else: self.interactive = False train_set_x, train_set_y = self.shared_dataset((X_train, Y_train)) n_train = train_set_x.get_value(borrow=True).shape[0] if self.interactive: n_test = test_set_x.get_value(borrow=True).shape[0] ###################### # BUILD ACTUAL MODEL # ###################### logging.info('... building the model') index = T.lscalar('index') # index to a case # learning rate (may change) l_r = T.scalar('l_r', dtype=theano.config.floatX) mom = T.scalar('mom', dtype=theano.config.floatX) # momentum cost = self.rnn.loss(self.y) \ + self.L1_reg * self.rnn.L1 \ + self.L2_reg * self.rnn.L2_sqr compute_train_error = theano.function(inputs=[index, ], outputs=self.rnn.loss(self.y), givens={ self.x: train_set_x[index], self.y: train_set_y[index]}, mode=mode) if self.interactive: compute_test_error = theano.function(inputs=[index, ], outputs=self.rnn.loss(self.y), givens={ self.x: test_set_x[index], self.y: test_set_y[index]}, mode=mode) # compute the gradient of cost with respect to theta = (W, W_in, W_out) # gradients on the weights using BPTT gparams = [] for param in self.rnn.params: gparam = T.grad(cost, param) gparams.append(gparam) updates = {} for param, gparam in zip(self.rnn.params, gparams): weight_update = self.rnn.updates[param] upd = mom * weight_update - l_r * gparam updates[weight_update] = upd updates[param] = param + upd # compiling a Theano function `train_model` that returns the # cost, but in the same time updates the parameter of the # model based on the rules defined in `updates` train_model = theano.function(inputs=[index, l_r, mom], outputs=cost, updates=updates, givens={ self.x: train_set_x[index], self.y: train_set_y[index]}, mode=mode) ############### # TRAIN MODEL # ############### logging.info('... training') epoch = 0 while (epoch < self.n_epochs): epoch = epoch + 1 for idx in xrange(n_train): effective_momentum = self.final_momentum \ if epoch > self.momentum_switchover \ else self.initial_momentum example_cost = train_model(idx, self.learning_rate, effective_momentum) # iteration number (how many weight updates have we made?) # epoch is 1-based, index is 0 based iter = (epoch - 1) * n_train + idx + 1 if iter % validation_frequency == 0: # compute loss on training set train_losses = [compute_train_error(i) for i in xrange(n_train)] this_train_loss = np.mean(train_losses) if self.interactive: test_losses = [compute_test_error(i) for i in xrange(n_test)] this_test_loss = np.mean(test_losses) f.write('epoch %i, seq %i/%i, tr loss %f ' 'te loss %f lr: %f \n' % \ (epoch, idx + 1, n_train, this_train_loss, this_test_loss, self.learning_rate)) print('epoch %i, seq %i/%i, tr loss %f ' 'te loss %f lr: %f' % \ (epoch, idx + 1, n_train, this_train_loss, this_test_loss, self.learning_rate)) else: f.write('epoch %i, seq %i/%i, train loss %f ' 'lr: %f \n' % \ (epoch, idx + 1, n_train, this_train_loss, self.learning_rate)) print('epoch %i, seq %i/%i, train loss %f ' 'lr: %f' % \ (epoch, idx + 1, n_train, this_train_loss, self.learning_rate)) self.learning_rate *= self.learning_rate_decay f.close() def test_real(): """ Test RNN with real-valued outputs. """ n_hidden = 200 n_in = 20 n_out = 5 n_steps = 10 n_seq = 100 np.random.seed(0) # simple lag test seq = np.random.randn(n_seq, n_steps, n_in) targets = np.zeros((n_seq, n_steps, n_out)) targets[:, 1:, 0] = seq[:, :-1, 3] # delayed 1 targets[:, 1:, 1] = seq[:, :-1, 2] # delayed 1 targets[:, 2:, 2] = seq[:, :-2, 0] # delayed 2 targets += 0.01 * np.random.standard_normal(targets.shape) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.001, learning_rate_decay=0.999, n_epochs=400, activation='tanh') model.fit(seq, targets, validation_frequency=1000) [seqNum,lineNum,colNum] = targets.shape print(seqNum,lineNum,colNum) error = [0 for i in range(colNum)] plt.close('all') fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[0]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.plot(targets[0]) guess = model.predict(seq[0]) guessed_targets = plt.plot(guess, linestyle='--') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_title('solid: true output, dashed: model output') dif = abs(guess - targets[0]) [linedif,coldif] = dif.shape print(linedif,coldif) errorsum = 0 for i in range (colNum): sum = 0 for j in range (lineNum): sum += dif[j][i] ** 2 error[i] = math.sqrt(sum/lineNum) errorsum += error[i] print(error[i]) print("average error = ", errorsum/colNum) def test_binary(multiple_out=False, n_epochs=250): """ Test RNN with binary outputs. """ n_hidden = 100 n_in = 5 n_out = 121 n_steps = 40 n_seq = 1500 np.random.seed(0) # simple lag test seqlist = [] count = 0 data = [] BASE_DIR = os.path.dirname(__file__) file_path1 = os.path.join(BASE_DIR,"../RNN-data/traindata/inputdata-b12-50-40-30-y.txt") for l in open(file_path1): #for l in open("inputdata-b02-300-10.txt"): count += 1 row = [int(x) for x in l.split()] if len(row) > 0: data.append(row) if (count == n_steps): count = 0 if len(data) >0: seqlist.append(data) data = [] seqarray = np.asarray(seqlist) seq = seqarray[:,:,:n_in] targets = seqarray[:,:,n_in:] seqlistTest1 = [] count = 0 dataTest1 = [] file_path2 = os.path.join(BASE_DIR, '../RNN-data/testdata/inputdata-b12-20-40-25.txt') #file_path2 = os.path.join(BASE_DIR, '../RNN-data/testdata/inputerror-b15-60-60-12-y.txt') for l in open(file_path2): #for l in open("inputdata-b02-100-10.txt"): count += 1 row = [int(x) for x in l.split()] if len(row) > 0: dataTest1.append(row) if (count == n_steps): count = 0 if len(dataTest1) >0: seqlistTest1.append(dataTest1) dataTest1 = [] seqarrayTest1 = np.asarray(seqlistTest1) seqTest1 = seqarrayTest1[:,:,:n_in] targetsTest1 = seqarrayTest1[:,:,n_in:] ############## Add another Test #################### seqlistTest2 = [] count = 0 dataTest2 = [] #file_path2 = os.path.join(BASE_DIR, '../RNN-data/testdata/inputdata-b15-60-60-12.txt') file_path4 = os.path.join(BASE_DIR, '../RNN-data/testdata/inputerror-b12-20-40-25-y.txt') for l in open(file_path4): #for l in open("inputdata-b02-100-10.txt"): count += 1 row = [int(x) for x in l.split()] if len(row) > 0: dataTest2.append(row) if (count == n_steps): count = 0 if len(dataTest2) >0: seqlistTest2.append(dataTest2) dataTest2 = [] seqarrayTest2 = np.asarray(seqlistTest2) seqTest2 = seqarrayTest2[:,:,:n_in] targetsTest2 = seqarrayTest2[:,:,n_in:] ########### End add another Test ############## ######## Calculate change Frequency for each FF ############## seqlistError = [] count = 0 dataError = [] file_path3 = os.path.join(BASE_DIR, '../RNN-data/traindata/inputerror-b12-50-40-30-y.txt') for l in open(file_path3): count += 1 row = [int(x) for x in l.split()] if len(row) > 0: dataError.append(row) if (count == n_steps): count = 0 if len(dataError) >0: seqlistError.append(dataError) dataError = [] seqarrayError = np.asarray(seqlistError) targetsError = seqarrayError[:,:,n_in:] [seqNum, lineNum, colNum] = targetsTest1.shape freqArray = [None] * lineNum for i in range (lineNum): freqArray[i] = [0]*colNum freqArrayNP = np.asarray(freqArray) for i in range(seqNum): freqArrayNP = freqArrayNP +abs(targets[i] - targetsError[i]) fmatrix = file('../RNN-data/matrix/freqMatrix-b12.txt','a+') for i in range (lineNum): for j in range(colNum): fmatrix.write(str(freqArrayNP[i,j])) fmatrix.write("\n") fmatrix.close() ######### End Frequency Calculation ######################### model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.085, learning_rate_decay=1.005, n_epochs=n_epochs, activation='tanh', output_type='binary') #model.fit(seq, targets, validation_frequency=1000) model.fit(seq, targets, seqTest1, targetsTest1, validation_frequency=1000) ferror1 = file('errorRate/errorRate-b12-no.txt','a+') ferror2 = file('errorRate/errorRate-b12-single.txt','a+') [seqNum,lineNum,colNum] = targetsTest1.shape seqs = xrange(seqNum) error = [0 for i in range(seqNum)] errorsum = 0 for k in seqs: guess1 = model.predict_proba(seqTest1[k]) dif1 = abs(guess1 - targetsTest1[k]) [lineDif,colDif] = dif1.shape for i in range (1,lineDif): for j in range (colDif): if (dif1[i][j] > 0.5): ferror1.write("1 ") else: ferror1.write("0 ") ferror1.write("\n") ferror1.close() for k in seqs: guess2 = model.predict_proba(seqTest2[k]) dif2 = abs(guess2 - targetsTest2[k]) [lineDif,colDif] = dif2.shape for i in range (1,lineDif): for j in range (colDif): if (dif2[i][j] > 0.5): ferror2.write("1 ") else: ferror2.write("0 ") ferror2.write("\n") ferror2.close() ## #print (seqTest.shape) ## seqs = xrange(seqNum) ## error = [0 for i in range(lineNum*seqNum)] ## errorsum = 0 ## for k in seqs: ## guess = model.predict_proba(seqTest[k]) ## dif = abs(guess - targetsTest[k]) ## [lineDif,colDif] = dif.shape ## #print(lineDif,colDif) ## for i in range (lineDif): ## ki = k*lineDif+i ## for j in range (colDif): ## if (dif[i][j] > 0.5): ## error[ki] += 1 ## ferror.write('error %d = %d \n' % (ki,error[ki])) ## if (error[ki]>0): ## errorsum += 1 ## print(errorsum) ## errorRate = errorsum/1.0/seqNum/lineNum ## ferror.write("average error = %f \n" % (errorRate)) ## ## seqs = xrange(1) ## ## [seqNum,lineNum,colNum] = targets.shape ## print(seqNum,lineNum,colNum) ## error = [0 for i in range(colNum)] ## ## plt.close('all') ## for seq_num in seqs: ## fig = plt.figure() ## ax1 = plt.subplot(211) ## plt.plot(seq[seq_num]) ## ax1.set_title('input') ## ax2 = plt.subplot(212) ## true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o') ## ## guess = model.predict_proba(seq[seq_num]) ## guessed_targets = plt.step(xrange(n_steps), guess) ## plt.setp(guessed_targets, linestyle='--', marker='d') ## for i, x in enumerate(guessed_targets): ## x.set_color(true_targets[i].get_color()) ## ax2.set_ylim((-0.1, 1.1)) ## ax2.set_title('solid: true output, dashed6 model output (prob)') ## ## ## dif = abs(guess - targets[seq_num]) ## [lineDif,colDif] = dif.shape ## print(lineDif,colDif) ## errorsum = 0 ## for i in range (colNum): ## for j in range (lineNum): ## if (dif[j][i] > 0.5): ## error[i] += 1 ## print(error[i]) ## errorsum += error[i] ## print("average error = ", errorsum/colNum) def test_softmax(n_epochs=250): """ Test RNN with softmax outputs. """ n_hidden = 10 n_in = 5 n_steps = 10 n_seq = 100 n_classes = 3 n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # simple lag test seq = np.random.randn(n_seq, n_steps, n_in) targets = np.zeros((n_seq, n_steps), dtype=np.int) thresh = 0.5 # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh # class 1 # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh # class 2 # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh # class 0 targets[:, 2:][seq[:, 1:-1, 3] > seq[:, :-2, 0] + thresh] = 1 targets[:, 2:][seq[:, 1:-1, 3] < seq[:, :-2, 0] - thresh] = 2 #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.001, learning_rate_decay=0.999, n_epochs=n_epochs, activation='tanh', output_type='softmax', use_symbolic_softmax=False) model.fit(seq, targets, validation_frequency=1000) seqs = xrange(10) [seqNum,lineNum,colNum] = seq.shape print(seqNum,lineNum,colNum) error = [0 for i in range(colNum)] plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[seq_num]) ax1.set_title('input??') ax2 = plt.subplot(212) # blue line will represent true classes true_targets = plt.step(xrange(n_steps), targets[seq_num], marker='o') # show probabilities (in b/w) output by model guess = model.predict_proba(seq[seq_num]) guessed_probs = plt.imshow(guess.T, interpolation='nearest', cmap='gray') ax2.set_title('blue: true class, grayscale: probs assigned by model') dif = abs(seq[seq_num] - targets[seq_num]) for i in range (colNum): sum = 0 for j in range (lineNum): sum += dif[i,j] ** 2 error[i] = math.sqrt(sum/lineNum) print(error[i]) if __name__ == "__main__": ##logging.basicConfig( ## level = logging.INFO, ## format = 'LINE %(lineno)-4d %(levelname)-8s %(message)s', ## datafmt = '%m-%d %H:%M', ## filename = "D:/logresult20160123/one.log", ## filemode = 'w') t0 = time.time() #test_real() # problem takes more epochs to solve test_binary(multiple_out=True, n_epochs=20) #test_softmax(n_epochs=250) print ("Elapsed time: %f" % (time.time() - t0))
bsd-3-clause
mattilyra/scikit-learn
sklearn/utils/__init__.py
17
12898
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric) from .deprecation import deprecated from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count from ..exceptions import ConvergenceWarning as _ConvergenceWarning from ..exceptions import DataConversionWarning @deprecated("ConvergenceWarning has been moved into the sklearn.exceptions " "module. It will not be available here from version 0.19") class ConvergenceWarning(_ConvergenceWarning): pass __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def axis0_safe_slice(X, mask, len_mask): """ This mask is safer than safe_mask since it returns an empty array, when a sparse matrix is sliced with a boolean mask with all False, instead of raising an unhelpful error in older versions of SciPy. See: https://github.com/scipy/scipy/issues/5361 Also note that we can avoid doing the dot product by checking if the len_mask is not zero in _huber_loss_and_gradient but this is not going to be the bottleneck, since the number of outliers and non_outliers are typically non-zero and it makes the code tougher to follow. """ if len_mask != 0: return X[safe_mask(X, mask), :] return np.zeros(shape=(0, X.shape[1])) def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. If replace is False it should not be larger than the length of arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples elif (max_n_samples > n_samples) and (not replace): raise ValueError("Cannot sample %d out of arrays with dim %d" "when replace is False" % (max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
bsd-3-clause
ctogle/modular
src/modular4/mplt.py
1
27992
#!/usr/bin/env python import modular4.base as mb import modular4.ensemble as me import modular4.output as mo import sim_anneal.pspace as spsp import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['pdf.fonttype'] = 42 import argparse,sys,os,time,numpy,cPickle import pdb # mplot is a representation of a "figure", which # contains some number of subplots, and some arrangement # of modular data objects with those plots class mplot(mb.mobject): # use load_data to associate modular data objects with the mplot # specify general info about the final figure to help # lay out the axes # how many subplots? # line and/or color and/or anything else? # each ax has xax,[yax,[zax]],targets at minimum # this corresponds to extracting arrays from data objects # theres polish information for each subplot thats also needed: # xax_title,yax_title,plot_title,color_bar_range # colors of lines,legend labels per target # line markers/styles/linewidths per target # # presumeably the plot should be outputted pdf/png as the regular # plotting interface does # requires filename/save directory # # paths is a list of full paths to data file from which modular # data objects will be extracted # get a new axis to place in the figure def subplot(self,*args,**kwargs): sub = msubplot(self,*args,**kwargs) self.subplots.append(sub) return sub # destroy and data dep. information def clear(self): #for da in self.datas:self.datas[da] = None #self.datas['extras'] = lfu.data_container(data = []) #self.datas = {'extras':lfu.data_container(data = [])} self.datas = {'extras':{}} def __init__(self,*args,**kwargs): self._def('name','mplot',**kwargs) self._def('subplots',[],**kwargs) self._def('wspace',0.2,**kwargs) self._def('hspace',0.2,**kwargs) self._def('left',0.1,**kwargs) self._def('right',0.98,**kwargs) self._def('top',0.96,**kwargs) self._def('bottom',0.08,**kwargs) self._def('pipe',[],**kwargs) self._def('aspect',(24,16),**kwargs) self.figure = plt.figure(figsize = self.aspect) self.figure.subplots_adjust(wspace = self.wspace,hspace = self.hspace) #self.datas = {'extras':lfu.data_container(data = [])} self.datas = {'extras':{}} self.clear() # access specified data files and return data objects def open_data(self,*paths): self.clear() fpaths = [] for pa in paths: if pa.endswith('.pkl'): #fpaths.extend(glob.glob(pa)) fpaths.append(pa) else: pafis = os.listdir(pa) pfs = [p for p in pafis if p.endswith('.pkl')] fpaths.extend(pfs) for pa in fpaths: if not pa in self.datas: self.datas[pa] = None for fpa in self.datas: if fpa == 'extras':continue print '\nloading pkl data:',fpa with open(fpa,'rb') as h:dat = cPickle.load(h)['pages'] self.datas[fpa] = dat # produce the actual plot axes objects with plotted data # axes are used from elsewhere (including plt.show()) def render(self,savefilename = None): for subp in self.subplots: subp.clear() #subp.extract() subp.render() l,r,t,b = self.left,self.right,self.top,self.bottom self.figure.subplots_adjust(left = l,right = r,top = t,bottom = b) #self.figure.tight_layout() if not savefilename is None: print('saving figure...') self.figure.savefig(savefilename,dpi = 100) print('saved figure!!!') # this represents a subplot in the figure, with one axis, and all # other data associated with the plot class msubplot(mb.mobject): # destroy any plot/data dep. information def clear(self):self.ax = None def __init__(self,mplot,subloc,*args,**kwargs): self.mplot = mplot self.loc = subloc self._def('reqorder',[],**kwargs) self._def('requests',[],**kwargs) self._def('name','msubplot',**kwargs) self._def('ptype','lines',**kwargs) self._def('plab',None,**kwargs) self._def('xlab',None,**kwargs) self._def('ylab',None,**kwargs) self._def('zlab',None,**kwargs) self._def('plabsize',18,**kwargs) self._def('xlabsize',20,**kwargs) self._def('ylabsize',20,**kwargs) self._def('zlabsize',20,**kwargs) self._def('xticksize',20,**kwargs) self._def('yticksize',20,**kwargs) self._def('xlog',False,**kwargs) self._def('ylog',False,**kwargs) self._def('zlog',False,**kwargs) self._def('xmin',None,**kwargs) self._def('xmax',None,**kwargs) self._def('ymin',None,**kwargs) self._def('ymax',None,**kwargs) self._def('zmin',None,**kwargs) self._def('zmax',None,**kwargs) self._def('legend',True,**kwargs) self._def('legendloc',1,**kwargs) # given x and y (strings), add a request for this target # requests are considered based on input data in self.extract def add_line(self,x,y,**kwargs): if type(x) is type(''):print 'expecting domain',x,'in input files' #elif issubclass(x.__class__,mst.scalars): # self.mplot.datas['extras'].data.append(x) else: xnam = 'extrax-'+str(len(self.mplot.datas['extras'])) xdat = numpy.array(x) self.mplot.datas['extras'][xnam] = xdat x = xnam if type(y) is type(''):print 'expecting codomain',y,'in input files' #elif issubclass(y.__class__,mst.scalars): # self.mplot.datas['extras'].data.append(y) else: ynam = 'extray-'+str(len(self.mplot.datas['extras'])) ydat = numpy.array(y) self.mplot.datas['extras'][ynam] = ydat y = ynam self.requests.append(kwargs) self.reqorder.append((x,y)) self.ptype = 'lines' # given x,y, and z (strings), add a request for this target # requests are considered based on input data in self.extract def add_heat(self,x,y,z,zm = None,zmf = None,**kwargs): if type(x) is type(''):print 'expecting xdomain',x,'in input files' else: xnam = 'extrax-'+str(len(self.mplot.datas['extras'])) xdat = numpy.array(x) self.mplot.datas['extras'][xnam] = xdat x = xnam if type(y) is type(''):print 'expecting ydomain',y,'in input files' else: ynam = 'extray-'+str(len(self.mplot.datas['extras'])) ydat = numpy.array(y) self.mplot.datas['extras'][ynam] = ydat y = ynam if type(z) is type(''):print 'expecting surface',z,'in input files' else: znam = 'extraz-'+str(len(self.mplot.datas['extras'])) zdat = numpy.array(z) self.mplot.datas['extras'][znam] = zdat z = znam if not zm is None: if type(zm) is type(()): for szm in zm: if type(szm) is type(''): print 'expecting sub-mask surface',szm,'in input files' else:raise ValueError elif type(zm) is type(''): print 'expecting mask surface',zm,'in input files' else: zmnam = 'extraz-'+str(len(self.mplot.datas['extras'])) zmdat = numpy.array(zm) self.mplot.datas['extras'][zmnam] = zmdat zm = zmnam self.requests.append(kwargs) self.reqorder.append((x,y,z,zm)) self.ptype = 'color' self.zmf = zmf # given the data objects of the parent mplot # create and store a set of mplottarget objects def extract(self): datas = self.mplot.datas if self.ptype == 'lines':ptargets = self.lines(datas) elif self.ptype == 'color':ptargets = self.color(datas) else:raise ValueError self.plottargets = ptargets self.targetcount = len(ptargets) # generate mplottarget line objects for this subplot def lines(self,datas): exs = self.mplot.datas['extras'] lines = [] for reqx in range(len(self.reqorder)): rkws = self.requests[reqx] req = self.reqorder[reqx] xdom,ycod = req print '\nextracting request:',xdom,ycod,'\n','-'*40 if xdom in exs:x = exs[xdom] else:x = self.locate(datas,xdom) if ycod in exs:y = exs[ycod] else:y = self.locate(datas,ycod) if x is None:print 'failed to locate x for request:',req elif y is None:print 'failed to locate y for request:',req else: line = mplotline(self,x,y,req,**rkws) lines.append(line) print 'made line:',line return lines # generate color mesh objects for this subplot def color(self,datas): heats = [] for reqx in range(len(self.reqorder)): rkws = self.requests[reqx] req = self.reqorder[reqx] xdom,ydom,zcod,zmask = req print '\nextracting request:',req,'\n','-'*40 if zmask is None:zm = None elif type(zmask) == type(()): zm = tuple((self.locate(datas,szm) for szm in zmask)) else:zm = self.locate(datas,zmask) z = self.locate(datas,zcod) x = self.locate(datas,xdom) y = self.locate(datas,ydom) #zmask = 'T_total1:mean_event_count' #zm = self.locate(datas,zmask) #if issubclass(z.__class__,mst.reducer): # x = z # y = z #else: # x = self.locate(datas,xdom) # y = self.locate(datas,ydom) if x is None:print 'failed to locate x for request:',req elif y is None:print 'failed to locate y for request:',req elif z is None:print 'failed to locate z for request:',req else: heat = mplotheat(self,x,y,z,zm,req,**rkws) heats.append(heat) print 'made heat map:',heat return heats # given a list of possibly redundant data objects # return the subset whose names match the target def locate(self,datas,target): located = [] dfs = sorted(datas.keys()) for df in dfs: if df == 'extras':continue data = datas[df] for pg in data: if not pg:continue ds,ts,ps = pg if target in ts: located.append((pg,df)) elif target in pg[2].keys(): located.append((pg[2],df)) lcnt = len(located) if lcnt == 0: print '\n','-'*40,'\ntarget:',target print '\tcould not be located!!\n','-'*40,'\n' return elif lcnt == 1:return located[0][0] #elif self.mplot.pipe:return located[self.mplot.pipe.pop(0)][0] elif self.mplot.pipe: if type(self.mplot.pipe) == type([]): return located[self.mplot.pipe.pop(0)][0] else:return located[next(self.mplot.pipe)][0] else: print 'more than one data object was found for:',target for lx in range(lcnt): lc,lf = located[lx] #print '\n',lx,'\tfrom file:',lf,'\n\t\tof class:',lc print '\n',lx,'\tfrom file:',lf which = int(raw_input('\n\tlocated index please:\n\t\t')) return located[which][0] '''# elif lcnt == 2 and located[0][1] == located[1][1]: if issubclass(located[0][0].__class__,mst.reducer): return located[0][0] else:return located[1][0] else: print 'more than one data object was found for:',target for lx in range(lcnt): lf,lc = located[lx] print '\n',lx,'\tfrom file:',lf,'\n\t\tof class:',lc which = int(raw_input('\n\tlocated index please:\n\t\t')) return located[which][0] '''# # determine the min/max of x/y based on current plottargets def minmaxes(self): tcnt = self.targetcount if tcnt == 0:mms = (0,1,0,1,0,1) elif tcnt == 1:mms = self.plottargets[0].minmax() else: mms = self.plottargets[0].minmax() for tx in range(1,tcnt): omms = self.plottargets[tx].minmax() mms = ( min(mms[0],omms[0]),max(mms[1],omms[1]), min(mms[2],omms[2]),max(mms[3],omms[3]), min(mms[4],omms[4]),max(mms[5],omms[5])) mms = ( mms[0] if self.xmin is None else self.xmin, mms[1] if self.xmax is None else self.xmax, mms[2] if self.ymin is None else self.ymin, mms[3] if self.ymax is None else self.ymax, mms[4] if self.zmin is None else self.zmin, mms[5] if self.zmax is None else self.zmax) return mms # reset the axis and replot all mplottarget objects def render(self): self.clear() self.extract() self.ax = self.mplot.figure.add_subplot(self.loc) for ptarg in self.plottargets:ptarg.render(self.ax) xb,xt,yb,yt,zb,zt = self.minmaxes() self.ax.set_xlim([xb,xt]) self.ax.set_ylim([yb,yt]) #self.ax.set_zlim([zb,zt]) #if self.ptype == 'lines' and self.legend: if self.ptype == 'lines': if self.legend: leg = self.ax.legend(loc = self.legendloc) #leg.draggable() if self.xlog:self.ax.set_xscale('log') if self.ylog:self.ax.set_yscale('log') if self.xlab:self.ax.set_xlabel(self.xlab,fontsize = self.xlabsize) if self.ylab:self.ax.set_ylabel(self.ylab,fontsize = self.ylabsize) if self.zlab: if hasattr(self.ax,'set_zlabel'): self.ax.set_zlabel(self.zlab,fontsize = self.zlabsize) if self.plab:self.ax.set_title(self.plab,fontsize = self.plabsize) for tick in self.ax.xaxis.get_major_ticks(): tick.label.set_fontsize(self.xticksize) for tick in self.ax.yaxis.get_major_ticks(): tick.label.set_fontsize(self.yticksize) # represents one plot target in a plot class mplottarg(mb.mobject): # describe this target in a string def __str__(self): minx,maxx,miny,maxy,minz,maxz = self.minmax() s = ''.join((' "',str(self.name),'" - ',str(self.__class__))) s += ''.join(('\n\tresulting from request: "',str(self.req),'"')) s += ''.join(('\n\tx-data:\n\t\ton range:',str(minx),' - ',str(maxx))) s += ''.join(('\n\ty-data:\n\t\ton range:',str(miny),' - ',str(maxy))) s += ''.join(('\n\tz-data:\n\t\ton range:',str(minz),' - ',str(maxz))) return s def __init__(self,msubplot,req,*args,**kwargs): self.msub = msubplot self._def('name',req[-1],**kwargs) self._def('cmap',None,**kwargs) self._def('rast',False,**kwargs) self._def('width',2.0,**kwargs) # represents one colormesh in a plot class mplotheat(mplottarg): # given a data object for x,y, and z, store numpy arrays to plot def inp(self,x,y,z,zm,req): if type(x) != type(()): self.x = x self.y = y self.z = z self.zm = zm else: aux = x[2] if 'pspaceaxes' in aux and req[0] in aux['pspaceaxes']: axisnames = aux['pspaceaxes'] axxs = tuple(z[1].index(a) for a in axisnames) axvs = [z[0][a] for a in axxs] axds = [None for a in axisnames] axcnt = len(axisnames) if axcnt > 1: print '\nneed to set axis defaults on a reducer...' for axx in range(axcnt): nv,ax = '',axisnames[axx] axval = numpy.unique(z[0][z[1].index(ax)]) if ax == req[0] or ax == req[1]:continue if len(axval) > 1: if ax in self.name: nmsp = tuple(x.strip() for x in self.name.split('=')) nv = nmsp[nmsp.index(ax)+1] try:nv = float(nv) except:nv = '' if nv == '': axdef = numpy.unique(axvs[axx]) print 'reducer axis default:','"'+ax+'"',':',axdef print '\twith potential values:',axval #if self.msub.mplot.pipe:nv = self.msub.mplot.pipe.pop(0) if self.msub.mplot.pipe: if type(self.msub.mplot.pipe) == type([]): nv = self.msub.mplot.pipe.pop(0) else:nv = next(self.msub.mplot.pipe) else:nv = raw_input('\n\tnew value?:\t') if nv == '':nv = axval[0] try: nv = float(nv) nv = axval[spsp.locate(axval,nv)] axds[axx] = nv except:print 'axis default input ignored:',nv axss,inss = axds[:],[] axss[axisnames.index(req[0])] = None axss[axisnames.index(req[1])] = None for axx in range(len(axisnames)): if axss[axx] is None:inss.append([1 for v in axvs[axx]]) else:inss.append([1 if v == axds[axx] else 0 for v in axvs[axx]]) in_every = [(0 not in row) for row in zip(*inss)] surf = [sur for sur,ie in zip(z[0][z[1].index(req[2])],in_every) if ie] if zm is None: msurf = numpy.ones(len(surf)) elif type(zm) == type(()): msurf = [[sur for sur,ie in zip(szm[0][szm[1].index(rq)],in_every) if ie] for szm,rq in zip(zm,req[3])] else: msurf = [sur for sur,ie in zip(zm[0][zm[1].index(req[3])],in_every) if ie] xzip = zip(x[0][x[1].index(req[0])],in_every) yzip = zip(y[0][y[1].index(req[1])],in_every) dx = numpy.unique(numpy.array([j for j,ie in xzip if ie])) dy = numpy.unique(numpy.array([j for j,ie in yzip if ie])) ds = numpy.array(surf,dtype = numpy.float) if type(msurf) == type([]): dsm = [numpy.array(smsurf,dtype = numpy.float) for smsurf in msurf] else:dsm = [numpy.array(msurf,dtype = numpy.float)] #ddx,ddy = dx[1]-dx[0],dy[1]-dy[0] #dx = numpy.linspace(dx[0]-ddx/2.0,dx[-1]+ddx/2.0,dx.size+1) #dy = numpy.linspace(dy[0]-ddy/2.0,dy[-1]+ddy/2.0,dy.size+1) #dx = numpy.linspace(dx[0],dx[-1]+ddx,dx.size+1) #dy = numpy.linspace(dy[0],dy[-1]+ddy,dy.size+1) if self.msub.xlog: dx = numpy.exp(numpy.linspace( numpy.log(dx[0]),numpy.log(dx[-1]),dx.size+1)) else:dx = numpy.linspace(dx[0],dx[-1],dx.size+1) if self.msub.ylog: dy = numpy.exp(numpy.linspace( numpy.log(dy[0]),numpy.log(dy[-1]),dy.size+1)) else:dy = numpy.linspace(dy[0],dy[-1],dy.size+1) ds = ds.reshape(dx.size-1,dy.size-1) dsm = [sdsm.reshape(dx.size-1,dy.size-1) for sdsm in dsm] if axisnames.index(req[0]) < axisnames.index(req[1]): ds = ds.transpose() dsm = [sdsm.transpose() for sdsm in dsm] self.x = dx self.y = dy self.z = ds self.zm = dsm elif req[0] in x[1]: print 'simple!' raise NotImplemented else:raise ValueError self.req = req def __init__(self,msubplot,x,y,z,zm,req,*args,**kwargs): mplottarg.__init__(self,msubplot,req,*args,**kwargs) self.inp(x,y,z,zm,req) # get the min/max of the x/y data of this plot target def minmax(self): minx,maxx = self.x.min(),self.x.max() miny,maxy = self.y.min(),self.y.max() minz,maxz = self.z.min(),self.z.max() return minx,maxx,miny,maxy,minz,maxz # add a matplotlib color object to an axis for this target def render(self,ax): minx,maxx,miny,maxy,minz,maxz = self.msub.minmaxes() #zmask = (self.z >= minz) <= maxz #zmask = (self.zm >= 100) if self.msub.zmf is None:zmask = self.zm == 0 else:zmask = self.msub.zmf(*self.zm) #else:zmask = self.msub.zmf(self.zm) if self.cmap is None:cmap = plt.cm.jet else:cmap = self.cmap cmap.set_over('m',1.0) cmap.set_bad('k',1.0) cmap.set_under('c',1.0) pckws = { 'vmin':minz,'vmax':maxz,'cmap':cmap, 'linewidth':self.width,'rasterized':self.rast, } z = numpy.ma.masked_array(self.z,mask = zmask) cmesh = ax.pcolormesh(self.x,self.y,z,**pckws) #cmesh = ax.pcolor(self.x,self.y,z,**pckws) cmesh.set_edgecolor('face') xticks = numpy.linspace(self.x[0],self.x[-1],6) yticks = numpy.linspace(self.y[0],self.y[-1],6) ax.set_xticks(xticks,['%f' % numpy.round(v,2) for v in xticks]) ax.set_yticks(yticks,['%f' % numpy.round(v,2) for v in yticks]) if not minz == maxz: cb = self.msub.mplot.figure.colorbar( cmesh,extend = 'both',shrink = 0.9) cb.set_label('',fontsize = 20) for tick in cb.ax.xaxis.get_major_ticks(): tick.label.set_fontsize(20) if False: curves = 10 levels = numpy.arange(self.z.min(),self.z.max(), (1/float(curves))*(self.z.max()-self.z.min())) #ax.contour(surf,colors = 'white',levels = levels) contour = ax.contour(self.x,self.y,self.z, colors = 'white',levels = levels) ax.clabel(contour,inline=1,fontsize = 10) # represents one line in a plot class mplotline(mplottarg): # given a data object for x and y, store numpy arrays to plot def inp(self,x,y,req): if type(x) != type(()): self.x = x self.y = y else: aux = x[2] if 'pspaceaxes' in aux and req[0] in aux['pspaceaxes']: axisnames = aux['pspaceaxes'] axxs = tuple(y[1].index(a) for a in axisnames) axvs = [y[0][a] for a in axxs] axds = [None for a in axisnames] axcnt = len(axisnames) if axcnt > 1: print '\nneed to set axis defaults on a reducer...' for axx in range(axcnt): nv,ax = '',axisnames[axx] axval = numpy.unique(y[0][y[1].index(ax)]) if ax == req[0]:continue if len(axval) > 1: if ax in self.name: nmsp = tuple(x.strip() for x in self.name.split('=')) nv = nmsp[nmsp.index(ax)+1] try:nv = float(nv) except:nv = '' if nv == '': axdef = numpy.unique(axvs[axx]) print 'reducer axis default:','"'+ax+'"',':',axdef print '\twith potential values:',axval #if self.msub.mplot.pipe:nv = self.msub.mplot.pipe.pop(0) if self.msub.mplot.pipe: if type(self.msub.mplot.pipe) == type([]): nv = self.msub.mplot.pipe.pop(0) else:nv = next(self.msub.mplot.pipe) else:nv = raw_input('\n\tnew value?:\t') if nv == '':nv = axval[0] try: nv = float(nv) nv = axval[spsp.locate(axval,nv)] axds[axx] = nv except:print 'axis default input ignored:',nv axss,inss = axds[:],[] axss[axisnames.index(req[0])] = None for axx in range(len(axisnames)): if axss[axx] is None:inss.append([1 for v in axvs[axx]]) else:inss.append([1 if v == axds[axx] else 0 for v in axvs[axx]]) in_every = [(0 not in row) for row in zip(*inss)] xzip = zip(x[0][x[1].index(req[0])],in_every) yzip = zip(y[0][y[1].index(req[1])],in_every) dx = numpy.array([j for j,ie in xzip if ie]) dy = numpy.array([j for j,ie in yzip if ie]) self.x = dx self.y = dy elif req[0] in x[1]: if len(x[0].shape) == 2: self.x = x[0][x[1].index(req[0])] elif len(x[0].shape) == 3: print('extradimhack!',x[0].shape) self.x = x[0][0][x[1].index(req[0])] else:raise ValueError if len(y[0].shape) == 2: self.y = y[0][y[1].index(req[1])] elif len(y[0].shape) == 3: print('extradimhack!',y[0].shape) self.y = y[0][0][y[1].index(req[1])] else:raise ValueError #try:self.y = y[0][y[1].index(req[1])] #except:pdb.set_trace() else: pdb.set_trace() raise ValueError if not len(self.x) == len(self.y): print 'unequal data lengths for request:',req raise ValueError self.req = req def __init__(self,msubplot,x,y,req,*args,**kwargs): mplottarg.__init__(self,msubplot,req,*args,**kwargs) self._def('color','black',**kwargs) self._def('style','-',**kwargs) self._def('mark','',**kwargs) self.inp(x,y,req) # get the min/max of the x/y data of this plot target def minmax(self): if type(self.x) == type({}): minx,maxx = 0,1 miny,maxy = 0,1 minz,maxz = 0,1 else: minx,maxx = self.x.min(),self.x.max() miny,maxy = self.y.min(),self.y.max() minz,maxz = 0,1 return minx,maxx,miny,maxy,minz,maxz # add a matplotlib line object to an axis for this target def render(self,ax): largs = { 'color':self.color,'linestyle':self.style, 'linewidth':self.width,'marker':self.mark} if type(self.x) == type({}): for le in self.x['extra_trajectory']: ln,gs = le line = matplotlib.lines.Line2D(*ln,**gs) #if self.name:line.set_label(self.name) ax.add_line(line) else: line = matplotlib.lines.Line2D(self.x,self.y,**largs) if self.name:line.set_label(self.name) ax.add_line(line)
mit
liberatorqjw/scikit-learn
sklearn/decomposition/pca.py
14
22688
""" Principal Component Analysis """ # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Michael Eickenberg <[email protected]> # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_dot, fast_logdet, randomized_svd def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum: array of shape (n) data spectrum rank: int, tested rank value n_samples: int, number of samples dim: int, embedding/empirical dimension Returns ------- ll: float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data. The time complexity of this implementation is ``O(n ** 3)`` assuming n ~ n_samples ~ n_features. Parameters ---------- n_components : int, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1``, select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional When True (False by default) the `components_` vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. n_components_ : int The estimated number of components. Relevant when n_components is set to 'mle' or a number between 0 and 1 to select using explained variance. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Notes ----- For n_components='mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf Due to implementation subtleties of the Singular Value Decomposition (SVD), which is used in this implementation, running fit twice on the same matrix can lead to principal components with signs flipped (change in direction). For this reason, it is important to always use the same estimator object to transform data in a consistent fashion. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- RandomizedPCA KernelPCA SparsePCA TruncatedSVD """ def __init__(self, n_components=None, copy=True, whiten=False): self.n_components = n_components self.copy = copy self.whiten = whiten def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0]) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Fit the model on X Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- U, s, V : ndarrays The SVD of the input data, copied and centered when requested. """ X = check_array(X) n_samples, n_features = X.shape X = as_float_array(X, copy=self.copy) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) explained_variance_ = (S ** 2) / n_samples explained_variance_ratio_ = (explained_variance_ / explained_variance_.sum()) components_ = V n_components = self.n_components if n_components is None: n_components = n_features elif n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") n_components = _infer_dimension_(explained_variance_, n_samples, n_features) elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r invalid for n_features=%d" % (n_components, n_features)) if 0 < n_components < 1.0: # number of components for which the cumulated explained variance # percentage is superior to the desired threshold ratio_cumsum = explained_variance_ratio_.cumsum() n_components = np.sum(ratio_cumsum < n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < n_features: self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. # store n_samples to revert whitening when getting covariance self.n_samples_ = n_samples self.components_ = components_[:n_components] self.explained_variance_ = explained_variance_[:n_components] explained_variance_ratio_ = explained_variance_ratio_[:n_components] self.explained_variance_ratio_ = explained_variance_ratio_ self.n_components_ = n_components return (U, S, V) def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def transform(self, X): """Apply the dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ if self.whiten: return fast_dot( X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_ def score_samples(self, X): """Return the log-likelihood of each sample See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: array, shape (n_samples,) Log-likelihood of each sample under the current model """ X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X: array, shape(n_samples, n_features) The data. Returns ------- ll: float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, optional Number of iterations for the power method. 3 by default. whiten : bool, optional When True (False by default) the `components_` vectors are divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int or RandomState instance or None (default) Pseudo Random Number generator seed control. If None, use the numpy.random singleton. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. \ k is not set then all components are stored and the sum of explained \ variances is equal to 1.0 mean_ : array, [n_features] Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=3, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=3, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / n_samples full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X, y=None): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = fast_dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return fast_dot(X, self.components_.T) def inverse_transform(self, X, y=None): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ X_original = fast_dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original
bsd-3-clause
DawnEve/bio_scripts
plot/plot_distribution.py
2
1953
#!/usr/bin/env python from __future__ import print_function import argparse import sys import re import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='Plot distribution', epilog="https://github.com/shenwei356/bio_scripts") parser.add_argument('-i', '--infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help='Input file') parser.add_argument('-o', '--outfile', nargs='?', type=str, default='dist.png', help='Output file') parser.add_argument('--width', type=int, default=8, help='Figure width') parser.add_argument('--height', type=int, default=6, help='Figure heigth') parser.add_argument('--x_lim', type=str, help='x_lim. format: "1,100"') parser.add_argument('--y_lim', type=str, help='y_lim. format: "1,100"') parser.add_argument( '-t', '--title', type=str, default='Distribution Plot', help='Figure Title') parser.add_argument( '-x', '--xlabel', type=str, default='Value', help='Figure X label') parser.add_argument( '-y', '--ylabel', type=str, default='Frequency', help='Figure Y label') args = parser.parse_args() if args.y_lim and not re.match('^\d+,\d+$', args.y_lim): print("Invalid option value for --y_lim. Example: --y_lim 1,100 ", file=sys.stderr) sys.exit(1) if args.x_lim and not re.match('^\d+,\d+$', args.x_lim): print("Invalid option value for --x_lim. Example: --y_lim 1,100 ", file=sys.stderr) sys.exit(1) data = [] for line in args.infile: data.append(float(line.strip())) mpl.rc("figure", figsize=(args.width, args.height)) figure = sns.distplot(data) figure.set_title(args.title) figure.set_xlabel(args.xlabel) figure.set_ylabel(args.ylabel) if args.x_lim: figure.set_xlim([int(x) for x in args.x_lim.split(',')]) if args.y_lim: figure.set_ylim([int(y) for y in args.y_lim.split(',')]) plt.savefig(args.outfile)
mit
planet-os/notebooks
api-examples/API_client/python/lib/variables.py
1
4340
import datetime from pick import pick from API_client.python.lib.predef_locations import locations import dateutil.parser class variable: def __init__(self, varname, input_variables, scope, ds, debug=False): self.varname = varname self.ds = ds var_attrs = [i for i in input_variables if i['variableKey'] == varname] var_attrs = var_attrs[0] if 'temporalCoverage' in var_attrs: for at in ['start','end']: setattr(self, at, datetime.datetime.utcfromtimestamp(var_attrs['temporalCoverage'][at]/1e3)) for at in ['units','long_name']: if at in var_attrs: setattr(self, at, var_attrs[at]) for sc in scope: setattr(self, sc, scope[sc]) self.values = {} self.debug = debug ## This does not work in notebook mode... def get_values_interactive(self): selected_reftime = pick(self.reftimes, "select reftime: ", multi_select=True, min_selection_count=1) selected_start_time = pick(self.timesteps, "select start", min_selection_count=0) selected_end_time = pick(self.timesteps, "select end", min_selection_count=0) locations.update({'other':'lon,lat'}) selected_coords = pick(list(locations.keys()), 'select location or insert custom', min_selection_count=1) selected_count = pick([1,10,100,1000,10000], 'count', min_selection_count=1) # print("selected coordinates", selected_coords) if selected_coords[0][0] == 'other': selected_lon = input("insert lon") selected_lat = input("insert lat") assert selected_lon >= -180 assert selected_lon <= 360 assert selected_lat <= 90 assert selected_lat >= -90 else: selected_lon = locations[selected_coords[0]][0] selected_lat = locations[selected_coords[0]][1] print("Is this correct:") print("reftime:", selected_reftime) print("start:", selected_start_time) print("end:", selected_end_time) assert input("y/n: ") == "y" start_time = selected_start_time[0] self.values['testloc'] = self.ds.get_json_data_in_pandas(debug=self.debug, **{'reftime_start':selected_reftime[0][0].isoformat(), 'reftime_end':selected_reftime[-1][0].isoformat(), 'vars':self.varname, 'lon':selected_lon,'lat':selected_lat, 'count':selected_count[0]}) def get_values(self, location="Võru", reftime=None, reftime_end=None, count=10, debug=False): kwags = {} if not reftime: if self.reftimes: kwags['reftime_start'] = selected_reftime = self.reftimes[-1] else: kwags['reftime_start'] = reftime if reftime_end: kwags['reftime_end'] = reftime_end kwags['lon'] = locations[location][0] kwags['lat'] = locations[location][1] kwags['count'] = count kwags['vars'] = self.varname self.values[location] = self.ds.get_json_data_in_pandas(debug=debug, **kwags) ## **{'reftime_start':selected_reftime.isoformat(), ## 'reftime_end':reftime_end.isoformat(), ## 'vars':self.varname, ## 'lon':selected_lon,'lat':selected_lat, ## 'count':selected_count}) def get_values_analysis(self, location="Võru", reftime=None, reftime_end=None, count=10, debug=False): kwags = {} kwags['lon'] = locations[location][0] kwags['lat'] = locations[location][1] kwags['count'] = count kwags['vars'] = self.varname self.values[location] = self.ds.get_json_data_in_pandas(debug=debug, **kwags) class variables: def __init__(self, input_variables, scope, ds, debug=False): for i in input_variables: varname = i['variableKey'] setattr(self, varname.replace('-',''), variable(varname, input_variables, scope, ds))
mit
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
mit
oemof/examples
oemof_examples/oemof.solph/v0.2.x/generic_chp/bpt.py
2
2981
# -*- coding: utf-8 -*- """ General description ------------------- Example that illustrates how to use custom component `GenericCHP` can be used. In this case it is used to model a back pressure turbine. Installation requirements ------------------------- This example requires the latest version of oemof. Install by: pip install oemof """ import os import pandas as pd import oemof.solph as solph from oemof.network import Node from oemof.outputlib import processing, views try: import matplotlib.pyplot as plt except ImportError: plt = None # read sequence data full_filename = os.path.join(os.path.dirname(__file__), 'generic_chp.csv') data = pd.read_csv(full_filename, sep=",") # select periods periods = len(data)-1 # create an energy system idx = pd.date_range('1/1/2017', periods=periods, freq='H') es = solph.EnergySystem(timeindex=idx) Node.registry = es # resources bgas = solph.Bus(label='bgas') rgas = solph.Source(label='rgas', outputs={bgas: solph.Flow()}) # heat bth = solph.Bus(label='bth') # dummy source at high costs that serves the residual load source_th = solph.Source(label='source_th', outputs={bth: solph.Flow(variable_costs=1000)}) demand_th = solph.Sink(label='demand_th', inputs={bth: solph.Flow(fixed=True, actual_value=data['demand_th'], nominal_value=200)}) # power bel = solph.Bus(label='bel') demand_el = solph.Sink(label='demand_el', inputs={bel: solph.Flow( variable_costs=data['price_el'])}) # back pressure turbine with same parameters as btp # (for back pressure characteristics Q_CW_min=0 and back_pressure=True) bpt = solph.components.GenericCHP( label='back_pressure_turbine', fuel_input={bgas: solph.Flow( H_L_FG_share_max=[0.19 for p in range(0, periods)])}, electrical_output={bel: solph.Flow( P_max_woDH=[200 for p in range(0, periods)], P_min_woDH=[80 for p in range(0, periods)], Eta_el_max_woDH=[0.53 for p in range(0, periods)], Eta_el_min_woDH=[0.43 for p in range(0, periods)])}, heat_output={bth: solph.Flow( Q_CW_min=[0 for p in range(0, periods)])}, Beta=[0. for p in range(0, periods)], back_pressure=True) # create an optimization problem and solve it om = solph.Model(es) # debugging # om.write('generic_chp.lp', io_options={'symbolic_solver_labels': True}) # solve model om.solve(solver='cbc', solve_kwargs={'tee': True}) # create result object results = processing.results(om) # plot data if plt is not None: # plot PQ diagram from component results data = results[(bpt, None)]['sequences'] ax = data.plot(kind='scatter', x='Q', y='P', grid=True) ax.set_xlabel('Q (MW)') ax.set_ylabel('P (MW)') plt.show() # plot thermal bus data = views.node(results, 'bth')['sequences'] ax = data.plot(kind='line', drawstyle='steps-post', grid=True) ax.set_xlabel('Time (h)') ax.set_ylabel('Q (MW)') plt.show()
gpl-3.0
phobson/pycvc
pycvc/tests/info_tests.py
2
1388
import nose.tools as nt import pandas.util.testing as pdtest import pandas from pycvc import info def test_constants(): nt.assert_equal(info.LITERS_PER_CUBICMETER, 1000) nt.assert_equal(info.MICROGRAMS_PER_GRAM, 1000000) nt.assert_equal(info.MILLIGRAMS_PER_GRAM, 1000) def test_POC_dicts(): for poc in info.POC_dicts: expected_keys = sorted([ 'cvcname', 'bmpname', 'nsqdname', 'conc_units', 'load_units', 'load_factor', 'group', 'include' ]) keys = sorted(list(poc.keys())) nt.assert_list_equal(keys, expected_keys) nt.assert_true(poc['group'] in ['A', 'B']) nt.assert_true(poc['include'] in [True, False]) nt.assert_true(poc['conc_units']['plain'] in ['ug/L', 'mg/L', 'CFU/100 mL']) def test_getPOCs(): nt.assert_true(isinstance(info.getPOCs(), list)) def test_getPOCInfo(): nt.assert_equal( info.getPOCInfo('nsqdname', 'Copper', 'cvcname'), 'Copper (Cu)' ) @nt.raises(ValueError) def test_getPOCInfo_non_unique_result(): info.getPOCInfo('group', 'A', 'cvcname') def test_wqstd_template(): std = info.wqstd_template() nt.assert_list_equal(std.columns.tolist(), ['parameter', 'units', 'season', 'influent median']) expected_shape = (16*4, 4) #(POCs x seasons, cols) nt.assert_tuple_equal(std.shape, expected_shape)
bsd-3-clause
hrjn/scikit-learn
examples/applications/plot_out_of_core_classification.py
51
13651
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines # -------------------------------- # class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main # ---- # # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results # ------------ def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
ryfeus/lambda-packs
Tensorflow_LightGBM_Scipy_nightly/source/scipy/stats/_discrete_distns.py
5
22392
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy import special from scipy.special import entr, logsumexp, betaln, gammaln as gamln from scipy._lib._numpy_compat import broadcast_to from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh import numpy as np from ._distn_infrastructure import ( rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf, get_distribution_names) class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) for ``k`` in ``{0, 1,..., n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.binomial(n, p, self._size) def _argcheck(self, n, p): self.b = n return (n >= 0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k, n, p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q, n, p)) vals1 = np.maximum(vals - 1, 0) temp = special.bdtr(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p, moments='mv'): q = 1.0 - p mu = n * p var = n * p * q g1, g2 = None, None if 's' in moments: g1 = (q - p) / sqrt(var) if 'k' in moments: g2 = (1.0 - 6*p*q) / var return mu, var, g1, g2 def _entropy(self, n, p): k = np.r_[0:n + 1] vals = self._pmf(k, n, p) return np.sum(entr(vals), axis=0) binom = binom_gen(name='binom') class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0, 1}``. `bernoulli` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return binom_gen._rvs(self, 1, p) def _argcheck(self, p): return (p >= 0) & (p <= 1) def _logpmf(self, x, p): return binom._logpmf(x, 1, p) def _pmf(self, x, p): return binom._pmf(x, 1, p) def _cdf(self, x, p): return binom._cdf(x, 1, p) def _sf(self, x, p): return binom._sf(x, 1, p) def _ppf(self, q, p): return binom._ppf(q, 1, p) def _stats(self, p): return binom._stats(1, p) def _entropy(self, p): return entr(p) + entr(1-p) bernoulli = bernoulli_gen(b=1, name='bernoulli') class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- Negative binomial distribution describes a sequence of i.i.d. Bernoulli trials, repeated until a predefined, non-random number of successes occurs. The probability mass function of the number of failures for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters where n is the number of successes, whereas p is the probability of a single success. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n > 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + special.xlog1py(x, -p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): # skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q, n, p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom') class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return self._random_state.geometric(p, size=self._size) def _argcheck(self, p): return (p <= 1) & (p >= 0) def _pmf(self, k, p): return np.power(1-p, k-1) * p def _logpmf(self, k, p): return special.xlog1py(k - 1, -p) + log(p) def _cdf(self, x, p): k = floor(x) return -expm1(log1p(-p)*k) def _sf(self, x, p): return np.exp(self._logsf(x, p)) def _logsf(self, x, p): k = floor(x) return k*log1p(-p) def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = self._cdf(vals-1, p) return np.where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = np.polyval([1, -6, 6], p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1, name='geom', longname="A geometric") class hypergeom_gen(rv_discrete): r"""A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. `M` is the total number of objects, `n` is total number of Type I objects. The random variate represents the number of Type I objects in `N` drawn without replacement from the total population. %(before_notes)s Notes ----- The symbols used to denote the shape parameters (`M`, `n`, and `N`) are not universally accepted. See the Examples for a clarification of the definitions used here. The probability mass function is defined as, .. math:: p(k, M, n, N) = \frac{\binom{n}{k} \binom{M - n}{N - k}}{\binom{M}{N}} for :math:`k \in [\max(0, N - M + n), \min(n, N)]`, where the binomial coefficients are defined as, .. math:: \binom{n}{k} \equiv \frac{n!}{k! (n - k)!}. %(after_notes)s Examples -------- >>> from scipy.stats import hypergeom >>> import matplotlib.pyplot as plt Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return self._random_state.hypergeometric(n, M-n, N, size=self._size) def _argcheck(self, M, n, N): cond = (M > 0) & (n >= 0) & (N >= 0) cond &= (n <= M) & (N <= M) self.a = np.maximum(N-(M-n), 0) self.b = np.minimum(n, N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return betaln(good+1, 1) + betaln(bad+1,1) + betaln(tot-N+1, N+1)\ - betaln(k+1, good-k+1) - betaln(N-k+1,bad-N+k+1)\ - betaln(tot+1, 1) def _pmf(self, k, M, n, N): # same as the following but numerically more precise # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): # tot, good, sample_size = M, n, N # "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n') M, n, N = 1.*M, 1.*n, 1.*N m = M - n p = n/M mu = N*p var = m*n*N*(M - N)*1.0/(M*M*(M-1)) g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N))) g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m g2 *= (M-1)*M*M g2 += 6.*n*N*(M-N)*m*(5.*M-6) g2 /= n * N * (M-N) * m * (M-2.) * (M-3.) return mu, var, g1, g2 def _entropy(self, M, n, N): k = np.r_[N - (M - n):min(n, N) + 1] vals = self.pmf(k, M, n, N) return np.sum(entr(vals), axis=0) def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual # integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) def _logsf(self, k, M, n, N): """ More precise calculation than log(sf) """ res = [] for quant, tot, good, draw in zip(k, M, n, N): # Integration over probability mass function using logsumexp k2 = np.arange(quant + 1, draw + 1) res.append(logsumexp(self._logpmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom') # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): # looks wrong for p>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return self._random_state.logseries(p, size=self._size) def _argcheck(self, p): return (p > 0) & (p < 1) def _pmf(self, k, p): return -np.power(p, k) * 1.0 / k / special.log1p(-p) def _stats(self, p): r = special.log1p(-p) mu = p / (p - 1.0) / r mu2p = -p / r / (p - 1.0)**2 var = mu2p - mu*mu mu3p = -p / r * (1.0+p) / (1.0 - p)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / np.power(var, 1.5) mu4p = -p / r * ( 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1, name='logser', longname='A logarithmic') class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(after_notes)s %(example)s """ # Override rv_discrete._argcheck to allow mu=0. def _argcheck(self, mu): return mu >= 0 def _rvs(self, mu): return self._random_state.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = special.xlogy(k, mu) - gamln(k + 1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k, mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k, mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q, mu)) vals1 = np.maximum(vals - 1, 0) temp = special.pdtr(vals1, mu) return np.where(temp >= q, vals1, vals) def _stats(self, mu): var = mu tmp = np.asarray(mu) mu_nonzero = tmp > 0 g1 = _lazywhere(mu_nonzero, (tmp,), lambda x: sqrt(1.0/x), np.inf) g2 = _lazywhere(mu_nonzero, (tmp,), lambda x: 1.0/x, np.inf) return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson') class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k) for ``k*lambda_ >= 0``. `planck` takes ``lambda_`` as shape parameter. %(after_notes)s %(example)s """ def _argcheck(self, lambda_): self.a = np.where(lambda_ > 0, 0, -np.inf) self.b = np.where(lambda_ > 0, np.inf, 0) return lambda_ != 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _sf(self, x, lambda_): return np.exp(self._logsf(x, lambda_)) def _logsf(self, x, lambda_): k = floor(x) return -lambda_*(k+1) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck', longname='A discrete exponential ') class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N)) for ``k = 0,..., N-1``. `boltzmann` takes ``lambda_`` and ``N`` as shape parameters. %(after_notes)s %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann', longname='A truncated discrete exponential ') class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(high - low) for ``k = low, ..., high - 1``. `randint` takes ``low`` and ``high`` as shape parameters. %(after_notes)s %(example)s """ def _argcheck(self, low, high): self.a = low self.b = high - 1 return (high > low) def _pmf(self, k, low, high): p = np.ones_like(k) / (high - low) return np.where((k >= low) & (k < high), p, 0.) def _cdf(self, x, low, high): k = floor(x) return (k - low + 1.) / (high - low) def _ppf(self, q, low, high): vals = ceil(q * (high - low) + low) - 1 vals1 = (vals - 1).clip(low, high) temp = self._cdf(vals1, low, high) return np.where(temp >= q, vals1, vals) def _stats(self, low, high): m2, m1 = np.asarray(high), np.asarray(low) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d*d - 1) / 12.0 g1 = 0.0 g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0) return mu, var, g1, g2 def _rvs(self, low, high): """An array of *size* random integers >= ``low`` and < ``high``.""" if self._size is not None: # Numpy's RandomState.randint() doesn't broadcast its arguments. # Use `broadcast_to()` to extend the shapes of low and high # up to self._size. Then we can use the numpy.vectorize'd # randint without needing to pass it a `size` argument. low = broadcast_to(low, self._size) high = broadcast_to(high, self._size) randint = np.vectorize(self._random_state.randint, otypes=[np.int_]) return randint(low, high) def _entropy(self, low, high): return log(high - low) randint = randint_gen(name='randint', longname='A discrete uniform ' '(random integer)') # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k, a) = 1/(zeta(a) * k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, a): return self._random_state.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / special.zeta(a, 1) / k**a return Pk def _munp(self, n, a): return _lazywhere( a > n + 1, (a, n), lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1), np.inf) zipf = zipf_gen(a=1, name='zipf', longname='A Zipf') class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a > 0``. `dlaplace` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _pmf(self, k, a): return tanh(a/2.0) * exp(-a * abs(k)) def _cdf(self, x, a): k = floor(x) f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1) f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1) return _lazywhere(k >= 0, (k, a), f=f, f2=f2) def _ppf(self, q, a): const = 1 + exp(a) vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1, -log((1-q) * const) / a)) vals1 = vals - 1 return np.where(self._cdf(vals1, a) >= q, vals1, vals) def _stats(self, a): ea = exp(a) mu2 = 2.*ea/(ea-1.)**2 mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4 return 0., mu2, 0., mu4/mu2**2 - 3. def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-np.inf, name='dlaplace', longname='A discrete Laplacian') class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, mu1, mu2): n = self._size return (self._random_state.poisson(mu1, n) - self._random_state.poisson(mu2, n)) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2, _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2) # ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = floor(x) px = np.where(x < 0, _ncx2_cdf(2*mu2, -2*x, 2*mu1), 1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2)) return px def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam') # Collect names of classes and objects in this module. pairs = list(globals().items()) _distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete) __all__ = _distn_names + _distn_gen_names
mit
chenyyx/scikit-learn-doc-zh
examples/zh/applications/plot_tomography_l1_reconstruction.py
27
5478
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x].astype(np.float64) center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36 x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2.) ** 2 + (y - l / 2.) ** 2 < (l / 2.) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return np.logical_xor(res, ndimage.binary_erosion(res)) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
gpl-3.0
stkubr/zipline
zipline/examples/dual_ema_talib.py
3
3149
#!/usr/bin/env python # # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ # Import exponential moving average from talib wrapper from zipline.transforms.ta import EMA def initialize(context): context.security = symbol('AAPL') # Add 2 mavg transforms, one with a long window, one with a short window. context.short_ema_trans = EMA(timeperiod=20) context.long_ema_trans = EMA(timeperiod=40) # To keep track of whether we invested in the stock or not context.invested = False def handle_data(context, data): short_ema = context.short_ema_trans.handle_data(data) long_ema = context.long_ema_trans.handle_data(data) if short_ema is None or long_ema is None: return buy = False sell = False if (short_ema > long_ema).all() and not context.invested: order(context.security, 100) context.invested = True buy = True elif (short_ema < long_ema).all() and context.invested: order(context.security, -100) context.invested = False sell = True record(AAPL=data[context.security].price, short_ema=short_ema[context.security], long_ema=long_ema[context.security], buy=buy, sell=sell) if __name__ == '__main__': from datetime import datetime import matplotlib.pyplot as plt import pytz from zipline.algorithm import TradingAlgorithm from zipline.api import order, record, symbol from zipline.utils.factory import load_from_yahoo start = datetime(2014, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2014, 11, 1, 0, 0, 0, 0, pytz.utc) data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) algo = TradingAlgorithm(initialize=initialize, handle_data=handle_data) results = algo.run(data).dropna() fig = plt.figure() ax1 = fig.add_subplot(211, ylabel='portfolio value') results.portfolio_value.plot(ax=ax1) ax2 = fig.add_subplot(212) results[['AAPL', 'short_ema', 'long_ema']].plot(ax=ax2) ax2.plot(results.ix[results.buy].index, results.short_ema[results.buy], '^', markersize=10, color='m') ax2.plot(results.ix[results.sell].index, results.short_ema[results.sell], 'v', markersize=10, color='k') plt.legend(loc=0) plt.gcf().set_size_inches(18, 8) plt.show()
apache-2.0
sanketloke/scikit-learn
examples/ensemble/plot_feature_transformation.py
115
4327
""" =============================================== Feature transformations with ensembles of trees =============================================== Transform your features into a higher dimensional, sparse space. Then train a linear model on these features. First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf indices are then encoded in a one-hot fashion. Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is encoded by setting feature values for these leaves to 1 and the other feature values to 0. The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data. """ # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np np.random.seed(10) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier) from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.pipeline import make_pipeline n_estimator = 10 X, y = make_classification(n_samples=80000) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # It is important to train the ensemble of trees on a different subset # of the training data than the linear regression model to avoid # overfitting, in particular if the total number of leaves is # similar to the number of training samples X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.5) # Unsupervised transformation based on totally random trees rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator, random_state=0) rt_lm = LogisticRegression() pipeline = make_pipeline(rt, rt_lm) pipeline.fit(X_train, y_train) y_pred_rt = pipeline.predict_proba(X_test)[:, 1] fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt) # Supervised transformation based on random forests rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator) rf_enc = OneHotEncoder() rf_lm = LogisticRegression() rf.fit(X_train, y_train) rf_enc.fit(rf.apply(X_train)) rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr) y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1] fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm) grd = GradientBoostingClassifier(n_estimators=n_estimator) grd_enc = OneHotEncoder() grd_lm = LogisticRegression() grd.fit(X_train, y_train) grd_enc.fit(grd.apply(X_train)[:, :, 0]) grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr) y_pred_grd_lm = grd_lm.predict_proba( grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1] fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm) # The gradient boosted model by itself y_pred_grd = grd.predict_proba(X_test)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd) # The random forest model by itself y_pred_rf = rf.predict_proba(X_test)[:, 1] fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best') plt.show() plt.figure(2) plt.xlim(0, 0.2) plt.ylim(0.8, 1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve (zoomed in at top left)') plt.legend(loc='best') plt.show()
bsd-3-clause
deepfield/ibis
ibis/__init__.py
1
4468
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa import sys from multipledispatch import halt_ordering, restart_ordering import ibis.config_init import ibis.util as util import ibis.expr.api as api import ibis.expr.types as ir from ibis.config import options from ibis.common import IbisError from ibis.compat import suppress from ibis.filesystems import HDFS, WebHDFS # __all__ is defined from ibis.expr.api import * # speeds up signature registration halt_ordering() # pandas backend is mandatory import ibis.pandas.api as pandas with suppress(ImportError): # pip install ibis-framework[csv] import ibis.file.csv as csv with suppress(ImportError): # pip install ibis-framework[parquet] import ibis.file.parquet as parquet with suppress(ImportError): # pip install ibis-framework[hdf5] import ibis.file.hdf5 as hdf5 with suppress(ImportError): # pip install ibis-framework[impala] import ibis.impala.api as impala with suppress(ImportError): # pip install ibis-framework[sqlite] import ibis.sql.sqlite.api as sqlite with suppress(ImportError): # pip install ibis-framework[postgres] import ibis.sql.postgres.api as postgres with suppress(ImportError): # pip install ibis-framework[mysql] import ibis.sql.mysql.api as mysql with suppress(ImportError): # pip install ibis-framework[clickhouse] import ibis.clickhouse.api as clickhouse with suppress(ImportError): # pip install ibis-framework[bigquery] import ibis.bigquery.api as bigquery with suppress(ImportError): # pip install ibis-framework[mapd] if sys.version_info.major < 3: raise ImportError('The MapD backend is not supported under Python 2.') import ibis.mapd.api as mapd restart_ordering() def hdfs_connect(host='localhost', port=50070, protocol='webhdfs', use_https='default', auth_mechanism='NOSASL', verify=True, **kwds): """ Connect to HDFS Parameters ---------- host : string, Host name of the HDFS NameNode port : int, NameNode's WebHDFS port (default 50070) protocol : {'webhdfs'} use_https : boolean, default 'default' Connect to WebHDFS with HTTPS, otherwise plain HTTP. For secure authentication, the default for this is True, otherwise False auth_mechanism : string, Set to NOSASL or PLAIN for non-secure clusters. Set to GSSAPI or LDAP for Kerberos-secured clusters. verify : boolean, Set to False to turn off verifying SSL certificates. (default True) Other keywords are forwarded to hdfs library classes Returns ------- client : WebHDFS """ import requests session = kwds.setdefault('session', requests.Session()) session.verify = verify if auth_mechanism in ['GSSAPI', 'LDAP']: if use_https == 'default': prefix = 'https' else: prefix = 'https' if use_https else 'http' try: import requests_kerberos except ImportError: raise IbisError( "Unable to import requests-kerberos, which is required for " "Kerberos HDFS support. Install it by executing `pip install " "requests-kerberos` or `pip install hdfs[kerberos]`.") from hdfs.ext.kerberos import KerberosClient # note SSL url = '{0}://{1}:{2}'.format(prefix, host, port) kwds.setdefault('mutual_auth', 'OPTIONAL') hdfs_client = KerberosClient(url, **kwds) else: if use_https == 'default': prefix = 'http' else: prefix = 'https' if use_https else 'http' from hdfs.client import InsecureClient url = '{0}://{1}:{2}'.format(prefix, host, port) hdfs_client = InsecureClient(url, **kwds) return WebHDFS(hdfs_client) from ._version import get_versions __version__ = get_versions()['version'] del get_versions
apache-2.0
numeristical/introspective
docs/conf.py
1
10191
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # ML Insights documentation build configuration file, created by # sphinx-quickstart on Wed Nov 9 13:32:07 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../ml_insights')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' import sphinx_rtd_theme # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'ML Insights' copyright = '2020, Brian Lucena and Ramesh Sampath' author = 'Brian Lucena and Ramesh Sampath' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1.0' # The full version, including alpha/beta/rc tags. release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = 'ML Insights v0.0.2' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'MLInsightsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'MLInsights.tex', 'ML Insights Documentation', 'Brian Lucena and Ramesh Sampath', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mlinsights', 'ML Insights Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # mock imports autodoc_mock_imports = ["sklearn"] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'MLInsights', 'ML Insights Documentation', author, 'MLInsights', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False
mit
Event38/MissionPlanner
Lib/site-packages/numpy/lib/polynomial.py
58
35930
""" Functions to operate on polynomials. """ __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import isscalar, abs, finfo, atleast_1d, hstack from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag from numpy.linalg import eigvals, lstsq class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: pass else: raise ValueError, "input must be 1d or square 2d array." if len(seq_of_zeros) == 0: return 1.0 a = [1] for k in range(len(seq_of_zeros)): a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0,roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like of shape(M,) Rank-1 array of polynomial co-efficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError: When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] Wikipedia, "Companion matrix", http://en.wikipedia.org/wiki/Companion_matrix Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError,"Input must be a rank-1 array." # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : {array_like, poly1d} Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : {None, list of `m` scalars, scalar}, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError, "Order of integral must be positive (see polyder)" if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError, \ "k must be a scalar or a rank-1 array of length 1 or >m." truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError, "Order of derivative must be positive (see polyint)" truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : present only if `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[n] + ... + x[0] * p[1] + p[0] = y[0] x[1]**n * p[n] + ... + x[1] * p[1] + p[0] = y[1] ... x[k]**n * p[n] + ... + x[k] * p[1] + p[0] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError, "expected deg >= 0" if x.ndim != 1: raise TypeError, "expected 1D vector for x" if x.size == 0: raise TypeError, "expected non-empty vector for x" if y.ndim < 1 or y.ndim > 2 : raise TypeError, "expected 1D or 2D array for y" if x.shape[0] != y.shape[0] : raise TypeError, "expected x and y to have same length" # set rcond if rcond is None : rcond = len(x)*finfo(x.dtype).eps # scale x to improve condition number scale = abs(x).max() if scale != 0 : x /= scale # solve least squares equation for powers of x v = vander(x, order) c, resids, rank, s = lstsq(v, y, rcond) # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) # scale returned coefficients if scale != 0 : if c.ndim == 1 : c /= vander([scale], order)[0] else : c /= vander([scale], order).T if full : return c, resids, rank, s, rcond else : return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = x * y + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1,a2 = poly1d(a1),poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while 1: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2)+len(toadd2) > wrap) or \ (len(line1)+len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError, "Polynomial must be 1d only." c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError, "Power to non-negative integers only." res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): return NX.alltrue(self.coeffs == other.coeffs) def __ne__(self, other): return NX.any(self.coeffs != other.coeffs) def __setattr__(self, key, val): raise ValueError, "Attributes cannot be changed this way." def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c','coef','coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError, "Does not support negative powers." if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always',RankWarning)
gpl-3.0
murali-munna/scikit-learn
sklearn/neighbors/regression.py
106
10572
"""Nearest Neighbor Regression""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin from .base import RadiusNeighborsMixin, SupervisedFloatMixin from ..base import RegressorMixin from ..utils import check_array class KNeighborsRegressor(NeighborsBase, KNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsRegressor >>> neigh = KNeighborsRegressor(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors RadiusNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array or matrix, shape = [n_samples, n_features] Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.mean(_y[neigh_ind], axis=1) else: y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float) denom = np.sum(weights, axis=1) for j in range(_y.shape[1]): num = np.sum(_y[neigh_ind, j] * weights, axis=1) y_pred[:, j] = num / denom if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on neighbors within a fixed radius. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsRegressor >>> neigh = RadiusNeighborsRegressor(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors KNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array or matrix, shape = [n_samples, n_features] Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.radius_neighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.array([np.mean(_y[ind, :], axis=0) for ind in neigh_ind]) else: y_pred = np.array([(np.average(_y[ind, :], axis=0, weights=weights[i])) for (i, ind) in enumerate(neigh_ind)]) if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
DanielTakeshi/rl_algorithms
bc/plot_bc.py
1
7597
""" (c) April 2017 by Daniel Seita Code for plotting behavioral cloning. No need to use command line arguments, just run `python plot_bc.py`. Easy! Right now it generates two figures per environment, one with validation set losses and the other with returns. The latter is probably more interesting. """ import argparse import gym import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os import pickle import sys np.set_printoptions(edgeitems=100, linewidth=100, suppress=True) # Some matplotlib settings. plt.style.use('seaborn-darkgrid') error_region_alpha = 0.25 LOGDIR = 'logs/' FIGDIR = 'figures/' title_size = 22 tick_size = 17 legend_size = 17 ysize = 18 xsize = 18 lw = 3 ms = 8 colors = ['red', 'blue', 'yellow', 'black'] def plot_bc_modern(edir): """ Plot the results for this particular environment. """ subdirs = os.listdir(LOGDIR+edir) print("plotting subdirs {}".format(subdirs)) # Make it easy to count how many of each numrollouts we have. R_TO_COUNT = {'4':0, '11':0, '18':0, '25':0} R_TO_IJ = {'4':(0,2), '11':(1,0), '18':(1,1), '25':(1,2)} fig,axarr = plt.subplots(2, 3, figsize=(24,15)) axarr[0,2].set_title(edir+", Returns, 4 Rollouts", fontsize=title_size) axarr[1,0].set_title(edir+", Returns, 11 Rollouts", fontsize=title_size) axarr[1,1].set_title(edir+", Returns, 18 Rollouts", fontsize=title_size) axarr[1,2].set_title(edir+", Returns, 25 Rollouts", fontsize=title_size) # Don't forget to plot the expert performance! exp04 = np.mean(np.load("expert_data/"+edir+"_004.npy")[()]['returns']) exp11 = np.mean(np.load("expert_data/"+edir+"_011.npy")[()]['returns']) exp18 = np.mean(np.load("expert_data/"+edir+"_018.npy")[()]['returns']) axarr[0,2].axhline(y=exp04, color='brown', lw=lw, linestyle='--', label='expert') axarr[1,0].axhline(y=exp11, color='brown', lw=lw, linestyle='--', label='expert') axarr[1,1].axhline(y=exp18, color='brown', lw=lw, linestyle='--', label='expert') if 'Reacher' not in edir: exp25 = np.mean(np.load("expert_data/"+edir+"_025.npy")[()]['returns']) axarr[1,2].axhline(y=exp25, color='brown', lw=lw, linestyle='--', label='expert') for dd in subdirs: ddsplit = dd.split("_") # `dd` is of the form `numroll_X_seed_Y` numroll, seed = ddsplit[1], ddsplit[3] xcoord = np.load(LOGDIR+edir+"/"+dd+"/iters.npy") tr_loss = np.load(LOGDIR+edir+"/"+dd+"/tr_loss.npy") val_loss = np.load(LOGDIR+edir+"/"+dd+"/val_loss.npy") returns = np.load(LOGDIR+edir+"/"+dd+"/returns.npy") mean_ret = np.mean(returns, axis=1) std_ret = np.std(returns, axis=1) # Playing with dictionaries ijcoord = R_TO_IJ[numroll] cc = colors[ R_TO_COUNT[numroll] ] R_TO_COUNT[numroll] += 1 axarr[ijcoord].plot(xcoord, mean_ret, lw=lw, color=cc, label=dd) axarr[ijcoord].fill_between(xcoord, mean_ret-std_ret, mean_ret+std_ret, alpha=error_region_alpha, facecolor=cc) # Cram the training and validation losses on these subplots. axarr[0,0].plot(xcoord, tr_loss, lw=lw, label=dd) axarr[0,1].plot(xcoord, val_loss, lw=lw, label=dd) boring_stuff(axarr, edir) plt.tight_layout() plt.savefig(FIGDIR+edir+".png") def plot_bc_humanoid(edir): """ Plots humanoid. The argument here is kind of redundant... also, I guess we'll have to ignore one of the plots here since Humanoid will have 5 subplots. Yeah, it's a bit awkward. """ assert edir == "Humanoid-v1" subdirs = os.listdir(LOGDIR+edir) print("plotting subdirs {}".format(subdirs)) # Make it easy to count how many of each numrollouts we have. R_TO_COUNT = {'80':0, '160':0, '240':0} R_TO_IJ = {'80':(1,0), '160':(1,1), '240':(1,2)} fig,axarr = plt.subplots(2, 3, figsize=(24,15)) axarr[0,2].set_title("Empty Plot", fontsize=title_size) axarr[1,0].set_title(edir+", Returns, 80 Rollouts", fontsize=title_size) axarr[1,1].set_title(edir+", Returns, 160 Rollouts", fontsize=title_size) axarr[1,2].set_title(edir+", Returns, 240 Rollouts", fontsize=title_size) # Plot expert performance (um, this takes a while...). exp080 = np.mean(np.load("expert_data/"+edir+"_080.npy")[()]['returns']) exp160 = np.mean(np.load("expert_data/"+edir+"_160.npy")[()]['returns']) exp240 = np.mean(np.load("expert_data/"+edir+"_240.npy")[()]['returns']) axarr[1,0].axhline(y=exp080, color='brown', lw=lw, linestyle='--', label='expert') axarr[1,1].axhline(y=exp160, color='brown', lw=lw, linestyle='--', label='expert') axarr[1,2].axhline(y=exp240, color='brown', lw=lw, linestyle='--', label='expert') for dd in subdirs: ddsplit = dd.split("_") # `dd` is of the form `numroll_X_seed_Y` numroll, seed = ddsplit[1], ddsplit[3] xcoord = np.load(LOGDIR+edir+"/"+dd+"/iters.npy") tr_loss = np.load(LOGDIR+edir+"/"+dd+"/tr_loss.npy") val_loss = np.load(LOGDIR+edir+"/"+dd+"/val_loss.npy") returns = np.load(LOGDIR+edir+"/"+dd+"/returns.npy") mean_ret = np.mean(returns, axis=1) std_ret = np.std(returns, axis=1) # Playing with dictionaries ijcoord = R_TO_IJ[numroll] cc = colors[ R_TO_COUNT[numroll] ] R_TO_COUNT[numroll] += 1 axarr[ijcoord].plot(xcoord, mean_ret, lw=lw, color=cc, label=dd) axarr[ijcoord].fill_between(xcoord, mean_ret-std_ret, mean_ret+std_ret, alpha=error_region_alpha, facecolor=cc) # Cram the training and validation losses on these subplots. axarr[0,0].plot(xcoord, tr_loss, lw=lw, label=dd) axarr[0,1].plot(xcoord, val_loss, lw=lw, label=dd) boring_stuff(axarr, edir) plt.tight_layout() plt.savefig(FIGDIR+edir+".png") def boring_stuff(axarr, edir): """ Axes, titles, legends, etc. Yeah yeah ... """ for i in range(2): for j in range(3): if i == 0 and j == 0: axarr[i,j].set_ylabel("Loss Training MBs", fontsize=ysize) if i == 0 and j == 1: axarr[i,j].set_ylabel("Loss Validation Set", fontsize=ysize) else: axarr[i,j].set_ylabel("Average Return", fontsize=ysize) axarr[i,j].set_xlabel("Training Minibatches", fontsize=xsize) axarr[i,j].tick_params(axis='x', labelsize=tick_size) axarr[i,j].tick_params(axis='y', labelsize=tick_size) axarr[i,j].legend(loc="best", prop={'size':legend_size}) axarr[i,j].legend(loc="best", prop={'size':legend_size}) axarr[0,0].set_title(edir+", Training Losses", fontsize=title_size) axarr[0,1].set_title(edir+", Validation Losses", fontsize=title_size) axarr[0,0].set_yscale('log') axarr[0,1].set_yscale('log') def plot_bc(e): """ Split into cases. It makes things easier for me. """ env_to_method = {'Ant-v1': plot_bc_modern, 'HalfCheetah-v1': plot_bc_modern, 'Hopper-v1': plot_bc_modern, 'Walker2d-v1': plot_bc_modern, 'Reacher-v1': plot_bc_modern, 'Humanoid-v1': plot_bc_humanoid} env_to_method[e](e) if __name__ == "__main__": env_dirs = [e for e in os.listdir(LOGDIR) if "text" not in e] print("Plotting with one figure per env_dirs = {}".format(env_dirs)) for e in env_dirs: plot_bc(e)
mit
GraphProcessor/CommunityDetectionCodes
Prensentation/algorithms/clique_percolation/conradlee_clique_percolation.py
1
4027
from collections import defaultdict import networkx as nx from networkx.drawing.nx_agraph import graphviz_layout import matplotlib.pyplot as plt def get_percolated_cliques(G, k): def get_percolation_graph(): percolation_graph = nx.Graph() cliques = [frozenset(c) for c in nx.find_cliques(G) if len(c) >= k] print 'first max cliques:', cliques percolation_graph.add_nodes_from(cliques) # First index which nodes are in which cliques membership_dict = defaultdict(list) for clique in cliques: for node in clique: membership_dict[node].append(clique) # For each clique, see which adjacent cliques percolate for clique in cliques: def get_adjacent_cliques(clique, membership_dict): adjacent_cliques = set() for n in clique: for adj_clique in membership_dict[n]: if clique != adj_clique: adjacent_cliques.add(adj_clique) return adjacent_cliques for adj_clique in get_adjacent_cliques(clique, membership_dict): if len(clique.intersection(adj_clique)) >= (k - 1): percolation_graph.add_edge(clique, adj_clique) print '\npercolation graph nodes:', percolation_graph.nodes() print 'percolation graph edges:', percolation_graph.edges() return percolation_graph percolation_graph = get_percolation_graph() pos = nx.circular_layout(percolation_graph) comm_dict = {} # nx.draw(percolation_graph, , with_labels=True, node_size=500) # # Connected components of clique graph with perc edges # are the percolated cliques for idx, component in enumerate(nx.connected_components(percolation_graph)): print idx, component comm_dict[idx] = list(component) yield (frozenset.union(*component)) color_list = ['r', 'g', 'b', 'y'] # nodes for comm_id in comm_dict: nx.draw_networkx_nodes(percolation_graph, pos, nodelist=comm_dict[comm_id], node_color=color_list[comm_id], node_size=3000, alpha=0.4, node_shape='h', ) node_label_dict = {} for node in percolation_graph.nodes(): node_label_dict[node] = str(sorted(list(node))) nx.draw_networkx_labels(percolation_graph, pos, labels=node_label_dict, font_size=20) edge_label_dict = {} for edge in percolation_graph.edges(): edge_label_dict[edge] = str(list(frozenset.intersection(edge[0], edge[1]))) plt.axis('off') plt.savefig('./percolation_graph.pdf', bbox_inches='tight', pad_inches=0, transparent=True) plt.savefig('./percolation_graph.png', bbox_inches='tight', pad_inches=0, transparent=True) plt.show() def draw_with_edges(): for comm_id in comm_dict: nx.draw_networkx_nodes(percolation_graph, pos, nodelist=comm_dict[comm_id], node_color=color_list[comm_id], node_size=3000, alpha=0.4, node_shape='h', ) node_label_dict = {} for node in percolation_graph.nodes(): node_label_dict[node] = str(sorted(list(node))) nx.draw_networkx_labels(percolation_graph, pos, labels=node_label_dict, font_size=20) nx.draw_networkx_edges(percolation_graph, pos, width=2, edge_color='grey') nx.draw_networkx_edge_labels(percolation_graph, pos, edge_labels=edge_label_dict, font_size=20) plt.axis('off') plt.savefig('./percolation_graph_with_edges.pdf', bbox_inches='tight', pad_inches=0, transparent=True) plt.savefig('./percolation_graph_with_edges.png', bbox_inches='tight', pad_inches=0, transparent=True) plt.show() draw_with_edges() if __name__ == '__main__': # data_graph = nx.karate_club_graph() data_graph = nx.read_edgelist('example_edge_list.txt', nodetype=int) comm_list = list(get_percolated_cliques(data_graph, 3)) print '\ncomm list:', comm_list
gpl-2.0
thomasaarholt/hyperspy
hyperspy/drawing/_markers/horizontal_line_segment.py
4
3559
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt from hyperspy.drawing.marker import MarkerBase class HorizontalLineSegment(MarkerBase): """Horizontal line segment marker that can be added to the signal figure Parameters ---------- x1 : array or float The position of the start of the line segment in x. If float, the marker is fixed. If array, the marker will be updated when navigating. The array should have the same dimensions in the navigation axes. x2 : array or float The position of the end of the line segment in x. see x1 arguments y : array or float The position of line segment in y. see x1 arguments kwargs : Keywords argument of axvline valid properties (i.e. recognized by mpl.plot). Example ------- >>> im = hs.signals.Signal2D(np.zeros((100, 100))) >>> m = hs.plot.markers.horizontal_line_segment( >>> x1=20, x2=70, y=70, linewidth=4, color='red', linestyle='dotted') >>> im.add_marker(m) Adding a marker permanently to a signal >>> im = hs.signals.Signal2D(np.zeros((100, 100))) >>> m = hs.plot.markers.horizontal_line_segment( >>> x1=10, x2=30, y=42, linewidth=4, color='red', linestyle='dotted') >>> im.add_marker(m, permanent=True) """ def __init__(self, x1, x2, y, **kwargs): MarkerBase.__init__(self) lp = {'color': 'black', 'linewidth': 1} self.marker_properties = lp self.set_data(x1=x1, x2=x2, y1=y) self.set_marker_properties(**kwargs) self.name = 'horizontal_line_segment' def __repr__(self): string = "<marker.{}, {} (x1={},x2={},y={},color={})>".format( self.__class__.__name__, self.name, self.get_data_position('x1'), self.get_data_position('x2'), self.get_data_position('y1'), self.marker_properties['color'], ) return(string) def update(self): if self.auto_update is False: return self._update_segment() def _plot_marker(self): self.marker = self.ax.vlines(0, 0, 1, **self.marker_properties) self._update_segment() def _update_segment(self): segments = self.marker.get_segments() segments[0][0, 1] = self.get_data_position('y1') segments[0][1, 1] = segments[0][0, 1] if self.get_data_position('x1') is None: segments[0][0, 0] = plt.getp(self.marker.axes, 'xlim')[0] else: segments[0][0, 0] = self.get_data_position('x1') if self.get_data_position('x2') is None: segments[0][1, 0] = plt.getp(self.marker.axes, 'xlim')[1] else: segments[0][1, 0] = self.get_data_position('x2') self.marker.set_segments(segments)
gpl-3.0
teonlamont/mne-python
mne/label.py
2
86926
# Authors: Alexandre Gramfort <[email protected]> # Martin Luessi <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) from collections import defaultdict from colorsys import hsv_to_rgb, rgb_to_hsv from os import path as op import os import copy as cp import re import numpy as np from scipy import linalg, sparse from .utils import get_subjects_dir, _check_subject, logger, verbose, warn,\ check_random_state from .source_estimate import (morph_data, SourceEstimate, _center_of_mass, spatial_src_connectivity) from .source_space import add_source_space_distances from .surface import read_surface, fast_cross_3d, mesh_edges, mesh_dist from .source_space import SourceSpaces from .parallel import parallel_func, check_n_jobs from .stats.cluster_level import _find_clusters, _get_components from .externals.six import b, string_types from .externals.six.moves import zip, xrange def _blend_colors(color_1, color_2): """Blend two colors in HSV space. Parameters ---------- color_1, color_2 : None | tuple RGBA tuples with values between 0 and 1. None if no color is available. If both colors are None, the output is None. If only one is None, the output is the other color. Returns ------- color : None | tuple RGBA tuple of the combined color. Saturation, value and alpha are averaged, whereas the new hue is determined as angle half way between the two input colors' hues. """ if color_1 is None and color_2 is None: return None elif color_1 is None: return color_2 elif color_2 is None: return color_1 r_1, g_1, b_1, a_1 = color_1 h_1, s_1, v_1 = rgb_to_hsv(r_1, g_1, b_1) r_2, g_2, b_2, a_2 = color_2 h_2, s_2, v_2 = rgb_to_hsv(r_2, g_2, b_2) hue_diff = abs(h_1 - h_2) if hue_diff < 0.5: h = min(h_1, h_2) + hue_diff / 2. else: h = max(h_1, h_2) + (1. - hue_diff) / 2. h %= 1. s = (s_1 + s_2) / 2. v = (v_1 + v_2) / 2. r, g, b = hsv_to_rgb(h, s, v) a = (a_1 + a_2) / 2. color = (r, g, b, a) return color def _split_colors(color, n): """Create n colors in HSV space that occupy a gradient in value. Parameters ---------- color : tuple RGBA tuple with values between 0 and 1. n : int >= 2 Number of colors on the gradient. Returns ------- colors : tuple of tuples, len = n N RGBA tuples that occupy a gradient in value (low to high) but share saturation and hue with the input color. """ r, g, b, a = color h, s, v = rgb_to_hsv(r, g, b) gradient_range = np.sqrt(n / 10.) if v > 0.5: v_max = min(0.95, v + gradient_range / 2) v_min = max(0.05, v_max - gradient_range) else: v_min = max(0.05, v - gradient_range / 2) v_max = min(0.95, v_min + gradient_range) hsv_colors = ((h, s, v_) for v_ in np.linspace(v_min, v_max, n)) rgb_colors = (hsv_to_rgb(h_, s_, v_) for h_, s_, v_ in hsv_colors) rgba_colors = ((r_, g_, b_, a,) for r_, g_, b_ in rgb_colors) return tuple(rgba_colors) def _n_colors(n, bytes_=False, cmap='hsv'): """Produce a list of n unique RGBA color tuples based on a colormap. Parameters ---------- n : int Number of colors. bytes : bool Return colors as integers values between 0 and 255 (instead of floats between 0 and 1). cmap : str Which colormap to use. Returns ------- colors : array, shape (n, 4) RGBA color values. """ n_max = 2 ** 10 if n > n_max: raise NotImplementedError("Can't produce more than %i unique " "colors" % n_max) from matplotlib.cm import get_cmap cm = get_cmap(cmap, n_max) pos = np.linspace(0, 1, n, False) colors = cm(pos, bytes=bytes_) if bytes_: # make sure colors are unique for ii, c in enumerate(colors): if np.any(np.all(colors[:ii] == c, 1)): raise RuntimeError('Could not get %d unique colors from %s ' 'colormap. Try using a different colormap.' % (n, cmap)) return colors class Label(object): """A FreeSurfer/MNE label with vertices restricted to one hemisphere. Labels can be combined with the ``+`` operator: * Duplicate vertices are removed. * If duplicate vertices have conflicting position values, an error is raised. * Values of duplicate vertices are summed. Parameters ---------- vertices : array (length N) vertex indices (0 based). pos : array (N by 3) | None locations in meters. If None, then zeros are used. values : array (length N) | None values at the vertices. If None, then ones are used. hemi : 'lh' | 'rh' Hemisphere to which the label applies. comment : str Kept as information but not used by the object itself. name : str Kept as information but not used by the object itself. filename : str Kept as information but not used by the object itself. subject : str | None Name of the subject the label is from. color : None | matplotlib color Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red). verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Attributes ---------- color : None | tuple Default label color, represented as RGBA tuple with values between 0 and 1. comment : str Comment from the first line of the label file. hemi : 'lh' | 'rh' Hemisphere. name : None | str A name for the label. It is OK to change that attribute manually. pos : array, shape = (n_pos, 3) Locations in meters. subject : str | None Subject name. It is best practice to set this to the proper value on initialization, but it can also be set manually. values : array, len = n_pos Values at the vertices. verbose : bool, str, int, or None See above. vertices : array, len = n_pos Vertex indices (0 based) """ @verbose def __init__(self, vertices, pos=None, values=None, hemi=None, comment="", name=None, filename=None, subject=None, color=None, verbose=None): # noqa: D102 # check parameters if not isinstance(hemi, string_types): raise ValueError('hemi must be a string, not %s' % type(hemi)) vertices = np.asarray(vertices, int) if np.any(np.diff(vertices.astype(int)) <= 0): raise ValueError('Vertices must be ordered in increasing order.') if color is not None: from matplotlib.colors import colorConverter color = colorConverter.to_rgba(color) if values is None: values = np.ones(len(vertices)) else: values = np.asarray(values) if pos is None: pos = np.zeros((len(vertices), 3)) else: pos = np.asarray(pos) if not (len(vertices) == len(values) == len(pos)): raise ValueError("vertices, values and pos need to have same " "length (number of vertices)") # name if name is None and filename is not None: name = op.basename(filename[:-6]) self.vertices = vertices self.pos = pos self.values = values self.hemi = hemi self.comment = comment self.verbose = verbose self.subject = _check_subject(None, subject, False) self.color = color self.name = name self.filename = filename def __setstate__(self, state): # noqa: D105 self.vertices = state['vertices'] self.pos = state['pos'] self.values = state['values'] self.hemi = state['hemi'] self.comment = state['comment'] self.verbose = state['verbose'] self.subject = state.get('subject', None) self.color = state.get('color', None) self.name = state['name'] self.filename = state['filename'] def __getstate__(self): # noqa: D105 out = dict(vertices=self.vertices, pos=self.pos, values=self.values, hemi=self.hemi, comment=self.comment, verbose=self.verbose, subject=self.subject, color=self.color, name=self.name, filename=self.filename) return out def __repr__(self): # noqa: D105 name = 'unknown, ' if self.subject is None else self.subject + ', ' name += repr(self.name) if self.name is not None else "unnamed" n_vert = len(self) return "<Label | %s, %s : %i vertices>" % (name, self.hemi, n_vert) def __len__(self): """Return the number of vertices.""" return len(self.vertices) def __add__(self, other): """Add BiHemiLabels.""" if isinstance(other, BiHemiLabel): return other + self elif isinstance(other, Label): if self.subject != other.subject: raise ValueError('Label subject parameters must match, got ' '"%s" and "%s". Consider setting the ' 'subject parameter on initialization, or ' 'setting label.subject manually before ' 'combining labels.' % (self.subject, other.subject)) if self.hemi != other.hemi: name = '%s + %s' % (self.name, other.name) if self.hemi == 'lh': lh, rh = self.copy(), other.copy() else: lh, rh = other.copy(), self.copy() color = _blend_colors(self.color, other.color) return BiHemiLabel(lh, rh, name, color) else: raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other) # check for overlap duplicates = np.intersect1d(self.vertices, other.vertices) n_dup = len(duplicates) if n_dup: self_dup = [np.where(self.vertices == d)[0][0] for d in duplicates] other_dup = [np.where(other.vertices == d)[0][0] for d in duplicates] if not np.all(self.pos[self_dup] == other.pos[other_dup]): err = ("Labels %r and %r: vertices overlap but differ in " "position values" % (self.name, other.name)) raise ValueError(err) isnew = np.array([v not in duplicates for v in other.vertices]) vertices = np.hstack((self.vertices, other.vertices[isnew])) pos = np.vstack((self.pos, other.pos[isnew])) # find position of other's vertices in new array tgt_idx = [np.where(vertices == v)[0][0] for v in other.vertices] n_self = len(self.values) n_other = len(other.values) new_len = n_self + n_other - n_dup values = np.zeros(new_len, dtype=self.values.dtype) values[:n_self] += self.values values[tgt_idx] += other.values else: vertices = np.hstack((self.vertices, other.vertices)) pos = np.vstack((self.pos, other.pos)) values = np.hstack((self.values, other.values)) indcs = np.argsort(vertices) vertices, pos, values = vertices[indcs], pos[indcs, :], values[indcs] comment = "%s + %s" % (self.comment, other.comment) name0 = self.name if self.name else 'unnamed' name1 = other.name if other.name else 'unnamed' name = "%s + %s" % (name0, name1) color = _blend_colors(self.color, other.color) verbose = self.verbose or other.verbose label = Label(vertices, pos, values, self.hemi, comment, name, None, self.subject, color, verbose) return label def __sub__(self, other): """Subtract BiHemiLabels.""" if isinstance(other, BiHemiLabel): if self.hemi == 'lh': return self - other.lh else: return self - other.rh elif isinstance(other, Label): if self.subject != other.subject: raise ValueError('Label subject parameters must match, got ' '"%s" and "%s". Consider setting the ' 'subject parameter on initialization, or ' 'setting label.subject manually before ' 'combining labels.' % (self.subject, other.subject)) else: raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other) if self.hemi == other.hemi: keep = np.in1d(self.vertices, other.vertices, True, invert=True) else: keep = np.arange(len(self.vertices)) name = "%s - %s" % (self.name or 'unnamed', other.name or 'unnamed') return Label(self.vertices[keep], self.pos[keep], self.values[keep], self.hemi, self.comment, name, None, self.subject, self.color, self.verbose) def save(self, filename): r"""Write to disk as FreeSurfer \*.label file. Parameters ---------- filename : string Path to label file to produce. Notes ----- Note that due to file specification limitations, the Label's subject and color attributes are not saved to disk. """ write_label(filename, self) def copy(self): """Copy the label instance. Returns ------- label : instance of Label The copied label. """ return cp.deepcopy(self) def fill(self, src, name=None): """Fill the surface between sources for a source space label. Parameters ---------- src : SourceSpaces Source space in which the label was defined. If a source space is provided, the label is expanded to fill in surface vertices that lie between the vertices included in the source space. For the added vertices, ``pos`` is filled in with positions from the source space, and ``values`` is filled in from the closest source space vertex. name : None | str Name for the new Label (default is self.name). Returns ------- label : Label The label covering the same vertices in source space but also including intermediate surface vertices. """ # find source space patch info if len(self.vertices) == 0: return self.copy() if self.hemi == 'lh': hemi_src = src[0] elif self.hemi == 'rh': hemi_src = src[1] if not np.all(np.in1d(self.vertices, hemi_src['vertno'])): msg = "Source space does not contain all of the label's vertices" raise ValueError(msg) nearest = hemi_src['nearest'] if nearest is None: warn("Computing patch info for source space, this can take " "a while. In order to avoid this in the future, run " "mne.add_source_space_distances() on the source space " "and save it.") add_source_space_distances(src) nearest = hemi_src['nearest'] # find new vertices include = np.in1d(nearest, self.vertices, False) vertices = np.nonzero(include)[0] # values nearest_in_label = np.digitize(nearest[vertices], self.vertices, True) values = self.values[nearest_in_label] # pos pos = hemi_src['rr'][vertices] if name is None: name = self.name label = Label(vertices, pos, values, self.hemi, self.comment, name, None, self.subject, self.color) return label @verbose def smooth(self, subject=None, smooth=2, grade=None, subjects_dir=None, n_jobs=1, verbose=None): """Smooth the label. Useful for filling in labels made in a decimated source space for display. Parameters ---------- subject : str | None The name of the subject used. If None, the value will be taken from self.subject. smooth : int Number of iterations for the smoothing of the surface data. Cannot be None here since not all vertices are used. For a grade of 5 (e.g., fsaverage), a smoothing of 2 will fill a label. grade : int, list (of two arrays), array, or None Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, values will be morphed to the set of vertices specified in grade[0] and grade[1], assuming that these are vertices for the left and right hemispheres. Note that specifying the vertices (e.g., grade=[np.arange(10242), np.arange(10242)] for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. If one array is used, it is assumed that all vertices belong to the hemisphere of the label. To create a label filling the surface, use None. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. n_jobs : int Number of jobs to run in parallel verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Defaults to self.verbose. Returns ------- label : instance of Label The smoothed label. Notes ----- This function will set label.pos to be all zeros. If the positions on the new surface are required, consider using mne.read_surface with label.vertices. """ subject = _check_subject(self.subject, subject) return self.morph(subject, subject, smooth, grade, subjects_dir, n_jobs) @verbose def morph(self, subject_from=None, subject_to=None, smooth=5, grade=None, subjects_dir=None, n_jobs=1, verbose=None): """Morph the label. Useful for transforming a label from one subject to another. Parameters ---------- subject_from : str | None The name of the subject of the current label. If None, the initial subject will be taken from self.subject. subject_to : str The name of the subject to morph the label to. This will be put in label.subject of the output label file. smooth : int Number of iterations for the smoothing of the surface data. Cannot be None here since not all vertices are used. grade : int, list (of two arrays), array, or None Resolution of the icosahedral mesh (typically 5). If None, all vertices will be used (potentially filling the surface). If a list, values will be morphed to the set of vertices specified in grade[0] and grade[1], assuming that these are vertices for the left and right hemispheres. Note that specifying the vertices (e.g., ``grade=[np.arange(10242), np.arange(10242)]`` for fsaverage on a standard grade 5 source space) can be substantially faster than computing vertex locations. If one array is used, it is assumed that all vertices belong to the hemisphere of the label. To create a label filling the surface, use None. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. n_jobs : int Number of jobs to run in parallel. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- label : instance of Label The morphed label. Notes ----- This function will set label.pos to be all zeros. If the positions on the new surface are required, consider using `mne.read_surface` with `label.vertices`. """ subject_from = _check_subject(self.subject, subject_from) if not isinstance(subject_to, string_types): raise TypeError('"subject_to" must be entered as a string') if not isinstance(smooth, int): raise TypeError('smooth must be an integer') if np.all(self.values == 0): raise ValueError('Morphing label with all zero values will result ' 'in the label having no vertices. Consider using ' 'something like label.values.fill(1.0).') if(isinstance(grade, np.ndarray)): if self.hemi == 'lh': grade = [grade, np.array([], int)] else: grade = [np.array([], int), grade] if self.hemi == 'lh': vertices = [self.vertices, np.array([], int)] else: vertices = [np.array([], int), self.vertices] data = self.values[:, np.newaxis] stc = SourceEstimate(data, vertices, tmin=1, tstep=1, subject=subject_from) stc = morph_data(subject_from, subject_to, stc, grade=grade, smooth=smooth, subjects_dir=subjects_dir, warn=False, n_jobs=n_jobs) inds = np.nonzero(stc.data)[0] self.values = stc.data[inds, :].ravel() self.pos = np.zeros((len(inds), 3)) if self.hemi == 'lh': self.vertices = stc.vertices[0][inds] else: self.vertices = stc.vertices[1][inds] self.subject = subject_to return self def split(self, parts=2, subject=None, subjects_dir=None, freesurfer=False): """Split the Label into two or more parts. Parameters ---------- parts : int >= 2 | tuple of str | str Number of labels to create (default is 2), or tuple of strings specifying label names for new labels (from posterior to anterior), or 'contiguous' to split the label into connected components. If a number or 'contiguous' is specified, names of the new labels will be the input label's name with div1, div2 etc. appended. subject : None | str Subject which this label belongs to (needed to locate surface file; should only be specified if it is not specified in the label). subjects_dir : None | str Path to SUBJECTS_DIR if it is not set in the environment. freesurfer : bool By default (``False``) ``split_label`` uses an algorithm that is slightly optimized for performance and numerical precision. Set ``freesurfer`` to ``True`` in order to replicate label splits from FreeSurfer's ``mris_divide_parcellation``. Returns ------- labels : list of Label (len = n_parts) The labels, starting from the lowest to the highest end of the projection axis. Notes ----- If using 'contiguous' split, you must ensure that the label being split uses the same triangular resolution as the surface mesh files in ``subjects_dir`` Also, some small fringe labels may be returned that are close (but not connected) to the large components. The spatial split finds the label's principal eigen-axis on the spherical surface, projects all label vertex coordinates onto this axis, and divides them at regular spatial intervals. """ if isinstance(parts, string_types) and parts == 'contiguous': return _split_label_contig(self, subject, subjects_dir) elif isinstance(parts, (tuple, int)): return split_label(self, parts, subject, subjects_dir, freesurfer) else: raise ValueError("Need integer, tuple of strings, or string " "('contiguous'). Got %s)" % type(parts)) def get_vertices_used(self, vertices=None): """Get the source space's vertices inside the label. Parameters ---------- vertices : ndarray of int, shape (n_vertices,) | None The set of vertices to compare the label to. If None, equals to ``np.arange(10242)``. Defaults to None. Returns ------- label_verts : ndarray of in, shape (n_label_vertices,) The vertices of the label corresponding used by the data. """ if vertices is None: vertices = np.arange(10242) label_verts = vertices[np.in1d(vertices, self.vertices)] return label_verts def get_tris(self, tris, vertices=None): """Get the source space's triangles inside the label. Parameters ---------- tris : ndarray of int, shape (n_tris, 3) The set of triangles corresponding to the vertices in a source space. vertices : ndarray of int, shape (n_vertices,) | None The set of vertices to compare the label to. If None, equals to ``np.arange(10242)``. Defaults to None. Returns ------- label_tris : ndarray of int, shape (n_tris, 3) The subset of tris used by the label """ vertices_ = self.get_vertices_used(vertices) selection = np.all(np.in1d(tris, vertices_).reshape(tris.shape), axis=1) label_tris = tris[selection] if len(np.unique(label_tris)) < len(vertices_): logger.info('Surprising label structure. Trying to repair ' 'triangles.') dropped_vertices = np.setdiff1d(vertices_, label_tris) n_dropped = len(dropped_vertices) assert n_dropped == (len(vertices_) - len(np.unique(label_tris))) # put missing vertices as extra zero-length triangles add_tris = (dropped_vertices + np.zeros((len(dropped_vertices), 3), dtype=int).T) label_tris = np.r_[label_tris, add_tris.T] assert len(np.unique(label_tris)) == len(vertices_) return label_tris def center_of_mass(self, subject=None, restrict_vertices=False, subjects_dir=None, surf='sphere'): """Compute the center of mass of the label. This function computes the spatial center of mass on the surface as in [1]_. Parameters ---------- subject : string | None The subject the label is defined for. restrict_vertices : bool | array of int | instance of SourceSpaces If True, returned vertex will be one from the label. Otherwise, it could be any vertex from surf. If an array of int, the returned vertex will come from that array. If instance of SourceSpaces (as of 0.13), the returned vertex will be from the given source space. For most accuruate estimates, do not restrict vertices. subjects_dir : str, or None Path to the SUBJECTS_DIR. If None, the path is obtained by using the environment variable SUBJECTS_DIR. surf : str The surface to use for Euclidean distance center of mass finding. The default here is "sphere", which finds the center of mass on the spherical surface to help avoid potential issues with cortical folding. Returns ------- vertex : int Vertex of the spatial center of mass for the inferred hemisphere, with each vertex weighted by its label value. See Also -------- SourceEstimate.center_of_mass vertex_to_mni Notes ----- .. versionadded: 0.13 References ---------- .. [1] Larson and Lee, "The cortical dynamics underlying effective switching of auditory spatial attention", NeuroImage 2012. """ if not isinstance(surf, string_types): raise TypeError('surf must be a string, got %s' % (type(surf),)) subject = _check_subject(self.subject, subject) if np.any(self.values < 0): raise ValueError('Cannot compute COM with negative values') if np.all(self.values == 0): raise ValueError('Cannot compute COM with all values == 0. For ' 'structural labels, consider setting to ones via ' 'label.values[:] = 1.') vertex = _center_of_mass(self.vertices, self.values, self.hemi, surf, subject, subjects_dir, restrict_vertices) return vertex class BiHemiLabel(object): """A freesurfer/MNE label with vertices in both hemispheres. Parameters ---------- lh : Label Label for the left hemisphere. rh : Label Label for the right hemisphere. name : None | str name for the label color : None | matplotlib color Label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red). Note that due to file specification limitations, the color isn't saved to or loaded from files written to disk. Attributes ---------- lh : Label Label for the left hemisphere. rh : Label Label for the right hemisphere. name : None | str A name for the label. It is OK to change that attribute manually. subject : str | None Subject the label is from. """ def __init__(self, lh, rh, name=None, color=None): # noqa: D102 if lh.subject != rh.subject: raise ValueError('lh.subject (%s) and rh.subject (%s) must ' 'agree' % (lh.subject, rh.subject)) self.lh = lh self.rh = rh self.name = name self.subject = lh.subject self.color = color self.hemi = 'both' def __repr__(self): # noqa: D105 temp = "<BiHemiLabel | %s, lh : %i vertices, rh : %i vertices>" name = 'unknown, ' if self.subject is None else self.subject + ', ' name += repr(self.name) if self.name is not None else "unnamed" return temp % (name, len(self.lh), len(self.rh)) def __len__(self): """Return the number of vertices.""" return len(self.lh) + len(self.rh) def __add__(self, other): """Add labels.""" if isinstance(other, Label): if other.hemi == 'lh': lh = self.lh + other rh = self.rh else: lh = self.lh rh = self.rh + other elif isinstance(other, BiHemiLabel): lh = self.lh + other.lh rh = self.rh + other.rh else: raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other) name = '%s + %s' % (self.name, other.name) color = _blend_colors(self.color, other.color) return BiHemiLabel(lh, rh, name, color) def __sub__(self, other): """Subtract labels.""" if isinstance(other, Label): if other.hemi == 'lh': lh = self.lh - other rh = self.rh else: rh = self.rh - other lh = self.lh elif isinstance(other, BiHemiLabel): lh = self.lh - other.lh rh = self.rh - other.rh else: raise TypeError("Need: Label or BiHemiLabel. Got: %r" % other) if len(lh.vertices) == 0: return rh elif len(rh.vertices) == 0: return lh else: name = '%s - %s' % (self.name, other.name) return BiHemiLabel(lh, rh, name, self.color) def read_label(filename, subject=None, color=None): """Read FreeSurfer Label file. Parameters ---------- filename : string Path to label file. subject : str | None Name of the subject the data are defined for. It is good practice to set this attribute to avoid combining incompatible labels and SourceEstimates (e.g., ones from other subjects). Note that due to file specification limitations, the subject name isn't saved to or loaded from files written to disk. color : None | matplotlib color Default label color and alpha (e.g., ``(1., 0., 0., 1.)`` for red). Note that due to file specification limitations, the color isn't saved to or loaded from files written to disk. Returns ------- label : Label Instance of Label object with attributes: - ``comment``: comment from the first line of the label file - ``vertices``: vertex indices (0 based, column 1) - ``pos``: locations in meters (columns 2 - 4 divided by 1000) - ``values``: values at the vertices (column 5) See Also -------- read_labels_from_annot """ if subject is not None and not isinstance(subject, string_types): raise TypeError('subject must be a string') # find hemi basename = op.basename(filename) if basename.endswith('lh.label') or basename.startswith('lh.'): hemi = 'lh' elif basename.endswith('rh.label') or basename.startswith('rh.'): hemi = 'rh' else: raise ValueError('Cannot find which hemisphere it is. File should end' ' with lh.label or rh.label') # find name if basename.startswith(('lh.', 'rh.')): basename_ = basename[3:] if basename.endswith('.label'): basename_ = basename[:-6] else: basename_ = basename[:-9] name = "%s-%s" % (basename_, hemi) # read the file with open(filename, 'r') as fid: comment = fid.readline().replace('\n', '')[1:] nv = int(fid.readline()) data = np.empty((5, nv)) for i, line in enumerate(fid): data[:, i] = line.split() # let's make sure everything is ordered correctly vertices = np.array(data[0], dtype=np.int32) pos = 1e-3 * data[1:4].T values = data[4] order = np.argsort(vertices) vertices = vertices[order] pos = pos[order] values = values[order] label = Label(vertices, pos, values, hemi, comment, name, filename, subject, color) return label @verbose def write_label(filename, label, verbose=None): """Write a FreeSurfer label. Parameters ---------- filename : string Path to label file to produce. label : Label The label object to save. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Notes ----- Note that due to file specification limitations, the Label's subject and color attributes are not saved to disk. See Also -------- write_labels_to_annot """ hemi = label.hemi path_head, name = op.split(filename) if name.endswith('.label'): name = name[:-6] if not (name.startswith(hemi) or name.endswith(hemi)): name += '-' + hemi filename = op.join(path_head, name) + '.label' logger.info('Saving label to : %s' % filename) with open(filename, 'wb') as fid: n_vertices = len(label.vertices) data = np.zeros((n_vertices, 5), dtype=np.float) data[:, 0] = label.vertices data[:, 1:4] = 1e3 * label.pos data[:, 4] = label.values fid.write(b("#%s\n" % label.comment)) fid.write(b("%d\n" % n_vertices)) for d in data: fid.write(b("%d %f %f %f %f\n" % tuple(d))) return label def _prep_label_split(label, subject=None, subjects_dir=None): """Get label and subject information prior to label splitting.""" # If necessary, find the label if isinstance(label, BiHemiLabel): raise TypeError("Can only split labels restricted to one hemisphere.") elif isinstance(label, string_types): label = read_label(label) # Find the subject subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if label.subject is None and subject is None: raise ValueError("The subject needs to be specified.") elif subject is None: subject = label.subject elif label.subject is None: pass elif subject != label.subject: raise ValueError("The label specifies a different subject (%r) from " "the subject parameter (%r)." % label.subject, subject) return label, subject, subjects_dir def _split_label_contig(label_to_split, subject=None, subjects_dir=None): """Split label into contiguous regions (i.e., connected components). Parameters ---------- label_to_split : Label | str Label which is to be split (Label object or path to a label file). subject : None | str Subject which this label belongs to (needed to locate surface file; should only be specified if it is not specified in the label). subjects_dir : None | str Path to SUBJECTS_DIR if it is not set in the environment. Returns ------- labels : list of Label The contiguous labels, in order of decending size. """ # Convert to correct input if necessary label_to_split, subject, subjects_dir = _prep_label_split(label_to_split, subject, subjects_dir) # Find the spherical surface to get vertices and tris surf_fname = '.'.join((label_to_split.hemi, 'sphere')) surf_path = op.join(subjects_dir, subject, 'surf', surf_fname) surface_points, surface_tris = read_surface(surf_path) # Get vertices we want to keep and compute mesh edges verts_arr = label_to_split.vertices edges_all = mesh_edges(surface_tris) # Subselect rows and cols of vertices that belong to the label select_edges = edges_all[verts_arr][:, verts_arr].tocoo() # Compute connected components and store as lists of vertex numbers comp_labels = _get_components(verts_arr, select_edges) # Convert to indices in the original surface space label_divs = [] for comp in comp_labels: label_divs.append(verts_arr[comp]) # Construct label division names n_parts = len(label_divs) if label_to_split.name.endswith(('lh', 'rh')): basename = label_to_split.name[:-3] name_ext = label_to_split.name[-3:] else: basename = label_to_split.name name_ext = '' name_pattern = "%s_div%%i%s" % (basename, name_ext) names = tuple(name_pattern % i for i in range(1, n_parts + 1)) # Colors if label_to_split.color is None: colors = (None,) * n_parts else: colors = _split_colors(label_to_split.color, n_parts) # Sort label divisions by their size (in vertices) label_divs.sort(key=lambda x: len(x), reverse=True) labels = [] for div, name, color in zip(label_divs, names, colors): # Get indices of dipoles within this division of the label verts = np.array(sorted(list(div)), int) vert_indices = np.in1d(verts_arr, verts, assume_unique=True) # Set label attributes pos = label_to_split.pos[vert_indices] values = label_to_split.values[vert_indices] hemi = label_to_split.hemi comment = label_to_split.comment lbl = Label(verts, pos, values, hemi, comment, name, None, subject, color) labels.append(lbl) return labels def split_label(label, parts=2, subject=None, subjects_dir=None, freesurfer=False): """Split a Label into two or more parts. Parameters ---------- label : Label | str Label which is to be split (Label object or path to a label file). parts : int >= 2 | tuple of str A sequence of strings specifying label names for the new labels (from posterior to anterior), or the number of new labels to create (default is 2). If a number is specified, names of the new labels will be the input label's name with div1, div2 etc. appended. subject : None | str Subject which this label belongs to (needed to locate surface file; should only be specified if it is not specified in the label). subjects_dir : None | str Path to SUBJECTS_DIR if it is not set in the environment. freesurfer : bool By default (``False``) ``split_label`` uses an algorithm that is slightly optimized for performance and numerical precision. Set ``freesurfer`` to ``True`` in order to replicate label splits from FreeSurfer's ``mris_divide_parcellation``. Returns ------- labels : list of Label (len = n_parts) The labels, starting from the lowest to the highest end of the projection axis. Notes ----- Works by finding the label's principal eigen-axis on the spherical surface, projecting all label vertex coordinates onto this axis and dividing them at regular spatial intervals. """ label, subject, subjects_dir = _prep_label_split(label, subject, subjects_dir) # find the parts if np.isscalar(parts): n_parts = int(parts) if label.name.endswith(('lh', 'rh')): basename = label.name[:-3] name_ext = label.name[-3:] else: basename = label.name name_ext = '' name_pattern = "%s_div%%i%s" % (basename, name_ext) names = tuple(name_pattern % i for i in range(1, n_parts + 1)) else: names = parts n_parts = len(names) if n_parts < 2: raise ValueError("Can't split label into %i parts" % n_parts) # find the spherical surface surf_fname = '.'.join((label.hemi, 'sphere')) surf_path = op.join(subjects_dir, subject, "surf", surf_fname) surface_points, surface_tris = read_surface(surf_path) # find the label coordinates on the surface points = surface_points[label.vertices] center = np.mean(points, axis=0) centered_points = points - center # find the label's normal if freesurfer: # find the Freesurfer vertex closest to the center distance = np.sqrt(np.sum(centered_points ** 2, axis=1)) i_closest = np.argmin(distance) closest_vertex = label.vertices[i_closest] # find the normal according to freesurfer convention idx = np.any(surface_tris == closest_vertex, axis=1) tris_for_normal = surface_tris[idx] r1 = surface_points[tris_for_normal[:, 0], :] r2 = surface_points[tris_for_normal[:, 1], :] r3 = surface_points[tris_for_normal[:, 2], :] tri_normals = fast_cross_3d((r2 - r1), (r3 - r1)) normal = np.mean(tri_normals, axis=0) normal /= linalg.norm(normal) else: # Normal of the center normal = center / linalg.norm(center) # project all vertex coordinates on the tangential plane for this point q, _ = linalg.qr(normal[:, np.newaxis]) tangent_u = q[:, 1:] m_obs = np.dot(centered_points, tangent_u) # find principal eigendirection m_cov = np.dot(m_obs.T, m_obs) w, vr = linalg.eig(m_cov) i = np.argmax(w) eigendir = vr[:, i] # project back into 3d space axis = np.dot(tangent_u, eigendir) # orient them from posterior to anterior if axis[1] < 0: axis *= -1 # project the label on the axis proj = np.dot(points, axis) # assign mark (new label index) proj -= proj.min() proj /= (proj.max() / n_parts) mark = proj // 1 mark[mark == n_parts] = n_parts - 1 # colors if label.color is None: colors = (None,) * n_parts else: colors = _split_colors(label.color, n_parts) # construct new labels labels = [] for i, name, color in zip(range(n_parts), names, colors): idx = (mark == i) vert = label.vertices[idx] pos = label.pos[idx] values = label.values[idx] hemi = label.hemi comment = label.comment lbl = Label(vert, pos, values, hemi, comment, name, None, subject, color) labels.append(lbl) return labels def label_sign_flip(label, src): """Compute sign for label averaging. Parameters ---------- label : Label | BiHemiLabel A label. src : SourceSpaces The source space over which the label is defined. Returns ------- flip : array Sign flip vector (contains 1 or -1) """ if len(src) != 2: raise ValueError('Only source spaces with 2 hemisphers are accepted') lh_vertno = src[0]['vertno'] rh_vertno = src[1]['vertno'] # get source orientations ori = list() if label.hemi in ('lh', 'both'): vertices = label.vertices if label.hemi == 'lh' else label.lh.vertices vertno_sel = np.intersect1d(lh_vertno, vertices) ori.append(src[0]['nn'][vertno_sel]) if label.hemi in ('rh', 'both'): vertices = label.vertices if label.hemi == 'rh' else label.rh.vertices vertno_sel = np.intersect1d(rh_vertno, vertices) ori.append(src[1]['nn'][vertno_sel]) if len(ori) == 0: raise Exception('Unknown hemisphere type "%s"' % (label.hemi,)) ori = np.concatenate(ori, axis=0) if len(ori) == 0: return np.array([], int) _, _, Vh = linalg.svd(ori, full_matrices=False) # The sign of Vh is ambiguous, so we should align to the max-positive # (outward) direction dots = np.dot(ori, Vh[0]) if np.mean(dots) < 0: dots *= -1 # Comparing to the direction of the first right singular vector flip = np.sign(dots) return flip @verbose def stc_to_label(stc, src=None, smooth=True, connected=False, subjects_dir=None, verbose=None): """Compute a label from the non-zero sources in an stc object. Parameters ---------- stc : SourceEstimate The source estimates. src : SourceSpaces | str | None The source space over which the source estimates are defined. If it's a string it should the subject name (e.g. fsaverage). Can be None if stc.subject is not None. smooth : bool Fill in vertices on the cortical surface that are not in the source space based on the closest source space vertex (requires src to be a SourceSpace). connected : bool If True a list of connected labels will be returned in each hemisphere. The labels are ordered in decreasing order depending of the maximum value in the stc. subjects_dir : str | None Path to SUBJECTS_DIR if it is not set in the environment. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- labels : list of Labels | list of list of Labels The generated labels. If connected is False, it returns a list of Labels (one per hemisphere). If no Label is available in a hemisphere, None is returned. If connected is True, it returns for each hemisphere a list of connected labels ordered in decreasing order depending of the maximum value in the stc. If no Label is available in an hemisphere, an empty list is returned. """ if not isinstance(smooth, bool): raise ValueError('smooth should be True or False. Got %s.' % smooth) src = stc.subject if src is None else src if src is None: raise ValueError('src cannot be None if stc.subject is None') if isinstance(src, string_types): subject = src else: subject = stc.subject if not isinstance(stc, SourceEstimate): raise ValueError('SourceEstimate should be surface source estimates') if isinstance(src, string_types): if connected: raise ValueError('The option to return only connected labels is ' 'only available if source spaces are provided.') if smooth: msg = ("stc_to_label with smooth=True requires src to be an " "instance of SourceSpace") raise ValueError(msg) subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) surf_path_from = op.join(subjects_dir, src, 'surf') rr_lh, tris_lh = read_surface(op.join(surf_path_from, 'lh.white')) rr_rh, tris_rh = read_surface(op.join(surf_path_from, 'rh.white')) rr = [rr_lh, rr_rh] tris = [tris_lh, tris_rh] else: if not isinstance(src, SourceSpaces): raise TypeError('src must be a string or a set of source spaces') if len(src) != 2: raise ValueError('source space should contain the 2 hemispheres') rr = [1e3 * src[0]['rr'], 1e3 * src[1]['rr']] tris = [src[0]['tris'], src[1]['tris']] src_conn = spatial_src_connectivity(src).tocsr() labels = [] cnt = 0 cnt_full = 0 for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate( zip(['lh', 'rh'], stc.vertices, tris, rr)): this_data = stc.data[cnt:cnt + len(this_vertno)] e = mesh_edges(this_tris) e.data[e.data == 2] = 1 n_vertices = e.shape[0] e = e + sparse.eye(n_vertices, n_vertices) if connected: # we know src *must* be a SourceSpaces now vertno = np.where(src[hemi_idx]['inuse'])[0] if not len(np.setdiff1d(this_vertno, vertno)) == 0: raise RuntimeError('stc contains vertices not present ' 'in source space, did you morph?') tmp = np.zeros((len(vertno), this_data.shape[1])) this_vertno_idx = np.searchsorted(vertno, this_vertno) tmp[this_vertno_idx] = this_data this_data = tmp offset = cnt_full + len(this_data) this_src_conn = src_conn[cnt_full:offset, cnt_full:offset].tocoo() this_data_abs_max = np.abs(this_data).max(axis=1) clusters, _ = _find_clusters(this_data_abs_max, 0., connectivity=this_src_conn) cnt_full += len(this_data) # Then order clusters in descending order based on maximum value clusters_max = np.argsort([np.max(this_data_abs_max[c]) for c in clusters])[::-1] clusters = [clusters[k] for k in clusters_max] clusters = [vertno[c] for c in clusters] else: clusters = [this_vertno[np.any(this_data, axis=1)]] cnt += len(this_vertno) clusters = [c for c in clusters if len(c) > 0] if len(clusters) == 0: if not connected: this_labels = None else: this_labels = [] else: this_labels = [] colors = _n_colors(len(clusters)) for c, color in zip(clusters, colors): idx_use = c label = Label(idx_use, this_rr[idx_use], None, hemi, 'Label from stc', subject=subject, color=color) if smooth: label = label.fill(src) this_labels.append(label) if not connected: this_labels = this_labels[0] labels.append(this_labels) return labels def _verts_within_dist(graph, sources, max_dist): """Find all vertices wihin a maximum geodesic distance from source. Parameters ---------- graph : scipy.sparse.csr_matrix Sparse matrix with distances between adjacent vertices. sources : list of int Source vertices. max_dist : float Maximum geodesic distance. Returns ------- verts : array Vertices within max_dist. dist : array Distances from source vertex. """ dist_map = {} verts_added_last = [] for source in sources: dist_map[source] = 0 verts_added_last.append(source) # add neighbors until no more neighbors within max_dist can be found while len(verts_added_last) > 0: verts_added = [] for i in verts_added_last: v_dist = dist_map[i] row = graph[i, :] neighbor_vert = row.indices neighbor_dist = row.data for j, d in zip(neighbor_vert, neighbor_dist): n_dist = v_dist + d if j in dist_map: if n_dist < dist_map[j]: dist_map[j] = n_dist else: if n_dist <= max_dist: dist_map[j] = n_dist # we found a new vertex within max_dist verts_added.append(j) verts_added_last = verts_added verts = np.sort(np.array(list(dist_map.keys()), int)) dist = np.array([dist_map[v] for v in verts], int) return verts, dist def _grow_labels(seeds, extents, hemis, names, dist, vert, subject): """Parallelize grow_labels.""" labels = [] for seed, extent, hemi, name in zip(seeds, extents, hemis, names): label_verts, label_dist = _verts_within_dist(dist[hemi], seed, extent) # create a label if len(seed) == 1: seed_repr = str(seed) else: seed_repr = ','.join(map(str, seed)) comment = 'Circular label: seed=%s, extent=%0.1fmm' % (seed_repr, extent) label = Label(vertices=label_verts, pos=vert[hemi][label_verts], values=label_dist, hemi=hemi, comment=comment, name=str(name), subject=subject) labels.append(label) return labels def grow_labels(subject, seeds, extents, hemis, subjects_dir=None, n_jobs=1, overlap=True, names=None, surface='white'): """Generate circular labels in source space with region growing. This function generates a number of labels in source space by growing regions starting from the vertices defined in "seeds". For each seed, a label is generated containing all vertices within a maximum geodesic distance on the white matter surface from the seed. Note: "extents" and "hemis" can either be arrays with the same length as seeds, which allows using a different extent and hemisphere for each label, or integers, in which case the same extent and hemisphere is used for each label. Parameters ---------- subject : string Name of the subject as in SUBJECTS_DIR. seeds : int | list Seed, or list of seeds. Each seed can be either a vertex number or a list of vertex numbers. extents : array | float Extents (radius in mm) of the labels. hemis : array | int Hemispheres to use for the labels (0: left, 1: right). subjects_dir : string Path to SUBJECTS_DIR if not set in the environment. n_jobs : int Number of jobs to run in parallel. Likely only useful if tens or hundreds of labels are being expanded simultaneously. Does not apply with ``overlap=False``. overlap : bool Produce overlapping labels. If True (default), the resulting labels can be overlapping. If False, each label will be grown one step at a time, and occupied territory will not be invaded. names : None | list of str Assign names to the new labels (list needs to have the same length as seeds). surface : string The surface used to grow the labels, defaults to the white surface. Returns ------- labels : list of Label The labels' ``comment`` attribute contains information on the seed vertex and extent; the ``values`` attribute contains distance from the seed in millimeters """ subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) n_jobs = check_n_jobs(n_jobs) # make sure the inputs are arrays if np.isscalar(seeds): seeds = [seeds] seeds = np.atleast_1d([np.atleast_1d(seed) for seed in seeds]) extents = np.atleast_1d(extents) hemis = np.atleast_1d(hemis) n_seeds = len(seeds) if len(extents) != 1 and len(extents) != n_seeds: raise ValueError('The extents parameter has to be of length 1 or ' 'len(seeds)') if len(hemis) != 1 and len(hemis) != n_seeds: raise ValueError('The hemis parameter has to be of length 1 or ' 'len(seeds)') # make the arrays the same length as seeds if len(extents) == 1: extents = np.tile(extents, n_seeds) if len(hemis) == 1: hemis = np.tile(hemis, n_seeds) hemis = np.array(['lh' if h == 0 else 'rh' for h in hemis]) # names if names is None: names = ["Label_%i-%s" % items for items in enumerate(hemis)] else: if np.isscalar(names): names = [names] if len(names) != n_seeds: raise ValueError('The names parameter has to be None or have ' 'length len(seeds)') for i, hemi in enumerate(hemis): if not names[i].endswith(hemi): names[i] = '-'.join((names[i], hemi)) names = np.array(names) # load the surfaces and create the distance graphs tris, vert, dist = {}, {}, {} for hemi in set(hemis): surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' + surface) vert[hemi], tris[hemi] = read_surface(surf_fname) dist[hemi] = mesh_dist(tris[hemi], vert[hemi]) if overlap: # create the patches parallel, my_grow_labels, _ = parallel_func(_grow_labels, n_jobs) seeds = np.array_split(seeds, n_jobs) extents = np.array_split(extents, n_jobs) hemis = np.array_split(hemis, n_jobs) names = np.array_split(names, n_jobs) labels = sum(parallel(my_grow_labels(s, e, h, n, dist, vert, subject) for s, e, h, n in zip(seeds, extents, hemis, names)), []) else: # special procedure for non-overlapping labels labels = _grow_nonoverlapping_labels(subject, seeds, extents, hemis, vert, dist, names) # add a unique color to each label colors = _n_colors(len(labels)) for label, color in zip(labels, colors): label.color = color return labels def _grow_nonoverlapping_labels(subject, seeds_, extents_, hemis, vertices_, graphs, names_): """Grow labels while ensuring that they don't overlap.""" labels = [] for hemi in set(hemis): hemi_index = (hemis == hemi) seeds = seeds_[hemi_index] extents = extents_[hemi_index] names = names_[hemi_index] graph = graphs[hemi] # distance graph n_vertices = len(vertices_[hemi]) n_labels = len(seeds) # prepare parcellation parc = np.empty(n_vertices, dtype='int32') parc[:] = -1 # initialize active sources sources = {} # vert -> (label, dist_from_seed) edge = [] # queue of vertices to process for label, seed in enumerate(seeds): if np.any(parc[seed] >= 0): raise ValueError("Overlapping seeds") parc[seed] = label for s in np.atleast_1d(seed): sources[s] = (label, 0.) edge.append(s) # grow from sources while edge: vert_from = edge.pop(0) label, old_dist = sources[vert_from] # add neighbors within allowable distance row = graph[vert_from, :] for vert_to, dist in zip(row.indices, row.data): new_dist = old_dist + dist # abort if outside of extent if new_dist > extents[label]: continue vert_to_label = parc[vert_to] if vert_to_label >= 0: _, vert_to_dist = sources[vert_to] # abort if the vertex is occupied by a closer seed if new_dist > vert_to_dist: continue elif vert_to in edge: edge.remove(vert_to) # assign label value parc[vert_to] = label sources[vert_to] = (label, new_dist) edge.append(vert_to) # convert parc to labels for i in xrange(n_labels): vertices = np.nonzero(parc == i)[0] name = str(names[i]) label_ = Label(vertices, hemi=hemi, name=name, subject=subject) labels.append(label_) return labels def random_parcellation(subject, n_parcel, hemi, subjects_dir=None, surface='white', random_state=None): """Generate random cortex parcellation by growing labels. This function generates a number of labels which don't intersect and cover the whole surface. Regions are growing around randomly chosen seeds. Parameters ---------- subject : string Name of the subject as in SUBJECTS_DIR. n_parcel : int Total number of cortical parcels. hemi : str hemisphere id (ie 'lh', 'rh', 'both'). In the case of 'both', both hemispheres are processed with (n_parcel // 2) parcels per hemisphere. subjects_dir : string Path to SUBJECTS_DIR if not set in the environment. surface : string The surface used to grow the labels, defaults to the white surface. random_state : None | int | np.random.RandomState To specify the random generator state. Returns ------- labels : list of Label Random cortex parcellation """ subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) if hemi == 'both': hemi = ['lh', 'rh'] hemis = np.atleast_1d(hemi) # load the surfaces and create the distance graphs tris, vert, dist = {}, {}, {} for hemi in set(hemis): surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' + surface) vert[hemi], tris[hemi] = read_surface(surf_fname) dist[hemi] = mesh_dist(tris[hemi], vert[hemi]) # create the patches labels = _cortex_parcellation(subject, n_parcel, hemis, vert, dist, random_state) # add a unique color to each label colors = _n_colors(len(labels)) for label, color in zip(labels, colors): label.color = color return labels def _cortex_parcellation(subject, n_parcel, hemis, vertices_, graphs, random_state=None): """Random cortex parcellation.""" labels = [] rng = check_random_state(random_state) for hemi in set(hemis): parcel_size = len(hemis) * len(vertices_[hemi]) // n_parcel graph = graphs[hemi] # distance graph n_vertices = len(vertices_[hemi]) # prepare parcellation parc = np.full(n_vertices, -1, dtype='int32') # initialize active sources s = rng.choice(range(n_vertices)) label_idx = 0 edge = [s] # queue of vertices to process parc[s] = label_idx label_size = 1 rest = len(parc) - 1 # grow from sources while rest: # if there are not free neighbors, start new parcel if not edge: rest_idx = np.where(parc < 0)[0] s = rng.choice(rest_idx) edge = [s] label_idx += 1 label_size = 1 parc[s] = label_idx rest -= 1 vert_from = edge.pop(0) # add neighbors within allowable distance # row = graph[vert_from, :] # row_indices, row_data = row.indices, row.data sl = slice(graph.indptr[vert_from], graph.indptr[vert_from + 1]) row_indices, row_data = graph.indices[sl], graph.data[sl] for vert_to, dist in zip(row_indices, row_data): vert_to_label = parc[vert_to] # abort if the vertex is already occupied if vert_to_label >= 0: continue # abort if outside of extent if label_size > parcel_size: label_idx += 1 label_size = 1 edge = [vert_to] parc[vert_to] = label_idx rest -= 1 break # assign label value parc[vert_to] = label_idx label_size += 1 edge.append(vert_to) rest -= 1 # merging small labels # label connectivity matrix n_labels = label_idx + 1 label_sizes = np.empty(n_labels, dtype=int) label_conn = np.zeros([n_labels, n_labels], dtype='bool') for i in range(n_labels): vertices = np.nonzero(parc == i)[0] label_sizes[i] = len(vertices) neighbor_vertices = graph[vertices, :].indices neighbor_labels = np.unique(np.array(parc[neighbor_vertices])) label_conn[i, neighbor_labels] = 1 np.fill_diagonal(label_conn, 0) # merging label_id = range(n_labels) while n_labels > n_parcel // len(hemis): # smallest label and its smallest neighbor i = np.argmin(label_sizes) neighbors = np.nonzero(label_conn[i, :])[0] j = neighbors[np.argmin(label_sizes[neighbors])] # merging two labels label_conn[j, :] += label_conn[i, :] label_conn[:, j] += label_conn[:, i] label_conn = np.delete(label_conn, i, 0) label_conn = np.delete(label_conn, i, 1) label_conn[j, j] = 0 label_sizes[j] += label_sizes[i] label_sizes = np.delete(label_sizes, i, 0) n_labels -= 1 vertices = np.nonzero(parc == label_id[i])[0] parc[vertices] = label_id[j] label_id = np.delete(label_id, i, 0) # convert parc to labels for i in xrange(n_labels): vertices = np.nonzero(parc == label_id[i])[0] name = 'label_' + str(i) label_ = Label(vertices, hemi=hemi, name=name, subject=subject) labels.append(label_) return labels def _read_annot(fname): """Read a Freesurfer annotation from a .annot file. Note : Copied from PySurfer Parameters ---------- fname : str Path to annotation file Returns ------- annot : numpy array, shape=(n_verts) Annotation id at each vertex ctab : numpy array, shape=(n_entries, 5) RGBA + label id colortable array names : list of str List of region names as stored in the annot file """ if not op.isfile(fname): dir_name = op.split(fname)[0] if not op.isdir(dir_name): raise IOError('Directory for annotation does not exist: %s', fname) cands = os.listdir(dir_name) cands = [c for c in cands if '.annot' in c] if len(cands) == 0: raise IOError('No such file %s, no candidate parcellations ' 'found in directory' % fname) else: raise IOError('No such file %s, candidate parcellations in ' 'that directory: %s' % (fname, ', '.join(cands))) with open(fname, "rb") as fid: n_verts = np.fromfile(fid, '>i4', 1)[0] data = np.fromfile(fid, '>i4', n_verts * 2).reshape(n_verts, 2) annot = data[data[:, 0], 1] ctab_exists = np.fromfile(fid, '>i4', 1)[0] if not ctab_exists: raise Exception('Color table not found in annotation file') n_entries = np.fromfile(fid, '>i4', 1)[0] if n_entries > 0: length = np.fromfile(fid, '>i4', 1)[0] orig_tab = np.fromfile(fid, '>c', length) orig_tab = orig_tab[:-1] names = list() ctab = np.zeros((n_entries, 5), np.int) for i in range(n_entries): name_length = np.fromfile(fid, '>i4', 1)[0] name = np.fromfile(fid, "|S%d" % name_length, 1)[0] names.append(name) ctab[i, :4] = np.fromfile(fid, '>i4', 4) ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) + ctab[i, 2] * (2 ** 16) + ctab[i, 3] * (2 ** 24)) else: ctab_version = -n_entries if ctab_version != 2: raise Exception('Color table version not supported') n_entries = np.fromfile(fid, '>i4', 1)[0] ctab = np.zeros((n_entries, 5), np.int) length = np.fromfile(fid, '>i4', 1)[0] np.fromfile(fid, "|S%d" % length, 1) # Orig table path entries_to_read = np.fromfile(fid, '>i4', 1)[0] names = list() for i in range(entries_to_read): np.fromfile(fid, '>i4', 1) # Structure name_length = np.fromfile(fid, '>i4', 1)[0] name = np.fromfile(fid, "|S%d" % name_length, 1)[0] names.append(name) ctab[i, :4] = np.fromfile(fid, '>i4', 4) ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) + ctab[i, 2] * (2 ** 16)) # convert to more common alpha value ctab[:, 3] = 255 - ctab[:, 3] return annot, ctab, names def _get_annot_fname(annot_fname, subject, hemi, parc, subjects_dir): """Get the .annot filenames and hemispheres.""" if annot_fname is not None: # we use use the .annot file specified by the user hemis = [op.basename(annot_fname)[:2]] if hemis[0] not in ['lh', 'rh']: raise ValueError('Could not determine hemisphere from filename, ' 'filename has to start with "lh" or "rh".') annot_fname = [annot_fname] else: # construct .annot file names for requested subject, parc, hemi if hemi not in ['lh', 'rh', 'both']: raise ValueError('hemi has to be "lh", "rh", or "both"') if hemi == 'both': hemis = ['lh', 'rh'] else: hemis = [hemi] subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) dst = op.join(subjects_dir, subject, 'label', '%%s.%s.annot' % parc) annot_fname = [dst % hemi_ for hemi_ in hemis] return annot_fname, hemis @verbose def read_labels_from_annot(subject, parc='aparc', hemi='both', surf_name='white', annot_fname=None, regexp=None, subjects_dir=None, verbose=None): """Read labels from a FreeSurfer annotation file. Note: Only cortical labels will be returned. Parameters ---------- subject : str The subject for which to read the parcellation for. parc : str The parcellation to use, e.g., 'aparc' or 'aparc.a2009s'. hemi : str The hemisphere to read the parcellation for, can be 'lh', 'rh', or 'both'. surf_name : str Surface used to obtain vertex locations, e.g., 'white', 'pial' annot_fname : str or None Filename of the .annot file. If not None, only this file is read and 'parc' and 'hemi' are ignored. regexp : str Regular expression or substring to select particular labels from the parcellation. E.g. 'superior' will return all labels in which this substring is contained. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- labels : list of Label The labels, sorted by label name (ascending). """ logger.info('Reading labels from parcellation...') subjects_dir = get_subjects_dir(subjects_dir) # get the .annot filenames and hemispheres annot_fname, hemis = _get_annot_fname(annot_fname, subject, hemi, parc, subjects_dir) if regexp is not None: # allow for convenient substring match r_ = (re.compile('.*%s.*' % regexp if regexp.replace('_', '').isalnum() else regexp)) # now we are ready to create the labels n_read = 0 labels = list() for fname, hemi in zip(annot_fname, hemis): # read annotation annot, ctab, label_names = _read_annot(fname) label_rgbas = ctab[:, :4] label_ids = ctab[:, -1] # load the vertex positions from surface fname_surf = op.join(subjects_dir, subject, 'surf', '%s.%s' % (hemi, surf_name)) vert_pos, _ = read_surface(fname_surf) vert_pos /= 1e3 # the positions in labels are in meters for label_id, label_name, label_rgba in\ zip(label_ids, label_names, label_rgbas): vertices = np.where(annot == label_id)[0] if len(vertices) == 0: # label is not part of cortical surface continue name = label_name.decode() + '-' + hemi if (regexp is not None) and not r_.match(name): continue pos = vert_pos[vertices, :] values = np.ones(len(vertices)) label_rgba = tuple(label_rgba / 255.) label = Label(vertices, pos, values, hemi, name=name, subject=subject, color=label_rgba) labels.append(label) n_read = len(labels) - n_read logger.info(' read %d labels from %s' % (n_read, fname)) # sort the labels by label name labels = sorted(labels, key=lambda l: l.name) if len(labels) == 0: msg = 'No labels found.' if regexp is not None: msg += ' Maybe the regular expression %r did not match?' % regexp raise RuntimeError(msg) return labels def _write_annot(fname, annot, ctab, names): """Write a Freesurfer annotation to a .annot file. Parameters ---------- fname : str Path to annotation file annot : numpy array, shape=(n_verts) Annotation id at each vertex. Note: IDs must be computed from RGBA colors, otherwise the mapping will be invalid. ctab : numpy array, shape=(n_entries, 4) RGBA colortable array. names : list of str List of region names to be stored in the annot file """ with open(fname, 'wb') as fid: n_verts = len(annot) np.array(n_verts, dtype='>i4').tofile(fid) data = np.zeros((n_verts, 2), dtype='>i4') data[:, 0] = np.arange(n_verts) data[:, 1] = annot data.ravel().tofile(fid) # indicate that color table exists np.array(1, dtype='>i4').tofile(fid) # color table version 2 np.array(-2, dtype='>i4').tofile(fid) # write color table n_entries = len(ctab) np.array(n_entries, dtype='>i4').tofile(fid) # write dummy color table name table_name = 'MNE-Python Colortable' np.array(len(table_name), dtype='>i4').tofile(fid) np.frombuffer(table_name.encode('ascii'), dtype=np.uint8).tofile(fid) # number of entries to write np.array(n_entries, dtype='>i4').tofile(fid) # write entries for ii, (name, color) in enumerate(zip(names, ctab)): np.array(ii, dtype='>i4').tofile(fid) np.array(len(name), dtype='>i4').tofile(fid) np.frombuffer(name.encode('ascii'), dtype=np.uint8).tofile(fid) np.array(color[:4], dtype='>i4').tofile(fid) @verbose def write_labels_to_annot(labels, subject=None, parc=None, overwrite=False, subjects_dir=None, annot_fname=None, colormap='hsv', hemi='both', verbose=None): r"""Create a FreeSurfer annotation from a list of labels. Parameters ---------- labels : list with instances of mne.Label The labels to create a parcellation from. subject : str | None The subject for which to write the parcellation for. parc : str | None The parcellation name to use. overwrite : bool Overwrite files if they already exist. subjects_dir : string, or None Path to SUBJECTS_DIR if it is not set in the environment. annot_fname : str | None Filename of the .annot file. If not None, only this file is written and 'parc' and 'subject' are ignored. colormap : str Colormap to use to generate label colors for labels that do not have a color specified. hemi : 'both' | 'lh' | 'rh' The hemisphere(s) for which to write \*.annot files (only applies if annot_fname is not specified; default is 'both'). verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Notes ----- Vertices that are not covered by any of the labels are assigned to a label named "unknown". """ logger.info('Writing labels to parcellation...') subjects_dir = get_subjects_dir(subjects_dir) # get the .annot filenames and hemispheres annot_fname, hemis = _get_annot_fname(annot_fname, subject, hemi, parc, subjects_dir) if not overwrite: for fname in annot_fname: if op.exists(fname): raise ValueError('File %s exists. Use "overwrite=True" to ' 'overwrite it' % fname) # prepare container for data to save: to_save = [] # keep track of issues found in the labels duplicate_colors = [] invalid_colors = [] overlap = [] no_color = (-1, -1, -1, -1) no_color_rgb = (-1, -1, -1) for hemi, fname in zip(hemis, annot_fname): hemi_labels = [label for label in labels if label.hemi == hemi] n_hemi_labels = len(hemi_labels) if n_hemi_labels == 0: ctab = np.empty((0, 4), dtype=np.int32) ctab_rgb = ctab[:, :3] else: hemi_labels.sort(key=lambda label: label.name) # convert colors to 0-255 RGBA tuples hemi_colors = [no_color if label.color is None else tuple(int(round(255 * i)) for i in label.color) for label in hemi_labels] ctab = np.array(hemi_colors, dtype=np.int32) ctab_rgb = ctab[:, :3] # make color dict (for annot ID, only R, G and B count) labels_by_color = defaultdict(list) for label, color in zip(hemi_labels, ctab_rgb): labels_by_color[tuple(color)].append(label.name) # check label colors for color, names in labels_by_color.items(): if color == no_color_rgb: continue if color == (0, 0, 0): # we cannot have an all-zero color, otherw. e.g. tksurfer # refuses to read the parcellation warn('At least one label contains a color with, "r=0, ' 'g=0, b=0" value. Some FreeSurfer tools may fail ' 'to read the parcellation') if any(i > 255 for i in color): msg = ("%s: %s (%s)" % (color, ', '.join(names), hemi)) invalid_colors.append(msg) if len(names) > 1: msg = "%s: %s (%s)" % (color, ', '.join(names), hemi) duplicate_colors.append(msg) # replace None values (labels with unspecified color) if labels_by_color[no_color_rgb]: default_colors = _n_colors(n_hemi_labels, bytes_=True, cmap=colormap) # keep track of colors known to be in hemi_colors : safe_color_i = 0 for i in xrange(n_hemi_labels): if ctab[i, 0] == -1: color = default_colors[i] # make sure to add no duplicate color while np.any(np.all(color[:3] == ctab_rgb, 1)): color = default_colors[safe_color_i] safe_color_i += 1 # assign the color ctab[i] = color # find number of vertices in surface if subject is not None and subjects_dir is not None: fpath = op.join(subjects_dir, subject, 'surf', '%s.white' % hemi) points, _ = read_surface(fpath) n_vertices = len(points) else: if len(hemi_labels) > 0: max_vert = max(np.max(label.vertices) for label in hemi_labels) n_vertices = max_vert + 1 else: n_vertices = 1 warn('Number of vertices in the surface could not be ' 'verified because the surface file could not be found; ' 'specify subject and subjects_dir parameters.') # Create annot and color table array to write annot = np.empty(n_vertices, dtype=np.int) annot[:] = -1 # create the annotation ids from the colors annot_id_coding = np.array((1, 2 ** 8, 2 ** 16)) annot_ids = list(np.sum(ctab_rgb * annot_id_coding, axis=1)) for label, annot_id in zip(hemi_labels, annot_ids): # make sure the label is not overwriting another label if np.any(annot[label.vertices] != -1): other_ids = set(annot[label.vertices]) other_ids.discard(-1) other_indices = (annot_ids.index(i) for i in other_ids) other_names = (hemi_labels[i].name for i in other_indices) other_repr = ', '.join(other_names) msg = "%s: %s overlaps %s" % (hemi, label.name, other_repr) overlap.append(msg) annot[label.vertices] = annot_id hemi_names = [label.name for label in hemi_labels] if None in hemi_names: msg = ("Found %i labels with no name. Writing annotation file" "requires all labels named" % (hemi_names.count(None))) # raise the error immediately rather than crash with an # uninformative error later (e.g. cannot join NoneType) raise ValueError(msg) # Assign unlabeled vertices to an "unknown" label unlabeled = (annot == -1) if np.any(unlabeled): msg = ("Assigning %i unlabeled vertices to " "'unknown-%s'" % (unlabeled.sum(), hemi)) logger.info(msg) # find an unused color (try shades of gray first) for i in range(1, 257): if not np.any(np.all((i, i, i) == ctab_rgb, 1)): break if i < 256: color = (i, i, i, 0) else: err = ("Need one free shade of gray for 'unknown' label. " "Please modify your label colors, or assign the " "unlabeled vertices to another label.") raise ValueError(err) # find the id annot_id = np.sum(annot_id_coding * color[:3]) # update data to write annot[unlabeled] = annot_id ctab = np.vstack((ctab, color)) hemi_names.append("unknown") # convert to FreeSurfer alpha values ctab[:, 3] = 255 - ctab[:, 3] # remove hemi ending in names hemi_names = [name[:-3] if name.endswith(hemi) else name for name in hemi_names] to_save.append((fname, annot, ctab, hemi_names)) issues = [] if duplicate_colors: msg = ("Some labels have the same color values (all labels in one " "hemisphere must have a unique color):") duplicate_colors.insert(0, msg) issues.append(os.linesep.join(duplicate_colors)) if invalid_colors: msg = ("Some labels have invalid color values (all colors should be " "RGBA tuples with values between 0 and 1)") invalid_colors.insert(0, msg) issues.append(os.linesep.join(invalid_colors)) if overlap: msg = ("Some labels occupy vertices that are also occupied by one or " "more other labels. Each vertex can only be occupied by a " "single label in *.annot files.") overlap.insert(0, msg) issues.append(os.linesep.join(overlap)) if issues: raise ValueError('\n\n'.join(issues)) # write it for fname, annot, ctab, hemi_names in to_save: logger.info(' writing %d labels to %s' % (len(hemi_names), fname)) _write_annot(fname, annot, ctab, hemi_names)
bsd-3-clause
cademarkegard/airflow
airflow/hooks/hive_hooks.py
13
25357
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from builtins import zip from past.builtins import basestring import collections import unicodecsv as csv import itertools import logging import re import subprocess import time from tempfile import NamedTemporaryFile import hive_metastore from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.utils.helpers import as_flattened_list from airflow.utils.file import TemporaryDirectory from airflow import configuration import airflow.security.utils as utils HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: string :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: string :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: string """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{conn.host}:{conn.port}/{conn.schema}" if configuration.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/[email protected]") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = "" # noqa if conn.extra_dejson.get('proxy_user') == "login" and conn.login: proxy_user = "hive.server2.proxy.user={0}".format(conn.login) elif conn.extra_dejson.get('proxy_user') == "owner" and self.run_as: proxy_user = "hive.server2.proxy.user={0}".format(self.run_as) jdbc_url += ";principal={template};{proxy_user}" elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = jdbc_url.format(**locals()) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list def _prepare_hiveconf(self, d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( itertools.izip( ["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()] ) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(**locals()) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() hive_conf_params = self._prepare_hiveconf(hive_conf) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue)]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: logging.info(" ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: logging.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] logging.info("Testing HQL [{0} (...)]".format(query_preview)) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] logging.info(message) error_loc = re.search('(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): l = int(error_loc.group(1)) begin = max(l-2, 0) end = min(l+3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) logging.info("Context :\n {0}".format(context)) else: logging.info("SUCCESS") def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param table: target Hive table, use dot notation to target a specific database :type table: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param delimiter: field delimiter in the file :type delimiter: str """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n" if create or recreate: fields = ",\n ".join( [k + ' ' + v for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n" if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n" hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n" hql += "STORED AS textfile;" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' " if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} " if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals});" hql = hql.format(**locals()) logging.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" def __init__(self, metastore_conn_id='metastore_default'): self.metastore_conn = self.get_connection(metastore_conn_id) self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol from hive_service import ThriftHive ms = self.metastore_conn auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if configuration.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') socket = TSocket.TSocket(ms.host, ms.port) if configuration.get('core', 'security') == 'kerberos' and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return ThriftHive.Client(protocol) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ self.metastore._oprot.trans.open() partitions = self.metastore.get_partitions_by_filter( schema, table, partition, 1) self.metastore._oprot.trans.close() if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: string :param table: Name of hive table @partition belongs to :type schema: string :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: string :rtype: boolean >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ self.metastore._oprot.trans.open() try: self.metastore.get_partition_by_name( schema, table, partition_name) return True except hive_metastore.ttypes.NoSuchObjectException: return False finally: self.metastore._oprot.trans.close() def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ self.metastore._oprot.trans.open() if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] table = self.metastore.get_table(dbname=db, tbl_name=table_name) self.metastore._oprot.trans.close() return table def get_tables(self, db, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() tables = self.metastore.get_tables(db_name=db, pattern=pattern) objs = self.metastore.get_table_objects_by_name(db, tables) self.metastore._oprot.trans.close() return objs def get_databases(self, pattern='*'): """ Get a metastore table object """ self.metastore._oprot.trans.open() dbs = self.metastore.get_databases(pattern) self.metastore._oprot.trans.close() return dbs def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ self.metastore._oprot.trans.open() table = self.metastore.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = self.metastore.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=32767) else: parts = self.metastore.get_partitions( db_name=schema, tbl_name=table_name, max_parts=32767) self.metastore._oprot.trans.close() pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] def max_partition(self, schema, table_name, field=None, filter=None): """ Returns the maximum value for all partitions in a table. Works only for tables that have a single partition key. For subpartitioned table, we recommend using signal tables. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', table_name=t) '2015-01-01' """ parts = self.get_partitions(schema, table_name, filter) if not parts: return None elif len(parts[0]) == 1: field = list(parts[0].keys())[0] elif not field: raise AirflowException( "Please specify the field you want the max " "value for") return max([p[field] for p in parts]) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: t = self.get_table(table_name, db) return True except Exception as e: return False class HiveServer2Hook(BaseHook): """ Wrapper around the impyla library Note that the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI as in """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self): db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'PLAIN') kerberos_service_name = None if configuration.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # impyla uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'KERBEROS': logging.warning("Detected deprecated 'KERBEROS' for authMechanism for %s. Please use 'GSSAPI' instead", self.hiveserver2_conn_id) auth_mechanism = 'GSSAPI' from impala.dbapi import connect return connect( host=db.host, port=db.port, auth_mechanism=auth_mechanism, kerberos_service_name=kerberos_service_name, user=db.login, database=db.schema or 'default') def get_results(self, hql, schema='default', arraysize=1000): from impala.error import ProgrammingError with self.get_conn() as conn: if isinstance(hql, basestring): hql = [hql] results = { 'data': [], 'header': [], } cur = conn.cursor() for statement in hql: cur.execute(statement) records = [] try: # impala Lib raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL records = cur.fetchall() except ProgrammingError: logging.debug("get_results returned no records") if records: results = { 'data': records, 'header': cur.description, } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000): schema = schema or 'default' with self.get_conn() as conn: with conn.cursor() as cur: logging.info("Running query: " + hql) cur.execute(hql) schema = cur.description with open(csv_filepath, 'wb') as f: writer = csv.writer(f, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') if output_header: writer.writerow([c[0] for c in cur.description]) i = 0 while True: rows = [row for row in cur.fetchmany(fetch_size) if row] if not rows: break writer.writerows(rows) i += len(rows) logging.info("Written {0} rows so far.".format(i)) logging.info("Done. Loaded a total of {0} rows.".format(i)) def get_records(self, hql, schema='default'): """ Get a set of records from a Hive query. >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
eramirem/astroML
book_figures/chapter3/fig_correlations.py
3
4139
""" Correlation estimates --------------------- Figure 3.24. Bootstrap estimates of the distribution of Pearson's, Spearman's, and Kendall's correlation coefficients based on 2000 resamplings of the 1000 points shown in figure 3.23. The true values are shown by the dashed lines. It is clear that Pearson's correlation coefficient is not robust to contamination. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from scipy import stats from matplotlib import pyplot as plt from astroML.stats.random import bivariate_normal from astroML.decorators import pickle_results # percent sign must be escaped if usetex=True import matplotlib if matplotlib.rcParams.get('text.usetex'): pct = '\%' else: pct = '%' #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Set parameters for the distributions Nbootstraps = 5000 N = 1000 sigma1 = 2.0 sigma2 = 1.0 mu = (10.0, 10.0) alpha_deg = 45.0 alpha = alpha_deg * np.pi / 180 f = 0.01 #------------------------------------------------------------ # sample the distribution # without outliers and with outliers np.random.seed(0) X = bivariate_normal(mu, sigma1, sigma2, alpha, N) X_out = X.copy() X_out[:int(f * N)] = bivariate_normal(mu, 2, 5, 45 * np.pi / 180., int(f * N)) # true values of rho (pearson/spearman r) and tau # tau value comes from Eq. 41 of arXiv:1011.2009 rho_true = 0.6 tau_true = 2 / np.pi * np.arcsin(rho_true) #------------------------------------------------------------ # Create a function to compute the statistics. Since this # takes a while, we'll use the "pickle_results" decorator # to save the results of the computation to disk @pickle_results('fig_correlations_dump.pkl') def compute_results(N, Nbootstraps): results = np.zeros((3, 2, Nbootstraps)) for k in range(Nbootstraps): ind = np.random.randint(N, size=N) for j, data in enumerate([X, X_out]): x = data[ind, 0] y = data[ind, 1] for i, statistic in enumerate([stats.pearsonr, stats.spearmanr, stats.kendalltau]): results[i, j, k] = statistic(x, y)[0] return results results = compute_results(N, Nbootstraps) #------------------------------------------------------------ # Plot the results in a three-panel plot fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(bottom=0.1, top=0.95, hspace=0.25) histargs = (dict(alpha=0.5, label='No Outliers'), dict(alpha=0.8, label='%i%s Outliers' % (int(f * 100), pct))) distributions = ['Pearson-r', 'Spearman-r', r'Kendall-$\tau$'] xlabels = ['r_p', 'r_s', r'\tau']\ for i in range(3): ax = fig.add_subplot(311 + i) for j in range(2): ax.hist(results[i, j], 40, histtype='stepfilled', fc='gray', normed=True, **histargs[j]) if i == 0: ax.legend(loc=2) ylim = ax.get_ylim() if i < 2: ax.plot([rho_true, rho_true], ylim, '--k', lw=1) ax.set_xlim(0.34, 0.701) else: ax.plot([tau_true, tau_true], ylim, '--k', lw=1) ax.set_xlim(0.31, 0.48) ax.set_ylim(ylim) ax.text(0.98, 0.95, distributions[i], ha='right', va='top', transform=ax.transAxes, bbox=dict(fc='w', ec='w')) ax.set_xlabel('$%s$' % xlabels[i]) ax.set_ylabel('$N(%s)$' % xlabels[i]) plt.show()
bsd-2-clause
kkarrancsu/copula-bayesian-networks
copulamnsig.py
1
24012
#!/usr/bin/env python # -*- coding: utf-8 -*- # #****************************************************************************** #* #* Copyright (C) 2015 Kiran Karra <[email protected]> #* #* This program is free software: you can redistribute it and/or modify #* it under the terms of the GNU General Public License as published by #* the Free Software Foundation, either version 3 of the License, or #* (at your option) any later version. #* #* This program is distributed in the hope that it will be useful, #* but WITHOUT ANY WARRANTY; without even the implied warranty of #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #* GNU General Public License for more details. #* #* You should have received a copy of the GNU General Public License #* along with this program. If not, see <http://www.gnu.org/licenses/>. #****************************************************************************** import math import numpy as np from cvolume import cvolume import multivariate_stats from ecdf import probability_integral_transform from scipy.stats import entropy def copulamnsig(family, K, *args): """ Computes the copula multinomial signature as described in the paper "Highly Efficient Learning of Mixed Copula Networks" for a specified copula family. Essentially, it breaks up the unit grid into a K x K boxes, and computes the probability of a sample from that copula pdf falling in that grid. This is then aggregated into a multinomial probability distribution. This so called "multinomial" signature of a copula is then used to efficiently determine the structure of the Bayesian network, as well as the copula which would describe the dependency between the nodes. The grid over the unit cube is numbered as follows, for a 4 x 4 grid ___________________ | 4 | 8 | 12 | 16 | |---|---|----|----| | 3 | 7 | 11 | 15 | |-----------------| | 2 | 6 | 10 | 14 | |-----------------| | 1 | 5 | 9 | 13 | |___|___|____|____| Currently, this computes the multinomial signature for a specified copula family of 2 dimensions. It would be nice to expand this to multiple dimensions, and we can use the general formula for C-volume family - the copula type, must be: 'Gaussian' 'T' 'Clayton' 'Frank' 'Gumbel' args - must be atleast of length 2, for which the first element in args is expected to be a string which describes the dependency value being provided, must be one of the following: 'kendall' - means kendall's Tau is being provided 'spearman' - means spearman's rho is being provided 'native' - means that the dependency parameter of the copula family itself is being provided directly the second argmuent must be the value of the dependency type provided. For kendall and spearman, a scalar value is expected. For native, if the family type is Frank, Gumbel, or Clayton, then a scalar value is expected, which represents the dependency parameter. If the family type is Gaussian, then a 2 x 2 numpy array is expected, which represents the correlation matrix defining the Gaussian copula. If the family is T, then the 2nd argument is the 2x2 numpy array representing the correlation matrix, and the 3rd argument is the degrees of freedom """ coords_list = _makeCoordsList(K) # mnsig is a list of dictionaries. The (list index+1) corresponds to the # grid of interest in the unit cube. In the dictionary, the actual lower # left coordinates of the box and the upper right coordinates of the box # are stored as keys 'u1v1' and 'u2v2', and then the actual value of the # multinomial signature in that grid is stored as 'val' mnsig = [] for coord in coords_list: # compute the C-volume and store u1v1 = coord[0] u1v2 = coord[1] u2v1 = coord[2] u2v2 = coord[3] try: val = cvolume(family, u1v1, u1v2, u2v1, u2v2, *args) except ValueError: val = np.array([-1]) # for compatibility we put the numpy wrapper mnsig.append(val[0]) return mnsig def empirical_copulamnsig(X, K): """ Computes an empirical copula multinomial signature based on the dataset provided by U. U must be a numpy array of dimensions [M x N], where M is the number of data points in the dataset and, N is the dimensionality of the data """ M = X.shape[0] N = X.shape[1] # convert X to U by using the probability integral transform: F(X) = U U = probability_integral_transform(X) # generate the coordinates so we can then compare and see where each sample # falls into in the unit cube coords_list = _makeCoordsList(K) # this will be a list of dictionaries which has all the combinations of the # empirical binomial signature esig = [] # for all i < j, compute pairwise bivariate multinomial signature for dim1 in range(0,N-1): for dim2 in range(dim1+1,N): # to compute the pairwise bivariate multinomial signature, what # we do is essentially grid as before, and compute a histogram # for each grid .. whcih is our empirical estimate # the grid is lay-ed out in the exact same way as described before, # so the index of mnsig from copulamnsig and the index of the value # generated here will be directly comparable # ___________________ # | 4 | 8 | 12 | 16 | # |---|---|----|----| # | 3 | 7 | 11 | 15 | # |-----------------| # | 2 | 6 | 10 | 14 | # |-----------------| # | 1 | 5 | 9 | 13 | # |___|___|____|____| tmp = {} # RV 1 that we are comparing tmp['rv1'] = dim1+1 # RV 2 that we are comparing tmp['rv2'] = dim2+1 # the value for the zone -- initialize to 0 esig_vec = np.zeros(K*K) # there is probably a more efficient way to do this than to loop # over each value, but this is a first cut at implementing this u = U[:,dim1] v = U[:,dim2] for ii in range(0,M): # find which zone this specific (u,v) sample falls in for jj in range(0,K*K): u1 = coords_list[jj][0][0][0] v1 = coords_list[jj][0][0][1] u2 = coords_list[jj][3][0][0] v2 = coords_list[jj][3][0][1] if(u[ii] >= u1 and u[ii] < u2 and v[ii] >= v1 and v[ii] < v2): # add one to the zone that it falls into esig_vec[jj] = (esig_vec[jj] + 1.0/M) # process the next pair by kicking out of this loop break tmp['esig'] = esig_vec esig.append(tmp) return esig def _makeCoordsList(K): eps = np.finfo(float).eps u = np.linspace(0+eps, 1-eps, K+1) v = np.linspace(0+eps, 1-eps, K+1) coords_list = [] for ii in range(0,len(u)-1): for jj in range(0,len(v)-1): u1 = u[ii] u2 = u[ii+1] v1 = v[jj] v2 = v[jj+1] u1v1 = np.array([[u1,v1]]) u1v2 = np.array([[u1,v2]]) u2v1 = np.array([[u2,v1]]) u2v2 = np.array([[u2,v2]]) x = [] x.append(u1v1) x.append(u1v2) x.append(u2v1) x.append(u2v2) coords_list.append(x) return coords_list # the master function, which computes the correct copula family to choose from # will compare the empirical signatures to the actual signature for refernence # will do the following: # 1.) compute the empirical kendall's tau # 2.) load the precomputed multinomial signature for that kendall's tau # for all the copula families # 3.) minimize the distance metric def optimalCopulaFamily(X, K=4, family_search=['Gaussian', 'Clayton', 'Gumbel', 'Frank']): """ This function, given a multivariate data set X, computes the best copula family which fits the data, using the procedure described in the paper "Highly Efficient Learning of Mixed Copula Networks," by Gal Elidan X - the multivariate dataset for which we desire the copula. Must be a numpy array of dimension [M x N], where M is the number of data points, and N is the dimensionality of the dataset K - the square root of the number of grid points (for now, we assume square gridding of the unit cube) family_search - a list of all the copula families to search. Currently, what is supported is Gaussian, Clayton, Gumbel, and Frank. As more copula's are added, the default list will be expanded. """ # compute the empirical Kendall's Tau tau_hat = multivariate_stats.kendalls_tau(X) # compute empirical multinomial signature empirical_mnsig = empirical_copulamnsig(X, K) empirical_mnsig = empirical_mnsig[0]['esig'] # replace any 0 values w/ smallest possible float value empirical_mnsig[empirical_mnsig==0] = np.spacing(1) # compute the multinomial signature for each of the copula families specified # and simultaneously compute the kullback leibler divergence between the empirical # and the computed, and store that info distances = {} for family in family_search: # because the Clayton and Gumbel Copula's have restrictions for the valid values of # Kendall's tau, we do checks here to ensure those restrictions are met, because there # will be a certain variance associated with the tau_hat measurement if(family.lower()=='clayton'): # here we add some additional optimizatons as follows. We know that the Clayton copula # captures only positive concordance. Like any estimator, tau_hat will have some variance # associated with it. Thus, the optimization we make is as follows, if tau_hat is within # a configurable amount less than 0, then we will set tau_hat to 0 and continue processing. # However, if tau_hat is greater than that, we theoretically wouldn't have to test against # the Clayton copula model, so we set the KL-divergence to be infinity to exclude # this family from being selected if(tau_hat<-0.05): distances[family] = np.inf continue elif(tau_hat>=-0.05 and tau_hat<0): tau_hat = 0 elif(tau_hat>=1): tau_hat = 1 - np.spacing(1) # as close to 1 as possible in our precision elif(family.lower()=='gumbel'): # here we add some additional optimizatons as follows. We know that the Gumbel copula # captures only positive concordance. Like any estimator, tau_hat will have some variance # associated with it. Thus, the optimization we make is as follows, if tau_hat is within # a configurable amount less than 0, then we will set tau_hat to 0 and continue processing. # However, if tau_hat is greater than that, we theoretically wouldn't have to test against # the Gumbel copula model, so we set the KL-divergence to be infinity to exclude # this family from being selected if(tau_hat<-0.05): distances[family] = np.inf continue elif(tau_hat>=-0.05 and tau_hat<0): tau_hat = 0 elif(tau_hat>=1): tau_hat = 1 - np.spacing(1) # as close to 1 as possible in our precision # any other copula families with restrictions can go here mnsig = copulamnsig(family,K,'kendall',tau_hat) # replace any 0 values w/ smallest possible float value mnsig[mnsig==0] = np.spacing(1) # compute KL divergence, see # http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.entropy.html distances[family] = entropy(mnsig, empirical_mnsig) # search for the minimum distance, that is the optimal copula family to use minDistance = np.inf for family, distance in distances.iteritems(): if distance<minDistance: minDistance = distance optimalFamily = family depParams = invcopulastat(optimalFamily, 'kendall', tau_hat) return (optimalFamily, depParams, tau_hat) def testHELM(tau, M, N, familyToTest, numMCSims, copulaFamiliesToTest): results = {} for fam in copulaFamiliesToTest: results[fam.lower()] = 0 for ii in range(0,numMCSims): # generate samples of the requested copula with tau same as the # empirical signature we calculated above if(familyToTest.lower()=='gaussian'): r = invcopulastat(familyToTest, 'kendall', tau) Rho = np.empty((N,N)) for jj in range(0,N): for kk in range(0,N): if(jj==kk): Rho[jj][kk] = 1 else: Rho[jj][kk] = r try: U = copularnd(familyToTest, M, Rho) except ValueError: # copularnd will throw a ValueError if Rho is not a positive semidefinite matrix return results # return 0, which will then be ignored by tests else: # assume Clayton, Frank, or Gumbel try: alpha = invcopulastat(familyToTest, 'kendall', tau) U = copularnd(familyToTest, M, N, alpha) except ValueError: continue lst = [] for jj in range(0,N): U_conditioned = U[:,jj] # if there are any 1's, condition it U_conditioned[U_conditioned==1] = 0.99 if(jj%2==0): lst.append(norm.ppf(U_conditioned)) else: lst.append(expon.ppf(U_conditioned)) # combine X and Y into the joint distribution w/ the copula X = np.vstack(lst) X = X.T ret = optimalCopulaFamily(X, family_search=copulaFamiliesToTest) ret_family = ret[0].lower() # aggregate results results[ret_family] = results[ret_family] + 1.0 # display some progress sys.stdout.write("\rComputing " + str(familyToTest) + " Copula (DIM=%d) (tau=%f)-- %d%%" % (N,tau,ii+1)) sys.stdout.flush() sys.stdout.write("\r") # convert results to percentage for fam in copulaFamiliesToTest: results[fam.lower()] = results[fam.lower()]/float(numMCSims) * 100 return results def plotPieChartResults(results, family, title): colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] # for the pie chart # explode the Gaussian portion fo the pychart expTup = [0,0,0,0] expTup[results.keys().index(family.lower())] = 0.1 plt.pie(results.values(), explode=expTup, labels=results.keys(), colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) plt.title(title) plt.show() def testHELM_parametric(K,M,N,tauVec,families): # some tests on the copula multinomial signature # Monte-Carlo style simulations to test each copula generation numMCSims = 1000 resultsAggregate = {} for family in families: famResults = {} for tau in tauVec: results = testHELM(tau, M, N, family, numMCSims, families) famResults[tau] = results resultsAggregate[family] = famResults return resultsAggregate def visualizeMNSig(): # some tests on the copula multinomial signature K = 4 M = 1000 N = 3 tauVec = np.arange(-0.9,0.95,0.05) # the families to test against and pick optimal copula families = ['Gaussian', 'Clayton', 'Gumbel', 'Frank'] helmAccuracyResults = testHELM_parametric(K,M,N,tauVec,families) resultsAggregate = {} for family in families: famResults = {} for tau in tauVec: mnsig = copulamnsig(family,K,'kendall',tau) famResults[tau] = mnsig resultsAggregate[family] = famResults # visualize the results for tau in tauVec: # we would also like to visualize this copula on the side, to try to # understand what may be a better way todo model selection try: r = invcopulastat('Gaussian', 'kendall', tau) except ValueError: r = -1 Rho = np.empty((N,N)) for jj in range(0,N): for kk in range(0,N): if(jj==kk): Rho[jj][kk] = 1 else: Rho[jj][kk] = r try: alpha_clayton = invcopulastat('Clayton', 'kendall', tau) except ValueError: alpha_clayton = -1 try: alpha_gumbel = invcopulastat('Gumbel', 'kendall', tau) except ValueError: alpha_gumbel = -1 try: alpha_frank = invcopulastat('Frank', 'kendall', tau) except ValueError: alpha_frank = -1 if(r!=-1): try: U_gauss = copularnd('Gaussian', M, Rho) except ValueError: U_gauss = np.zeros((M,N)) if(alpha_clayton!=-1): try: U_clayton = copularnd('Clayton', M, N, alpha_clayton) except ValueError: U_clayton = np.zeros((M,N)) if(alpha_frank!=-1): try: U_frank = copularnd('Frank', M, N, alpha_frank) except ValueError: U_frank = np.zeros((M,N)) if(alpha_gumbel!=-1): try: U_gumbel = copularnd('Gumbel', M, N, alpha_gumbel) except ValueError: U_gumbel = np.zeros((M,N)) # get each family's MN signature and plot it plt.figure(figsize=(30,20)) plt.subplot(231) if(np.sum(resultsAggregate['Gaussian'][tau])>0): plt.plot(np.arange(1,K*K+1), resultsAggregate['Gaussian'][tau], 'b.-', label='Gaussian Copula') if(np.sum(resultsAggregate['Clayton'][tau])>0): plt.plot(np.arange(1,K*K+1), resultsAggregate['Clayton'][tau], 'g.-', label='Clayton Copula') if(np.sum(resultsAggregate['Gumbel'][tau])>0): plt.plot(np.arange(1,K*K+1), resultsAggregate['Gumbel'][tau], 'r.-', label='Gumbel Copula') if(np.sum(resultsAggregate['Frank'][tau])>0): plt.plot(np.arange(1,K*K+1), resultsAggregate['Frank'][tau], 'k.-', label='Frank Copula') plt.title(r'Copula Multinomial Signature $\tau$=' + "{0:.2f}".format(tau) + ' K=' + str(K)) plt.legend() plt.grid() plt.subplot(232) if(r!=-1): plt.scatter(U_gauss[:,0], U_gauss[:,1]) plt.grid() plt.title(r'Gaussian Copula, $\rho$=' + "{0:.2f}".format(r) + r' $\tau$=' + "{0:.2f}".format(tau)) plt.subplot(233) if(alpha_clayton!=-1): plt.scatter(U_clayton[:,0], U_clayton[:,1]) plt.grid() plt.title(r'Clayton Copula, $\alpha$=' + "{0:.2f}".format(alpha_clayton) + r' $\tau$=' + "{0:.2f}".format(tau)) plt.subplot(235) if(alpha_frank!=-1): plt.scatter(U_frank[:,0], U_frank[:,1]) plt.grid() plt.title(r'Frank Copula, $\alpha$=' + "{0:.2f}".format(alpha_frank) + r' $\tau$=' + "{0:.2f}".format(tau)) plt.subplot(236) if(alpha_gumbel!=-1): plt.scatter(U_gumbel[:,0], U_gumbel[:,1]) plt.grid() plt.title(r'Gumbel Copula, $\alpha$=' + "{0:.2f}".format(alpha_gumbel) + r' $\tau$=' + "{0:.2f}".format(tau)) plt.subplot(234) # index manually to ensure accuracy cla = np.array([helmAccuracyResults['Clayton'][tau]['clayton'], helmAccuracyResults['Gaussian'][tau]['clayton'], helmAccuracyResults['Gumbel'][tau]['clayton'], helmAccuracyResults['Frank'][tau]['clayton']]) gau = np.array([helmAccuracyResults['Clayton'][tau]['gaussian'], helmAccuracyResults['Gaussian'][tau]['gaussian'], helmAccuracyResults['Gumbel'][tau]['gaussian'], helmAccuracyResults['Frank'][tau]['gaussian']]) gum = np.array([helmAccuracyResults['Clayton'][tau]['gumbel'], helmAccuracyResults['Gaussian'][tau]['gumbel'], helmAccuracyResults['Gumbel'][tau]['gumbel'], helmAccuracyResults['Frank'][tau]['gumbel']]) fra = np.array([helmAccuracyResults['Clayton'][tau]['frank'], helmAccuracyResults['Gaussian'][tau]['frank'], helmAccuracyResults['Gumbel'][tau]['frank'], helmAccuracyResults['Frank'][tau]['frank']]) ind = np.arange(4) width = 0.2 p1 = plt.bar(ind,cla,width,color='b') p2 = plt.bar(ind,gau,width,color='g',bottom=cla) p3 = plt.bar(ind,gum,width,color='k',bottom=cla+gau) p4 = plt.bar(ind,fra,width,color='r',bottom=cla+gau+gum) plt.xticks(ind+width/2.,('Clayton', 'Gaussian', 'Gumbel', 'Frank')) plt.legend( (p1[0], p2[0], p3[0], p4[0]), ('Clayton', 'Gaussian', 'Gumbel', 'Frank') ) plt.grid() plt.savefig(os.path.join('figures/HELM_performance/', 'HELM_DIM_' + str(N) + '_tau_' + "{0:.2f}".format(tau) + ' _K_' + str(K) + '.png')) plt.close() if __name__=='__main__': from copularnd import copularnd from invcopulastat import invcopulastat from scipy.stats import norm from scipy.stats import expon import sys import matplotlib.pyplot as plt import os # some tests on the copula multinomial signature tau = 0.4 K = 4 mnsig = copulamnsig('Gumbel',K,'kendall',tau) # iterate through mnsig to make sure we add upto 1 as a simple sanity check val_total = 0 for ii in range(0,len(mnsig)): val_total = val_total + mnsig[ii] #['val'] if(np.isclose(val_total, 1.0)): print 'CopulaMNSig total probability check passed!' else: print 'CopulaMNSig total probability check failed!' M = 1000 N = 2 # Monte-Carlo style simulations to test each copula generation numMCSims = 100 # the families to test against and pick optimal copula families = ['Gaussian', 'Clayton', 'Gumbel', 'Frank'] """ for family in families: title = 'Reference Bivariate ' + str(family) + ' Copula - HELM Identification Breakdown' results = testHELM(tau, M, N, family, numMCSims, families) plotPieChartResults(results, family, title) N = 3 for family in families: title = 'Reference Bivariate ' + str(family) + ' Copula - HELM Identification Breakdown' results = testHELM(tau, M, N, family, numMCSims, families) plotPieChartResults(results, family, title) """ #tauVec = np.arange(-0.9,0.95,0.05) #resultsAggregate = testHELM_parametric(K,M,N,tauVec) visualizeMNSig()
gpl-3.0
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/matplotlib/_cm.py
15
94005
""" Nothing here but dictionaries for generating LinearSegmentedColormaps, and a dictionary of these dictionaries. Documentation for each is in pyplot.colormaps() """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np _binary_data = { 'red': ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 1., 1.), (1., 0., 0.)), 'blue': ((0., 1., 1.), (1., 0., 0.)) } _autumn_data = {'red': ((0., 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (1.0, 0., 0.))} _bone_data = {'red': ((0., 0., 0.), (0.746032, 0.652778, 0.652778), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.365079, 0.319444, 0.319444), (0.746032, 0.777778, 0.777778), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.365079, 0.444444, 0.444444), (1.0, 1.0, 1.0))} _cool_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 1., 1.), (1.0, 0., 0.)), 'blue': ((0., 1., 1.), (1.0, 1., 1.))} _copper_data = {'red': ((0., 0., 0.), (0.809524, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 0.7812, 0.7812)), 'blue': ((0., 0., 0.), (1.0, 0.4975, 0.4975))} _flag_data = { 'red': lambda x: 0.75 * np.sin((x * 31.5 + 0.25) * np.pi) + 0.5, 'green': lambda x: np.sin(x * 31.5 * np.pi), 'blue': lambda x: 0.75 * np.sin((x * 31.5 - 0.25) * np.pi) + 0.5, } _prism_data = { 'red': lambda x: 0.75 * np.sin((x * 20.9 + 0.25) * np.pi) + 0.67, 'green': lambda x: 0.75 * np.sin((x * 20.9 - 0.25) * np.pi) + 0.33, 'blue': lambda x: -1.1 * np.sin((x * 20.9) * np.pi), } def cubehelix(gamma=1.0, s=0.5, r=-1.5, h=1.0): """Return custom data dictionary of (r,g,b) conversion functions, which can be used with :func:`register_cmap`, for the cubehelix color scheme. Unlike most other color schemes cubehelix was designed by D.A. Green to be monotonically increasing in terms of perceived brightness. Also, when printed on a black and white postscript printer, the scheme results in a greyscale with monotonically increasing brightness. This color scheme is named cubehelix because the r,g,b values produced can be visualised as a squashed helix around the diagonal in the r,g,b color cube. For a unit color cube (i.e. 3-D coordinates for r,g,b each in the range 0 to 1) the color scheme starts at (r,g,b) = (0,0,0), i.e. black, and finishes at (r,g,b) = (1,1,1), i.e. white. For some fraction *x*, between 0 and 1, the color is the corresponding grey value at that fraction along the black to white diagonal (x,x,x) plus a color element. This color element is calculated in a plane of constant perceived intensity and controlled by the following parameters. Optional keyword arguments: ========= ======================================================= Keyword Description ========= ======================================================= gamma gamma factor to emphasise either low intensity values (gamma < 1), or high intensity values (gamma > 1); defaults to 1.0. s the start color; defaults to 0.5 (i.e. purple). r the number of r,g,b rotations in color that are made from the start to the end of the color scheme; defaults to -1.5 (i.e. -> B -> G -> R -> B). h the hue parameter which controls how saturated the colors are. If this parameter is zero then the color scheme is purely a greyscale; defaults to 1.0. ========= ======================================================= """ def get_color_function(p0, p1): def color(x): # Apply gamma factor to emphasise low or high intensity values xg = x ** gamma # Calculate amplitude and angle of deviation from the black # to white diagonal in the plane of constant # perceived intensity. a = h * xg * (1 - xg) / 2 phi = 2 * np.pi * (s / 3 + r * x) return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi)) return color return { 'red': get_color_function(-0.14861, 1.78277), 'green': get_color_function(-0.29227, -0.90649), 'blue': get_color_function(1.97294, 0.0), } _cubehelix_data = cubehelix() _bwr_data = ((0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0)) _brg_data = ((0.0, 0.0, 1.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)) # Gnuplot palette functions gfunc = { 0: lambda x: 0, 1: lambda x: 0.5, 2: lambda x: 1, 3: lambda x: x, 4: lambda x: x ** 2, 5: lambda x: x ** 3, 6: lambda x: x ** 4, 7: lambda x: np.sqrt(x), 8: lambda x: np.sqrt(np.sqrt(x)), 9: lambda x: np.sin(x * np.pi / 2), 10: lambda x: np.cos(x * np.pi / 2), 11: lambda x: np.abs(x - 0.5), 12: lambda x: (2 * x - 1) ** 2, 13: lambda x: np.sin(x * np.pi), 14: lambda x: np.abs(np.cos(x * np.pi)), 15: lambda x: np.sin(x * 2 * np.pi), 16: lambda x: np.cos(x * 2 * np.pi), 17: lambda x: np.abs(np.sin(x * 2 * np.pi)), 18: lambda x: np.abs(np.cos(x * 2 * np.pi)), 19: lambda x: np.abs(np.sin(x * 4 * np.pi)), 20: lambda x: np.abs(np.cos(x * 4 * np.pi)), 21: lambda x: 3 * x, 22: lambda x: 3 * x - 1, 23: lambda x: 3 * x - 2, 24: lambda x: np.abs(3 * x - 1), 25: lambda x: np.abs(3 * x - 2), 26: lambda x: (3 * x - 1) / 2, 27: lambda x: (3 * x - 2) / 2, 28: lambda x: np.abs((3 * x - 1) / 2), 29: lambda x: np.abs((3 * x - 2) / 2), 30: lambda x: x / 0.32 - 0.78125, 31: lambda x: 2 * x - 0.84, 32: lambda x: gfunc32(x), 33: lambda x: np.abs(2 * x - 0.5), 34: lambda x: 2 * x, 35: lambda x: 2 * x - 0.5, 36: lambda x: 2 * x - 1. } def gfunc32(x): ret = np.zeros(len(x)) m = (x < 0.25) ret[m] = 4 * x[m] m = (x >= 0.25) & (x < 0.92) ret[m] = -2 * x[m] + 1.84 m = (x >= 0.92) ret[m] = x[m] / 0.08 - 11.5 return ret _gnuplot_data = { 'red': gfunc[7], 'green': gfunc[5], 'blue': gfunc[15], } _gnuplot2_data = { 'red': gfunc[30], 'green': gfunc[31], 'blue': gfunc[32], } _ocean_data = { 'red': gfunc[23], 'green': gfunc[28], 'blue': gfunc[3], } _afmhot_data = { 'red': gfunc[34], 'green': gfunc[35], 'blue': gfunc[36], } _rainbow_data = { 'red': gfunc[33], 'green': gfunc[13], 'blue': gfunc[10], } _seismic_data = ( (0.0, 0.0, 0.3), (0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0), (0.5, 0.0, 0.0)) _terrain_data = ( (0.00, (0.2, 0.2, 0.6)), (0.15, (0.0, 0.6, 1.0)), (0.25, (0.0, 0.8, 0.4)), (0.50, (1.0, 1.0, 0.6)), (0.75, (0.5, 0.36, 0.33)), (1.00, (1.0, 1.0, 1.0))) _gray_data = {'red': ((0., 0, 0), (1., 1, 1)), 'green': ((0., 0, 0), (1., 1, 1)), 'blue': ((0., 0, 0), (1., 1, 1))} _hot_data = {'red': ((0., 0.0416, 0.0416), (0.365079, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.365079, 0.000000, 0.000000), (0.746032, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.746032, 0.000000, 0.000000), (1.0, 1.0, 1.0))} _hsv_data = {'red': ((0., 1., 1.), (0.158730, 1.000000, 1.000000), (0.174603, 0.968750, 0.968750), (0.333333, 0.031250, 0.031250), (0.349206, 0.000000, 0.000000), (0.666667, 0.000000, 0.000000), (0.682540, 0.031250, 0.031250), (0.841270, 0.968750, 0.968750), (0.857143, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.158730, 0.937500, 0.937500), (0.174603, 1.000000, 1.000000), (0.507937, 1.000000, 1.000000), (0.666667, 0.062500, 0.062500), (0.682540, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.), (0.333333, 0.000000, 0.000000), (0.349206, 0.062500, 0.062500), (0.507937, 1.000000, 1.000000), (0.841270, 1.000000, 1.000000), (0.857143, 0.937500, 0.937500), (1.0, 0.09375, 0.09375))} _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0))} _pink_data = {'red': ((0., 0.1178, 0.1178), (0.015873, 0.195857, 0.195857), (0.031746, 0.250661, 0.250661), (0.047619, 0.295468, 0.295468), (0.063492, 0.334324, 0.334324), (0.079365, 0.369112, 0.369112), (0.095238, 0.400892, 0.400892), (0.111111, 0.430331, 0.430331), (0.126984, 0.457882, 0.457882), (0.142857, 0.483867, 0.483867), (0.158730, 0.508525, 0.508525), (0.174603, 0.532042, 0.532042), (0.190476, 0.554563, 0.554563), (0.206349, 0.576204, 0.576204), (0.222222, 0.597061, 0.597061), (0.238095, 0.617213, 0.617213), (0.253968, 0.636729, 0.636729), (0.269841, 0.655663, 0.655663), (0.285714, 0.674066, 0.674066), (0.301587, 0.691980, 0.691980), (0.317460, 0.709441, 0.709441), (0.333333, 0.726483, 0.726483), (0.349206, 0.743134, 0.743134), (0.365079, 0.759421, 0.759421), (0.380952, 0.766356, 0.766356), (0.396825, 0.773229, 0.773229), (0.412698, 0.780042, 0.780042), (0.428571, 0.786796, 0.786796), (0.444444, 0.793492, 0.793492), (0.460317, 0.800132, 0.800132), (0.476190, 0.806718, 0.806718), (0.492063, 0.813250, 0.813250), (0.507937, 0.819730, 0.819730), (0.523810, 0.826160, 0.826160), (0.539683, 0.832539, 0.832539), (0.555556, 0.838870, 0.838870), (0.571429, 0.845154, 0.845154), (0.587302, 0.851392, 0.851392), (0.603175, 0.857584, 0.857584), (0.619048, 0.863731, 0.863731), (0.634921, 0.869835, 0.869835), (0.650794, 0.875897, 0.875897), (0.666667, 0.881917, 0.881917), (0.682540, 0.887896, 0.887896), (0.698413, 0.893835, 0.893835), (0.714286, 0.899735, 0.899735), (0.730159, 0.905597, 0.905597), (0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208), (0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673), (0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999), (0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190), (0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250), (0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185), (0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999), (0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479), (0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738), (0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976), (0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957), (0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300), (0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348), (0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900), (0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476), (0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436), (0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044), (0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498), (0.365079, 0.493342, 0.493342), (0.380952, 0.517549, 0.517549), (0.396825, 0.540674, 0.540674), (0.412698, 0.562849, 0.562849), (0.428571, 0.584183, 0.584183), (0.444444, 0.604765, 0.604765), (0.460317, 0.624669, 0.624669), (0.476190, 0.643958, 0.643958), (0.492063, 0.662687, 0.662687), (0.507937, 0.680900, 0.680900), (0.523810, 0.698638, 0.698638), (0.539683, 0.715937, 0.715937), (0.555556, 0.732828, 0.732828), (0.571429, 0.749338, 0.749338), (0.587302, 0.765493, 0.765493), (0.603175, 0.781313, 0.781313), (0.619048, 0.796819, 0.796819), (0.634921, 0.812029, 0.812029), (0.650794, 0.826960, 0.826960), (0.666667, 0.841625, 0.841625), (0.682540, 0.856040, 0.856040), (0.698413, 0.870216, 0.870216), (0.714286, 0.884164, 0.884164), (0.730159, 0.897896, 0.897896), (0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208), (0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673), (0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999), (0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190), (0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250), (0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185), (0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999), (0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479), (0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738), (0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976), (0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957), (0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300), (0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348), (0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900), (0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476), (0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436), (0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044), (0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498), (0.365079, 0.493342, 0.493342), (0.380952, 0.503953, 0.503953), (0.396825, 0.514344, 0.514344), (0.412698, 0.524531, 0.524531), (0.428571, 0.534522, 0.534522), (0.444444, 0.544331, 0.544331), (0.460317, 0.553966, 0.553966), (0.476190, 0.563436, 0.563436), (0.492063, 0.572750, 0.572750), (0.507937, 0.581914, 0.581914), (0.523810, 0.590937, 0.590937), (0.539683, 0.599824, 0.599824), (0.555556, 0.608581, 0.608581), (0.571429, 0.617213, 0.617213), (0.587302, 0.625727, 0.625727), (0.603175, 0.634126, 0.634126), (0.619048, 0.642416, 0.642416), (0.634921, 0.650600, 0.650600), (0.650794, 0.658682, 0.658682), (0.666667, 0.666667, 0.666667), (0.682540, 0.674556, 0.674556), (0.698413, 0.682355, 0.682355), (0.714286, 0.690066, 0.690066), (0.730159, 0.697691, 0.697691), (0.746032, 0.705234, 0.705234), (0.761905, 0.727166, 0.727166), (0.777778, 0.748455, 0.748455), (0.793651, 0.769156, 0.769156), (0.809524, 0.789314, 0.789314), (0.825397, 0.808969, 0.808969), (0.841270, 0.828159, 0.828159), (0.857143, 0.846913, 0.846913), (0.873016, 0.865261, 0.865261), (0.888889, 0.883229, 0.883229), (0.904762, 0.900837, 0.900837), (0.920635, 0.918109, 0.918109), (0.936508, 0.935061, 0.935061), (0.952381, 0.951711, 0.951711), (0.968254, 0.968075, 0.968075), (0.984127, 0.984167, 0.984167), (1.0, 1.0, 1.0))} _spring_data = {'red': ((0., 1., 1.), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.), (1.0, 0.0, 0.0))} _summer_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 0.5, 0.5), (1.0, 1.0, 1.0)), 'blue': ((0., 0.4, 0.4), (1.0, 0.4, 0.4))} _winter_data = {'red': ((0., 0., 0.), (1.0, 0.0, 0.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.), (1.0, 0.5, 0.5))} _nipy_spectral_data = { 'red': [(0.0, 0.0, 0.0), (0.05, 0.4667, 0.4667), (0.10, 0.5333, 0.5333), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.0, 0.0), (0.30, 0.0, 0.0), (0.35, 0.0, 0.0), (0.40, 0.0, 0.0), (0.45, 0.0, 0.0), (0.50, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.7333, 0.7333), (0.70, 0.9333, 0.9333), (0.75, 1.0, 1.0), (0.80, 1.0, 1.0), (0.85, 1.0, 1.0), (0.90, 0.8667, 0.8667), (0.95, 0.80, 0.80), (1.0, 0.80, 0.80)], 'green': [(0.0, 0.0, 0.0), (0.05, 0.0, 0.0), (0.10, 0.0, 0.0), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.4667, 0.4667), (0.30, 0.6000, 0.6000), (0.35, 0.6667, 0.6667), (0.40, 0.6667, 0.6667), (0.45, 0.6000, 0.6000), (0.50, 0.7333, 0.7333), (0.55, 0.8667, 0.8667), (0.60, 1.0, 1.0), (0.65, 1.0, 1.0), (0.70, 0.9333, 0.9333), (0.75, 0.8000, 0.8000), (0.80, 0.6000, 0.6000), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], 'blue': [(0.0, 0.0, 0.0), (0.05, 0.5333, 0.5333), (0.10, 0.6000, 0.6000), (0.15, 0.6667, 0.6667), (0.20, 0.8667, 0.8667), (0.25, 0.8667, 0.8667), (0.30, 0.8667, 0.8667), (0.35, 0.6667, 0.6667), (0.40, 0.5333, 0.5333), (0.45, 0.0, 0.0), (0.5, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.0, 0.0), (0.70, 0.0, 0.0), (0.75, 0.0, 0.0), (0.80, 0.0, 0.0), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], } # 34 colormaps based on color specifications and designs # developed by Cynthia Brewer (http://colorbrewer.org). # The ColorBrewer palettes have been included under the terms # of an Apache-stype license (for details, see the file # LICENSE_COLORBREWER in the license directory of the matplotlib # source distribution). _Accent_data = {'blue': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.83137255907058716, 0.83137255907058716), (0.2857142857142857, 0.52549022436141968, 0.52549022436141968), (0.42857142857142855, 0.60000002384185791, 0.60000002384185791), (0.5714285714285714, 0.69019609689712524, 0.69019609689712524), (0.7142857142857143, 0.49803921580314636, 0.49803921580314636), (0.8571428571428571, 0.090196080505847931, 0.090196080505847931), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.78823530673980713, 0.78823530673980713), (0.14285714285714285, 0.68235296010971069, 0.68235296010971069), (0.2857142857142857, 0.75294119119644165, 0.75294119119644165), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.42352941632270813, 0.42352941632270813), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.35686275362968445, 0.35686275362968445), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.14285714285714285, 0.7450980544090271, 0.7450980544090271), (0.2857142857142857, 0.99215686321258545, 0.99215686321258545), (0.42857142857142855, 1.0, 1.0), (0.5714285714285714, 0.21960784494876862, 0.21960784494876862), (0.7142857142857143, 0.94117647409439087, 0.94117647409439087), (0.8571428571428571, 0.74901962280273438, 0.74901962280273438), (1.0, 0.40000000596046448, 0.40000000596046448)]} _Blues_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.93725490570068359, 0.93725490570068359), (0.375, 0.88235294818878174, 0.88235294818878174), (0.5, 0.83921569585800171, 0.83921569585800171), (0.625, 0.7764706015586853, 0.7764706015586853), (0.75, 0.70980393886566162, 0.70980393886566162), (0.875, 0.61176472902297974, 0.61176472902297974), (1.0, 0.41960784792900085, 0.41960784792900085)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92156863212585449, 0.92156863212585449), (0.25, 0.85882353782653809, 0.85882353782653809), (0.375, 0.7921568751335144, 0.7921568751335144), (0.5, 0.68235296010971069, 0.68235296010971069), (0.625, 0.57254904508590698, 0.57254904508590698), (0.75, 0.44313725829124451, 0.44313725829124451), (0.875, 0.31764706969261169, 0.31764706969261169), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87058824300765991, 0.87058824300765991), (0.25, 0.7764706015586853, 0.7764706015586853), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.41960784792900085, 0.41960784792900085), (0.625, 0.25882354378700256, 0.25882354378700256), (0.75, 0.12941177189350128, 0.12941177189350128), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _BrBG_data = {'blue': [(0.0, 0.019607843831181526, 0.019607843831181526), (0.10000000000000001, 0.039215687662363052, 0.039215687662363052), (0.20000000000000001, 0.17647059261798859, 0.17647059261798859), (0.29999999999999999, 0.49019607901573181, 0.49019607901573181), (0.40000000000000002, 0.76470589637756348, 0.76470589637756348), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.75686275959014893, 0.75686275959014893), (0.80000000000000004, 0.56078433990478516, 0.56078433990478516), (0.90000000000000002, 0.36862745881080627, 0.36862745881080627), (1.0, 0.18823529779911041, 0.18823529779911041)], 'green': [(0.0, 0.18823529779911041, 0.18823529779911041), (0.10000000000000001, 0.31764706969261169, 0.31764706969261169), (0.20000000000000001, 0.5058823823928833, 0.5058823823928833), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.91764706373214722, 0.91764706373214722), (0.69999999999999996, 0.80392158031463623, 0.80392158031463623), (0.80000000000000004, 0.59215688705444336, 0.59215688705444336), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.23529411852359772, 0.23529411852359772)], 'red': [(0.0, 0.32941177487373352, 0.32941177487373352), (0.10000000000000001, 0.54901963472366333, 0.54901963472366333), (0.20000000000000001, 0.74901962280273438, 0.74901962280273438), (0.29999999999999999, 0.87450981140136719, 0.87450981140136719), (0.40000000000000002, 0.96470588445663452, 0.96470588445663452), (0.5, 0.96078431606292725, 0.96078431606292725), (0.59999999999999998, 0.78039216995239258, 0.78039216995239258), (0.69999999999999996, 0.50196081399917603, 0.50196081399917603), (0.80000000000000004, 0.20784313976764679, 0.20784313976764679), (0.90000000000000002, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)]} _BuGn_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.97647058963775635, 0.97647058963775635), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.64313727617263794, 0.64313727617263794), (0.625, 0.46274510025978088, 0.46274510025978088), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92549020051956177, 0.92549020051956177), (0.375, 0.84705883264541626, 0.84705883264541626), (0.5, 0.7607843279838562, 0.7607843279838562), (0.625, 0.68235296010971069, 0.68235296010971069), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.60000002384185791, 0.60000002384185791), (0.5, 0.40000000596046448, 0.40000000596046448), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _BuPu_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.95686274766921997, 0.95686274766921997), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85490196943283081, 0.85490196943283081), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.69411766529083252, 0.69411766529083252), (0.75, 0.61568629741668701, 0.61568629741668701), (0.875, 0.48627451062202454, 0.48627451062202454), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.82745099067687988, 0.82745099067687988), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.41960784792900085, 0.41960784792900085), (0.75, 0.25490197539329529, 0.25490197539329529), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.74901962280273438, 0.74901962280273438), (0.375, 0.61960786581039429, 0.61960786581039429), (0.5, 0.54901963472366333, 0.54901963472366333), (0.625, 0.54901963472366333, 0.54901963472366333), (0.75, 0.53333336114883423, 0.53333336114883423), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.30196079611778259, 0.30196079611778259)]} _Dark2_data = {'blue': [(0.0, 0.46666666865348816, 0.46666666865348816), (0.14285714285714285, 0.0078431377187371254, 0.0078431377187371254), (0.2857142857142857, 0.70196080207824707, 0.70196080207824707), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.11764705926179886, 0.11764705926179886), (0.7142857142857143, 0.0078431377187371254, 0.0078431377187371254), (0.8571428571428571, 0.11372549086809158, 0.11372549086809158), (1.0, 0.40000000596046448, 0.40000000596046448)], 'green': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.14285714285714285, 0.37254902720451355, 0.37254902720451355), (0.2857142857142857, 0.43921568989753723, 0.43921568989753723), (0.42857142857142855, 0.16078431904315948, 0.16078431904315948), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 0.67058825492858887, 0.67058825492858887), (0.8571428571428571, 0.46274510025978088, 0.46274510025978088), (1.0, 0.40000000596046448, 0.40000000596046448)], 'red': [(0.0, 0.10588235408067703, 0.10588235408067703), (0.14285714285714285, 0.85098040103912354, 0.85098040103912354), (0.2857142857142857, 0.45882353186607361, 0.45882353186607361), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.40000000596046448, 0.40000000596046448), (0.7142857142857143, 0.90196079015731812, 0.90196079015731812), (0.8571428571428571, 0.65098041296005249, 0.65098041296005249), (1.0, 0.40000000596046448, 0.40000000596046448)]} _GnBu_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.85882353782653809, 0.85882353782653809), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.82745099067687988, 0.82745099067687988), (0.75, 0.7450980544090271, 0.7450980544090271), (0.875, 0.67450982332229614, 0.67450982332229614), (1.0, 0.5058823823928833, 0.5058823823928833)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.9529411792755127, 0.9529411792755127), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.80000001192092896, 0.80000001192092896), (0.625, 0.70196080207824707, 0.70196080207824707), (0.75, 0.54901963472366333, 0.54901963472366333), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.25098040699958801, 0.25098040699958801)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.65882354974746704, 0.65882354974746704), (0.5, 0.48235294222831726, 0.48235294222831726), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.16862745583057404, 0.16862745583057404), (0.875, 0.031372550874948502, 0.031372550874948502), (1.0, 0.031372550874948502, 0.031372550874948502)]} _Greens_data = {'blue': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.60784316062927246, 0.60784316062927246), (0.5, 0.46274510025978088, 0.46274510025978088), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.27058824896812439, 0.27058824896812439), (0.875, 0.17254902422428131, 0.17254902422428131), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.85098040103912354, 0.85098040103912354), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.54509806632995605, 0.54509806632995605), (0.875, 0.42745098471641541, 0.42745098471641541), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.89803922176361084, 0.89803922176361084), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.63137257099151611, 0.63137257099151611), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _Greys_data = {'blue': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.58823531866073608, 0.58823531866073608), (0.625, 0.45098039507865906, 0.45098039507865906), (0.75, 0.32156863808631897, 0.32156863808631897), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.0, 0.0)]} _Oranges_data = {'blue': [(0.0, 0.92156863212585449, 0.92156863212585449), (0.125, 0.80784314870834351, 0.80784314870834351), (0.25, 0.63529413938522339, 0.63529413938522339), (0.375, 0.41960784792900085, 0.41960784792900085), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.074509806931018829, 0.074509806931018829), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.011764706112444401, 0.011764706112444401), (1.0, 0.015686275437474251, 0.015686275437474251)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.90196079015731812, 0.90196079015731812), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.68235296010971069, 0.68235296010971069), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.4117647111415863, 0.4117647111415863), (0.75, 0.28235295414924622, 0.28235295414924622), (0.875, 0.21176470816135406, 0.21176470816135406), (1.0, 0.15294118225574493, 0.15294118225574493)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.94509804248809814, 0.94509804248809814), (0.75, 0.85098040103912354, 0.85098040103912354), (0.875, 0.65098041296005249, 0.65098041296005249), (1.0, 0.49803921580314636, 0.49803921580314636)]} _OrRd_data = {'blue': [(0.0, 0.92549020051956177, 0.92549020051956177), (0.125, 0.78431373834609985, 0.78431373834609985), (0.25, 0.61960786581039429, 0.61960786581039429), (0.375, 0.51764708757400513, 0.51764708757400513), (0.5, 0.3490196168422699, 0.3490196168422699), (0.625, 0.28235295414924622, 0.28235295414924622), (0.75, 0.12156862765550613, 0.12156862765550613), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90980392694473267, 0.90980392694473267), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.3960784375667572, 0.3960784375667572), (0.75, 0.18823529779911041, 0.18823529779911041), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.99215686321258545, 0.99215686321258545), (0.375, 0.99215686321258545, 0.99215686321258545), (0.5, 0.98823529481887817, 0.98823529481887817), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.84313726425170898, 0.84313726425170898), (0.875, 0.70196080207824707, 0.70196080207824707), (1.0, 0.49803921580314636, 0.49803921580314636)]} _Paired_data = {'blue': [(0.0, 0.89019608497619629, 0.89019608497619629), (0.090909090909090912, 0.70588237047195435, 0.70588237047195435), (0.18181818181818182, 0.54117649793624878, 0.54117649793624878), (0.27272727272727271, 0.17254902422428131, 0.17254902422428131), (0.36363636363636365, 0.60000002384185791, 0.60000002384185791), (0.45454545454545453, 0.10980392247438431, 0.10980392247438431), (0.54545454545454541, 0.43529412150382996, 0.43529412150382996), (0.63636363636363635, 0.0, 0.0), (0.72727272727272729, 0.83921569585800171, 0.83921569585800171), (0.81818181818181823, 0.60392159223556519, 0.60392159223556519), (0.90909090909090906, 0.60000002384185791, 0.60000002384185791), (1.0, 0.15686275064945221, 0.15686275064945221)], 'green': [(0.0, 0.80784314870834351, 0.80784314870834351), (0.090909090909090912, 0.47058823704719543, 0.47058823704719543), (0.18181818181818182, 0.87450981140136719, 0.87450981140136719), (0.27272727272727271, 0.62745100259780884, 0.62745100259780884), (0.36363636363636365, 0.60392159223556519, 0.60392159223556519), (0.45454545454545453, 0.10196078568696976, 0.10196078568696976), (0.54545454545454541, 0.74901962280273438, 0.74901962280273438), (0.63636363636363635, 0.49803921580314636, 0.49803921580314636), (0.72727272727272729, 0.69803923368453979, 0.69803923368453979), (0.81818181818181823, 0.23921568691730499, 0.23921568691730499), (0.90909090909090906, 1.0, 1.0), (1.0, 0.3490196168422699, 0.3490196168422699)], 'red': [(0.0, 0.65098041296005249, 0.65098041296005249), (0.090909090909090912, 0.12156862765550613, 0.12156862765550613), (0.18181818181818182, 0.69803923368453979, 0.69803923368453979), (0.27272727272727271, 0.20000000298023224, 0.20000000298023224), (0.36363636363636365, 0.9843137264251709, 0.9843137264251709), (0.45454545454545453, 0.89019608497619629, 0.89019608497619629), (0.54545454545454541, 0.99215686321258545, 0.99215686321258545), (0.63636363636363635, 1.0, 1.0), (0.72727272727272729, 0.7921568751335144, 0.7921568751335144), (0.81818181818181823, 0.41568627953529358, 0.41568627953529358), (0.90909090909090906, 1.0, 1.0), (1.0, 0.69411766529083252, 0.69411766529083252)]} _Pastel1_data = {'blue': [(0.0, 0.68235296010971069, 0.68235296010971069), (0.125, 0.89019608497619629, 0.89019608497619629), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.89411765336990356, 0.89411765336990356), (0.5, 0.65098041296005249, 0.65098041296005249), (0.625, 0.80000001192092896, 0.80000001192092896), (0.75, 0.74117648601531982, 0.74117648601531982), (0.875, 0.92549020051956177, 0.92549020051956177), (1.0, 0.94901961088180542, 0.94901961088180542)], 'green': [(0.0, 0.70588237047195435, 0.70588237047195435), (0.125, 0.80392158031463623, 0.80392158031463623), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.79607844352722168, 0.79607844352722168), (0.5, 0.85098040103912354, 0.85098040103912354), (0.625, 1.0, 1.0), (0.75, 0.84705883264541626, 0.84705883264541626), (0.875, 0.85490196943283081, 0.85490196943283081), (1.0, 0.94901961088180542, 0.94901961088180542)], 'red': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.70196080207824707, 0.70196080207824707), (0.25, 0.80000001192092896, 0.80000001192092896), (0.375, 0.87058824300765991, 0.87058824300765991), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 1.0, 1.0), (0.75, 0.89803922176361084, 0.89803922176361084), (0.875, 0.99215686321258545, 0.99215686321258545), (1.0, 0.94901961088180542, 0.94901961088180542)]} _Pastel2_data = {'blue': [(0.0, 0.80392158031463623, 0.80392158031463623), (0.14285714285714285, 0.67450982332229614, 0.67450982332229614), (0.2857142857142857, 0.90980392694473267, 0.90980392694473267), (0.42857142857142855, 0.89411765336990356, 0.89411765336990356), (0.5714285714285714, 0.78823530673980713, 0.78823530673980713), (0.7142857142857143, 0.68235296010971069, 0.68235296010971069), (0.8571428571428571, 0.80000001192092896, 0.80000001192092896), (1.0, 0.80000001192092896, 0.80000001192092896)], 'green': [(0.0, 0.88627451658248901, 0.88627451658248901), (0.14285714285714285, 0.80392158031463623, 0.80392158031463623), (0.2857142857142857, 0.83529412746429443, 0.83529412746429443), (0.42857142857142855, 0.7921568751335144, 0.7921568751335144), (0.5714285714285714, 0.96078431606292725, 0.96078431606292725), (0.7142857142857143, 0.94901961088180542, 0.94901961088180542), (0.8571428571428571, 0.88627451658248901, 0.88627451658248901), (1.0, 0.80000001192092896, 0.80000001192092896)], 'red': [(0.0, 0.70196080207824707, 0.70196080207824707), (0.14285714285714285, 0.99215686321258545, 0.99215686321258545), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.95686274766921997, 0.95686274766921997), (0.5714285714285714, 0.90196079015731812, 0.90196079015731812), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.94509804248809814, 0.94509804248809814), (1.0, 0.80000001192092896, 0.80000001192092896)]} _PiYG_data = {'blue': [(0.0, 0.32156863808631897, 0.32156863808631897), (0.10000000000000001, 0.49019607901573181, 0.49019607901573181), (0.20000000000000001, 0.68235296010971069, 0.68235296010971069), (0.29999999999999999, 0.85490196943283081, 0.85490196943283081), (0.40000000000000002, 0.93725490570068359, 0.93725490570068359), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81568628549575806, 0.81568628549575806), (0.69999999999999996, 0.52549022436141968, 0.52549022436141968), (0.80000000000000004, 0.25490197539329529, 0.25490197539329529), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.098039217293262482, 0.098039217293262482)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.10588235408067703, 0.10588235408067703), (0.20000000000000001, 0.46666666865348816, 0.46666666865348816), (0.29999999999999999, 0.7137255072593689, 0.7137255072593689), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.88235294818878174, 0.88235294818878174), (0.80000000000000004, 0.73725491762161255, 0.73725491762161255), (0.90000000000000002, 0.57254904508590698, 0.57254904508590698), (1.0, 0.39215686917304993, 0.39215686917304993)], 'red': [(0.0, 0.55686277151107788, 0.55686277151107788), (0.10000000000000001, 0.77254903316497803, 0.77254903316497803), (0.20000000000000001, 0.87058824300765991, 0.87058824300765991), (0.29999999999999999, 0.94509804248809814, 0.94509804248809814), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.72156864404678345, 0.72156864404678345), (0.80000000000000004, 0.49803921580314636, 0.49803921580314636), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.15294118225574493, 0.15294118225574493)]} _PRGn_data = {'blue': [(0.0, 0.29411765933036804, 0.29411765933036804), (0.10000000000000001, 0.51372551918029785, 0.51372551918029785), (0.20000000000000001, 0.67058825492858887, 0.67058825492858887), (0.29999999999999999, 0.81176471710205078, 0.81176471710205078), (0.40000000000000002, 0.90980392694473267, 0.90980392694473267), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.82745099067687988, 0.82745099067687988), (0.69999999999999996, 0.62745100259780884, 0.62745100259780884), (0.80000000000000004, 0.3803921639919281, 0.3803921639919281), (0.90000000000000002, 0.21568627655506134, 0.21568627655506134), (1.0, 0.10588235408067703, 0.10588235408067703)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.16470588743686676, 0.16470588743686676), (0.20000000000000001, 0.43921568989753723, 0.43921568989753723), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.83137255907058716, 0.83137255907058716), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.85882353782653809, 0.85882353782653809), (0.80000000000000004, 0.68235296010971069, 0.68235296010971069), (0.90000000000000002, 0.47058823704719543, 0.47058823704719543), (1.0, 0.26666668057441711, 0.26666668057441711)], 'red': [(0.0, 0.25098040699958801, 0.25098040699958801), (0.10000000000000001, 0.46274510025978088, 0.46274510025978088), (0.20000000000000001, 0.60000002384185791, 0.60000002384185791), (0.29999999999999999, 0.7607843279838562, 0.7607843279838562), (0.40000000000000002, 0.90588235855102539, 0.90588235855102539), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.35294118523597717, 0.35294118523597717), (0.90000000000000002, 0.10588235408067703, 0.10588235408067703), (1.0, 0.0, 0.0)]} _PuBu_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94901961088180542, 0.94901961088180542), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.69019609689712524, 0.69019609689712524), (0.875, 0.55294120311737061, 0.55294120311737061), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.43921568989753723, 0.43921568989753723), (0.875, 0.35294118523597717, 0.35294118523597717), (1.0, 0.21960784494876862, 0.21960784494876862)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.45490196347236633, 0.45490196347236633), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.019607843831181526, 0.019607843831181526), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.0078431377187371254, 0.0078431377187371254)]} _PuBuGn_data = {'blue': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.94117647409439087, 0.94117647409439087), (0.25, 0.90196079015731812, 0.90196079015731812), (0.375, 0.85882353782653809, 0.85882353782653809), (0.5, 0.81176471710205078, 0.81176471710205078), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.54117649793624878, 0.54117649793624878), (0.875, 0.3490196168422699, 0.3490196168422699), (1.0, 0.21176470816135406, 0.21176470816135406)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.88627451658248901, 0.88627451658248901), (0.25, 0.81960785388946533, 0.81960785388946533), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.66274511814117432, 0.66274511814117432), (0.625, 0.56470590829849243, 0.56470590829849243), (0.75, 0.5058823823928833, 0.5058823823928833), (0.875, 0.42352941632270813, 0.42352941632270813), (1.0, 0.27450981736183167, 0.27450981736183167)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92549020051956177, 0.92549020051956177), (0.25, 0.81568628549575806, 0.81568628549575806), (0.375, 0.65098041296005249, 0.65098041296005249), (0.5, 0.40392157435417175, 0.40392157435417175), (0.625, 0.21176470816135406, 0.21176470816135406), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0039215688593685627, 0.0039215688593685627)]} _PuOr_data = {'blue': [(0.0, 0.031372550874948502, 0.031372550874948502), (0.10000000000000001, 0.023529412224888802, 0.023529412224888802), (0.20000000000000001, 0.078431375324726105, 0.078431375324726105), (0.29999999999999999, 0.38823530077934265, 0.38823530077934265), (0.40000000000000002, 0.7137255072593689, 0.7137255072593689), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.92156863212585449, 0.92156863212585449), (0.69999999999999996, 0.82352942228317261, 0.82352942228317261), (0.80000000000000004, 0.67450982332229614, 0.67450982332229614), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.29411765933036804, 0.29411765933036804)], 'green': [(0.0, 0.23137255012989044, 0.23137255012989044), (0.10000000000000001, 0.34509804844856262, 0.34509804844856262), (0.20000000000000001, 0.50980395078659058, 0.50980395078659058), (0.29999999999999999, 0.72156864404678345, 0.72156864404678345), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.85490196943283081, 0.85490196943283081), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.45098039507865906, 0.45098039507865906), (0.90000000000000002, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.49803921580314636, 0.49803921580314636), (0.10000000000000001, 0.70196080207824707, 0.70196080207824707), (0.20000000000000001, 0.87843137979507446, 0.87843137979507446), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.84705883264541626, 0.84705883264541626), (0.69999999999999996, 0.69803923368453979, 0.69803923368453979), (0.80000000000000004, 0.50196081399917603, 0.50196081399917603), (0.90000000000000002, 0.32941177487373352, 0.32941177487373352), (1.0, 0.17647059261798859, 0.17647059261798859)]} _PuRd_data = {'blue': [(0.0, 0.97647058963775635, 0.97647058963775635), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.78039216995239258, 0.78039216995239258), (0.5, 0.69019609689712524, 0.69019609689712524), (0.625, 0.54117649793624878, 0.54117649793624878), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.26274511218070984, 0.26274511218070984), (1.0, 0.12156862765550613, 0.12156862765550613)], 'green': [(0.0, 0.95686274766921997, 0.95686274766921997), (0.125, 0.88235294818878174, 0.88235294818878174), (0.25, 0.72549021244049072, 0.72549021244049072), (0.375, 0.58039218187332153, 0.58039218187332153), (0.5, 0.3960784375667572, 0.3960784375667572), (0.625, 0.16078431904315948, 0.16078431904315948), (0.75, 0.070588238537311554, 0.070588238537311554), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.90588235855102539, 0.90588235855102539), (0.25, 0.83137255907058716, 0.83137255907058716), (0.375, 0.78823530673980713, 0.78823530673980713), (0.5, 0.87450981140136719, 0.87450981140136719), (0.625, 0.90588235855102539, 0.90588235855102539), (0.75, 0.80784314870834351, 0.80784314870834351), (0.875, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Purples_data = {'blue': [(0.0, 0.99215686321258545, 0.99215686321258545), (0.125, 0.96078431606292725, 0.96078431606292725), (0.25, 0.92156863212585449, 0.92156863212585449), (0.375, 0.86274510622024536, 0.86274510622024536), (0.5, 0.78431373834609985, 0.78431373834609985), (0.625, 0.729411780834198, 0.729411780834198), (0.75, 0.63921570777893066, 0.63921570777893066), (0.875, 0.56078433990478516, 0.56078433990478516), (1.0, 0.49019607901573181, 0.49019607901573181)], 'green': [(0.0, 0.9843137264251709, 0.9843137264251709), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.74117648601531982, 0.74117648601531982), (0.5, 0.60392159223556519, 0.60392159223556519), (0.625, 0.49019607901573181, 0.49019607901573181), (0.75, 0.31764706969261169, 0.31764706969261169), (0.875, 0.15294118225574493, 0.15294118225574493), (1.0, 0.0, 0.0)], 'red': [(0.0, 0.98823529481887817, 0.98823529481887817), (0.125, 0.93725490570068359, 0.93725490570068359), (0.25, 0.85490196943283081, 0.85490196943283081), (0.375, 0.73725491762161255, 0.73725491762161255), (0.5, 0.61960786581039429, 0.61960786581039429), (0.625, 0.50196081399917603, 0.50196081399917603), (0.75, 0.41568627953529358, 0.41568627953529358), (0.875, 0.32941177487373352, 0.32941177487373352), (1.0, 0.24705882370471954, 0.24705882370471954)]} _RdBu_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.94117647409439087, 0.94117647409439087), (0.69999999999999996, 0.87058824300765991, 0.87058824300765991), (0.80000000000000004, 0.76470589637756348, 0.76470589637756348), (0.90000000000000002, 0.67450982332229614, 0.67450982332229614), (1.0, 0.3803921639919281, 0.3803921639919281)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.89803922176361084, 0.89803922176361084), (0.69999999999999996, 0.77254903316497803, 0.77254903316497803), (0.80000000000000004, 0.57647061347961426, 0.57647061347961426), (0.90000000000000002, 0.40000000596046448, 0.40000000596046448), (1.0, 0.18823529779911041, 0.18823529779911041)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 0.9686274528503418, 0.9686274528503418), (0.59999999999999998, 0.81960785388946533, 0.81960785388946533), (0.69999999999999996, 0.57254904508590698, 0.57254904508590698), (0.80000000000000004, 0.26274511218070984, 0.26274511218070984), (0.90000000000000002, 0.12941177189350128, 0.12941177189350128), (1.0, 0.019607843831181526, 0.019607843831181526)]} _RdGy_data = {'blue': [(0.0, 0.12156862765550613, 0.12156862765550613), (0.10000000000000001, 0.16862745583057404, 0.16862745583057404), (0.20000000000000001, 0.30196079611778259, 0.30196079611778259), (0.29999999999999999, 0.50980395078659058, 0.50980395078659058), (0.40000000000000002, 0.78039216995239258, 0.78039216995239258), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.094117648899555206, 0.094117648899555206), (0.20000000000000001, 0.37647059559822083, 0.37647059559822083), (0.29999999999999999, 0.64705884456634521, 0.64705884456634521), (0.40000000000000002, 0.85882353782653809, 0.85882353782653809), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)], 'red': [(0.0, 0.40392157435417175, 0.40392157435417175), (0.10000000000000001, 0.69803923368453979, 0.69803923368453979), (0.20000000000000001, 0.83921569585800171, 0.83921569585800171), (0.29999999999999999, 0.95686274766921997, 0.95686274766921997), (0.40000000000000002, 0.99215686321258545, 0.99215686321258545), (0.5, 1.0, 1.0), (0.59999999999999998, 0.87843137979507446, 0.87843137979507446), (0.69999999999999996, 0.729411780834198, 0.729411780834198), (0.80000000000000004, 0.52941179275512695, 0.52941179275512695), (0.90000000000000002, 0.30196079611778259, 0.30196079611778259), (1.0, 0.10196078568696976, 0.10196078568696976)]} _RdPu_data = {'blue': [(0.0, 0.9529411792755127, 0.9529411792755127), (0.125, 0.86666667461395264, 0.86666667461395264), (0.25, 0.75294119119644165, 0.75294119119644165), (0.375, 0.70980393886566162, 0.70980393886566162), (0.5, 0.63137257099151611, 0.63137257099151611), (0.625, 0.59215688705444336, 0.59215688705444336), (0.75, 0.49411764740943909, 0.49411764740943909), (0.875, 0.46666666865348816, 0.46666666865348816), (1.0, 0.41568627953529358, 0.41568627953529358)], 'green': [(0.0, 0.9686274528503418, 0.9686274528503418), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.77254903316497803, 0.77254903316497803), (0.375, 0.62352943420410156, 0.62352943420410156), (0.5, 0.40784314274787903, 0.40784314274787903), (0.625, 0.20392157137393951, 0.20392157137393951), (0.75, 0.0039215688593685627, 0.0039215688593685627), (0.875, 0.0039215688593685627, 0.0039215688593685627), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99215686321258545, 0.99215686321258545), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98039215803146362, 0.98039215803146362), (0.5, 0.9686274528503418, 0.9686274528503418), (0.625, 0.86666667461395264, 0.86666667461395264), (0.75, 0.68235296010971069, 0.68235296010971069), (0.875, 0.47843137383460999, 0.47843137383460999), (1.0, 0.28627452254295349, 0.28627452254295349)]} _RdYlBu_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000149011612, 0.15294118225574493, 0.15294118225574493), (0.20000000298023224, 0.26274511218070984, 0.26274511218070984), (0.30000001192092896, 0.3803921639919281, 0.3803921639919281), (0.40000000596046448, 0.56470590829849243, 0.56470590829849243), (0.5, 0.74901962280273438, 0.74901962280273438), (0.60000002384185791, 0.97254902124404907, 0.97254902124404907), (0.69999998807907104, 0.91372549533843994, 0.91372549533843994), (0.80000001192092896, 0.81960785388946533, 0.81960785388946533), (0.89999997615814209, 0.70588237047195435, 0.70588237047195435), (1.0, 0.58431375026702881, 0.58431375026702881)], 'green': [(0.0, 0.0, 0.0), (0.10000000149011612, 0.18823529779911041, 0.18823529779911041), (0.20000000298023224, 0.42745098471641541, 0.42745098471641541), (0.30000001192092896, 0.68235296010971069, 0.68235296010971069), (0.40000000596046448, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.60000002384185791, 0.9529411792755127, 0.9529411792755127), (0.69999998807907104, 0.85098040103912354, 0.85098040103912354), (0.80000001192092896, 0.67843139171600342, 0.67843139171600342), (0.89999997615814209, 0.45882353186607361, 0.45882353186607361), (1.0, 0.21176470816135406, 0.21176470816135406)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000149011612, 0.84313726425170898, 0.84313726425170898), (0.20000000298023224, 0.95686274766921997, 0.95686274766921997), (0.30000001192092896, 0.99215686321258545, 0.99215686321258545), (0.40000000596046448, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.60000002384185791, 0.87843137979507446, 0.87843137979507446), (0.69999998807907104, 0.67058825492858887, 0.67058825492858887), (0.80000001192092896, 0.45490196347236633, 0.45490196347236633), (0.89999997615814209, 0.27058824896812439, 0.27058824896812439), (1.0, 0.19215686619281769, 0.19215686619281769)]} _RdYlGn_data = {'blue': [(0.0, 0.14901961386203766, 0.14901961386203766), (0.10000000000000001, 0.15294118225574493, 0.15294118225574493), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.54509806632995605, 0.54509806632995605), (0.69999999999999996, 0.41568627953529358, 0.41568627953529358), (0.80000000000000004, 0.38823530077934265, 0.38823530077934265), (0.90000000000000002, 0.31372550129890442, 0.31372550129890442), (1.0, 0.21568627655506134, 0.21568627655506134)], 'green': [(0.0, 0.0, 0.0), (0.10000000000000001, 0.18823529779911041, 0.18823529779911041), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.93725490570068359, 0.93725490570068359), (0.69999999999999996, 0.85098040103912354, 0.85098040103912354), (0.80000000000000004, 0.74117648601531982, 0.74117648601531982), (0.90000000000000002, 0.59607845544815063, 0.59607845544815063), (1.0, 0.40784314274787903, 0.40784314274787903)], 'red': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.10000000000000001, 0.84313726425170898, 0.84313726425170898), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.85098040103912354, 0.85098040103912354), (0.69999999999999996, 0.65098041296005249, 0.65098041296005249), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.10196078568696976, 0.10196078568696976), (1.0, 0.0, 0.0)]} _Reds_data = {'blue': [(0.0, 0.94117647409439087, 0.94117647409439087), (0.125, 0.82352942228317261, 0.82352942228317261), (0.25, 0.63137257099151611, 0.63137257099151611), (0.375, 0.44705882668495178, 0.44705882668495178), (0.5, 0.29019609093666077, 0.29019609093666077), (0.625, 0.17254902422428131, 0.17254902422428131), (0.75, 0.11372549086809158, 0.11372549086809158), (0.875, 0.08235294371843338, 0.08235294371843338), (1.0, 0.050980392843484879, 0.050980392843484879)], 'green': [(0.0, 0.96078431606292725, 0.96078431606292725), (0.125, 0.87843137979507446, 0.87843137979507446), (0.25, 0.73333334922790527, 0.73333334922790527), (0.375, 0.57254904508590698, 0.57254904508590698), (0.5, 0.41568627953529358, 0.41568627953529358), (0.625, 0.23137255012989044, 0.23137255012989044), (0.75, 0.094117648899555206, 0.094117648899555206), (0.875, 0.058823529630899429, 0.058823529630899429), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.99607843160629272, 0.99607843160629272), (0.25, 0.98823529481887817, 0.98823529481887817), (0.375, 0.98823529481887817, 0.98823529481887817), (0.5, 0.9843137264251709, 0.9843137264251709), (0.625, 0.93725490570068359, 0.93725490570068359), (0.75, 0.79607844352722168, 0.79607844352722168), (0.875, 0.64705884456634521, 0.64705884456634521), (1.0, 0.40392157435417175, 0.40392157435417175)]} _Set1_data = {'blue': [(0.0, 0.10980392247438431, 0.10980392247438431), (0.125, 0.72156864404678345, 0.72156864404678345), (0.25, 0.29019609093666077, 0.29019609093666077), (0.375, 0.63921570777893066, 0.63921570777893066), (0.5, 0.0, 0.0), (0.625, 0.20000000298023224, 0.20000000298023224), (0.75, 0.15686275064945221, 0.15686275064945221), (0.875, 0.74901962280273438, 0.74901962280273438), (1.0, 0.60000002384185791, 0.60000002384185791)], 'green': [(0.0, 0.10196078568696976, 0.10196078568696976), (0.125, 0.49411764740943909, 0.49411764740943909), (0.25, 0.68627452850341797, 0.68627452850341797), (0.375, 0.30588236451148987, 0.30588236451148987), (0.5, 0.49803921580314636, 0.49803921580314636), (0.625, 1.0, 1.0), (0.75, 0.33725491166114807, 0.33725491166114807), (0.875, 0.5058823823928833, 0.5058823823928833), (1.0, 0.60000002384185791, 0.60000002384185791)], 'red': [(0.0, 0.89411765336990356, 0.89411765336990356), (0.125, 0.21568627655506134, 0.21568627655506134), (0.25, 0.30196079611778259, 0.30196079611778259), (0.375, 0.59607845544815063, 0.59607845544815063), (0.5, 1.0, 1.0), (0.625, 1.0, 1.0), (0.75, 0.65098041296005249, 0.65098041296005249), (0.875, 0.9686274528503418, 0.9686274528503418), (1.0, 0.60000002384185791, 0.60000002384185791)]} _Set2_data = {'blue': [(0.0, 0.64705884456634521, 0.64705884456634521), (0.14285714285714285, 0.38431373238563538, 0.38431373238563538), (0.2857142857142857, 0.79607844352722168, 0.79607844352722168), (0.42857142857142855, 0.76470589637756348, 0.76470589637756348), (0.5714285714285714, 0.32941177487373352, 0.32941177487373352), (0.7142857142857143, 0.18431372940540314, 0.18431372940540314), (0.8571428571428571, 0.58039218187332153, 0.58039218187332153), (1.0, 0.70196080207824707, 0.70196080207824707)], 'green': [(0.0, 0.7607843279838562, 0.7607843279838562), (0.14285714285714285, 0.55294120311737061, 0.55294120311737061), (0.2857142857142857, 0.62745100259780884, 0.62745100259780884), (0.42857142857142855, 0.54117649793624878, 0.54117649793624878), (0.5714285714285714, 0.84705883264541626, 0.84705883264541626), (0.7142857142857143, 0.85098040103912354, 0.85098040103912354), (0.8571428571428571, 0.76862746477127075, 0.76862746477127075), (1.0, 0.70196080207824707, 0.70196080207824707)], 'red': [(0.0, 0.40000000596046448, 0.40000000596046448), (0.14285714285714285, 0.98823529481887817, 0.98823529481887817), (0.2857142857142857, 0.55294120311737061, 0.55294120311737061), (0.42857142857142855, 0.90588235855102539, 0.90588235855102539), (0.5714285714285714, 0.65098041296005249, 0.65098041296005249), (0.7142857142857143, 1.0, 1.0), (0.8571428571428571, 0.89803922176361084, 0.89803922176361084), (1.0, 0.70196080207824707, 0.70196080207824707)]} _Set3_data = {'blue': [(0.0, 0.78039216995239258, 0.78039216995239258), (0.090909090909090912, 0.70196080207824707, 0.70196080207824707), (0.18181818181818182, 0.85490196943283081, 0.85490196943283081), (0.27272727272727271, 0.44705882668495178, 0.44705882668495178), (0.36363636363636365, 0.82745099067687988, 0.82745099067687988), (0.45454545454545453, 0.38431373238563538, 0.38431373238563538), (0.54545454545454541, 0.4117647111415863, 0.4117647111415863), (0.63636363636363635, 0.89803922176361084, 0.89803922176361084), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.74117648601531982, 0.74117648601531982), (0.90909090909090906, 0.77254903316497803, 0.77254903316497803), (1.0, 0.43529412150382996, 0.43529412150382996)], 'green': [(0.0, 0.82745099067687988, 0.82745099067687988), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.729411780834198, 0.729411780834198), (0.27272727272727271, 0.50196081399917603, 0.50196081399917603), (0.36363636363636365, 0.69411766529083252, 0.69411766529083252), (0.45454545454545453, 0.70588237047195435, 0.70588237047195435), (0.54545454545454541, 0.87058824300765991, 0.87058824300765991), (0.63636363636363635, 0.80392158031463623, 0.80392158031463623), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.50196081399917603, 0.50196081399917603), (0.90909090909090906, 0.92156863212585449, 0.92156863212585449), (1.0, 0.92941176891326904, 0.92941176891326904)], 'red': [(0.0, 0.55294120311737061, 0.55294120311737061), (0.090909090909090912, 1.0, 1.0), (0.18181818181818182, 0.7450980544090271, 0.7450980544090271), (0.27272727272727271, 0.9843137264251709, 0.9843137264251709), (0.36363636363636365, 0.50196081399917603, 0.50196081399917603), (0.45454545454545453, 0.99215686321258545, 0.99215686321258545), (0.54545454545454541, 0.70196080207824707, 0.70196080207824707), (0.63636363636363635, 0.98823529481887817, 0.98823529481887817), (0.72727272727272729, 0.85098040103912354, 0.85098040103912354), (0.81818181818181823, 0.73725491762161255, 0.73725491762161255), (0.90909090909090906, 0.80000001192092896, 0.80000001192092896), (1.0, 1.0, 1.0)]} _Spectral_data = {'blue': [(0.0, 0.25882354378700256, 0.25882354378700256), (0.10000000000000001, 0.30980393290519714, 0.30980393290519714), (0.20000000000000001, 0.26274511218070984, 0.26274511218070984), (0.29999999999999999, 0.3803921639919281, 0.3803921639919281), (0.40000000000000002, 0.54509806632995605, 0.54509806632995605), (0.5, 0.74901962280273438, 0.74901962280273438), (0.59999999999999998, 0.59607845544815063, 0.59607845544815063), (0.69999999999999996, 0.64313727617263794, 0.64313727617263794), (0.80000000000000004, 0.64705884456634521, 0.64705884456634521), (0.90000000000000002, 0.74117648601531982, 0.74117648601531982), (1.0, 0.63529413938522339, 0.63529413938522339)], 'green': [(0.0, 0.0039215688593685627, 0.0039215688593685627), (0.10000000000000001, 0.24313725531101227, 0.24313725531101227), (0.20000000000000001, 0.42745098471641541, 0.42745098471641541), (0.29999999999999999, 0.68235296010971069, 0.68235296010971069), (0.40000000000000002, 0.87843137979507446, 0.87843137979507446), (0.5, 1.0, 1.0), (0.59999999999999998, 0.96078431606292725, 0.96078431606292725), (0.69999999999999996, 0.86666667461395264, 0.86666667461395264), (0.80000000000000004, 0.7607843279838562, 0.7607843279838562), (0.90000000000000002, 0.53333336114883423, 0.53333336114883423), (1.0, 0.30980393290519714, 0.30980393290519714)], 'red': [(0.0, 0.61960786581039429, 0.61960786581039429), (0.10000000000000001, 0.83529412746429443, 0.83529412746429443), (0.20000000000000001, 0.95686274766921997, 0.95686274766921997), (0.29999999999999999, 0.99215686321258545, 0.99215686321258545), (0.40000000000000002, 0.99607843160629272, 0.99607843160629272), (0.5, 1.0, 1.0), (0.59999999999999998, 0.90196079015731812, 0.90196079015731812), (0.69999999999999996, 0.67058825492858887, 0.67058825492858887), (0.80000000000000004, 0.40000000596046448, 0.40000000596046448), (0.90000000000000002, 0.19607843458652496, 0.19607843458652496), (1.0, 0.36862745881080627, 0.36862745881080627)]} _YlGn_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.72549021244049072, 0.72549021244049072), (0.25, 0.63921570777893066, 0.63921570777893066), (0.375, 0.55686277151107788, 0.55686277151107788), (0.5, 0.47450980544090271, 0.47450980544090271), (0.625, 0.364705890417099, 0.364705890417099), (0.75, 0.26274511218070984, 0.26274511218070984), (0.875, 0.21568627655506134, 0.21568627655506134), (1.0, 0.16078431904315948, 0.16078431904315948)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.98823529481887817, 0.98823529481887817), (0.25, 0.94117647409439087, 0.94117647409439087), (0.375, 0.86666667461395264, 0.86666667461395264), (0.5, 0.7764706015586853, 0.7764706015586853), (0.625, 0.67058825492858887, 0.67058825492858887), (0.75, 0.51764708757400513, 0.51764708757400513), (0.875, 0.40784314274787903, 0.40784314274787903), (1.0, 0.27058824896812439, 0.27058824896812439)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.67843139171600342, 0.67843139171600342), (0.5, 0.47058823704719543, 0.47058823704719543), (0.625, 0.25490197539329529, 0.25490197539329529), (0.75, 0.13725490868091583, 0.13725490868091583), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)]} _YlGnBu_data = {'blue': [(0.0, 0.85098040103912354, 0.85098040103912354), (0.125, 0.69411766529083252, 0.69411766529083252), (0.25, 0.70588237047195435, 0.70588237047195435), (0.375, 0.73333334922790527, 0.73333334922790527), (0.5, 0.76862746477127075, 0.76862746477127075), (0.625, 0.75294119119644165, 0.75294119119644165), (0.75, 0.65882354974746704, 0.65882354974746704), (0.875, 0.58039218187332153, 0.58039218187332153), (1.0, 0.34509804844856262, 0.34509804844856262)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.97254902124404907, 0.97254902124404907), (0.25, 0.91372549533843994, 0.91372549533843994), (0.375, 0.80392158031463623, 0.80392158031463623), (0.5, 0.7137255072593689, 0.7137255072593689), (0.625, 0.56862747669219971, 0.56862747669219971), (0.75, 0.36862745881080627, 0.36862745881080627), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.11372549086809158, 0.11372549086809158)], 'red': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.78039216995239258, 0.78039216995239258), (0.375, 0.49803921580314636, 0.49803921580314636), (0.5, 0.25490197539329529, 0.25490197539329529), (0.625, 0.11372549086809158, 0.11372549086809158), (0.75, 0.13333334028720856, 0.13333334028720856), (0.875, 0.14509804546833038, 0.14509804546833038), (1.0, 0.031372550874948502, 0.031372550874948502)]} _YlOrBr_data = {'blue': [(0.0, 0.89803922176361084, 0.89803922176361084), (0.125, 0.73725491762161255, 0.73725491762161255), (0.25, 0.56862747669219971, 0.56862747669219971), (0.375, 0.30980393290519714, 0.30980393290519714), (0.5, 0.16078431904315948, 0.16078431904315948), (0.625, 0.078431375324726105, 0.078431375324726105), (0.75, 0.0078431377187371254, 0.0078431377187371254), (0.875, 0.015686275437474251, 0.015686275437474251), (1.0, 0.023529412224888802, 0.023529412224888802)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.9686274528503418, 0.9686274528503418), (0.25, 0.89019608497619629, 0.89019608497619629), (0.375, 0.76862746477127075, 0.76862746477127075), (0.5, 0.60000002384185791, 0.60000002384185791), (0.625, 0.43921568989753723, 0.43921568989753723), (0.75, 0.29803922772407532, 0.29803922772407532), (0.875, 0.20392157137393951, 0.20392157137393951), (1.0, 0.14509804546833038, 0.14509804546833038)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99607843160629272, 0.99607843160629272), (0.625, 0.92549020051956177, 0.92549020051956177), (0.75, 0.80000001192092896, 0.80000001192092896), (0.875, 0.60000002384185791, 0.60000002384185791), (1.0, 0.40000000596046448, 0.40000000596046448)]} _YlOrRd_data = {'blue': [(0.0, 0.80000001192092896, 0.80000001192092896), (0.125, 0.62745100259780884, 0.62745100259780884), (0.25, 0.46274510025978088, 0.46274510025978088), (0.375, 0.29803922772407532, 0.29803922772407532), (0.5, 0.23529411852359772, 0.23529411852359772), (0.625, 0.16470588743686676, 0.16470588743686676), (0.75, 0.10980392247438431, 0.10980392247438431), (0.875, 0.14901961386203766, 0.14901961386203766), (1.0, 0.14901961386203766, 0.14901961386203766)], 'green': [(0.0, 1.0, 1.0), (0.125, 0.92941176891326904, 0.92941176891326904), (0.25, 0.85098040103912354, 0.85098040103912354), (0.375, 0.69803923368453979, 0.69803923368453979), (0.5, 0.55294120311737061, 0.55294120311737061), (0.625, 0.30588236451148987, 0.30588236451148987), (0.75, 0.10196078568696976, 0.10196078568696976), (0.875, 0.0, 0.0), (1.0, 0.0, 0.0)], 'red': [(0.0, 1.0, 1.0), (0.125, 1.0, 1.0), (0.25, 0.99607843160629272, 0.99607843160629272), (0.375, 0.99607843160629272, 0.99607843160629272), (0.5, 0.99215686321258545, 0.99215686321258545), (0.625, 0.98823529481887817, 0.98823529481887817), (0.75, 0.89019608497619629, 0.89019608497619629), (0.875, 0.74117648601531982, 0.74117648601531982), (1.0, 0.50196081399917603, 0.50196081399917603)]} # The next 7 palettes are from the Yorick scientific visalisation package, # an evolution of the GIST package, both by David H. Munro. # They are released under a BSD-like license (see LICENSE_YORICK in # the license directory of the matplotlib source distribution). # # Most palette functions have been reduced to simple function descriptions # by Reinier Heeres, since the rgb components were mostly straight lines. # gist_earth_data and gist_ncar_data were simplified by a script and some # manual effort. _gist_earth_data = \ {'red': ( (0.0, 0.0, 0.0000), (0.2824, 0.1882, 0.1882), (0.4588, 0.2714, 0.2714), (0.5490, 0.4719, 0.4719), (0.6980, 0.7176, 0.7176), (0.7882, 0.7553, 0.7553), (1.0000, 0.9922, 0.9922), ), 'green': ( (0.0, 0.0, 0.0000), (0.0275, 0.0000, 0.0000), (0.1098, 0.1893, 0.1893), (0.1647, 0.3035, 0.3035), (0.2078, 0.3841, 0.3841), (0.2824, 0.5020, 0.5020), (0.5216, 0.6397, 0.6397), (0.6980, 0.7171, 0.7171), (0.7882, 0.6392, 0.6392), (0.7922, 0.6413, 0.6413), (0.8000, 0.6447, 0.6447), (0.8078, 0.6481, 0.6481), (0.8157, 0.6549, 0.6549), (0.8667, 0.6991, 0.6991), (0.8745, 0.7103, 0.7103), (0.8824, 0.7216, 0.7216), (0.8902, 0.7323, 0.7323), (0.8980, 0.7430, 0.7430), (0.9412, 0.8275, 0.8275), (0.9569, 0.8635, 0.8635), (0.9647, 0.8816, 0.8816), (0.9961, 0.9733, 0.9733), (1.0000, 0.9843, 0.9843), ), 'blue': ( (0.0, 0.0, 0.0000), (0.0039, 0.1684, 0.1684), (0.0078, 0.2212, 0.2212), (0.0275, 0.4329, 0.4329), (0.0314, 0.4549, 0.4549), (0.2824, 0.5004, 0.5004), (0.4667, 0.2748, 0.2748), (0.5451, 0.3205, 0.3205), (0.7843, 0.3961, 0.3961), (0.8941, 0.6651, 0.6651), (1.0000, 0.9843, 0.9843), )} _gist_gray_data = { 'red': gfunc[3], 'green': gfunc[3], 'blue': gfunc[3], } _gist_heat_data = { 'red': lambda x: 1.5 * x, 'green': lambda x: 2 * x - 1, 'blue': lambda x: 4 * x - 3, } _gist_ncar_data = \ {'red': ( (0.0, 0.0, 0.0000), (0.3098, 0.0000, 0.0000), (0.3725, 0.3993, 0.3993), (0.4235, 0.5003, 0.5003), (0.5333, 1.0000, 1.0000), (0.7922, 1.0000, 1.0000), (0.8471, 0.6218, 0.6218), (0.8980, 0.9235, 0.9235), (1.0000, 0.9961, 0.9961), ), 'green': ( (0.0, 0.0, 0.0000), (0.0510, 0.3722, 0.3722), (0.1059, 0.0000, 0.0000), (0.1569, 0.7202, 0.7202), (0.1608, 0.7537, 0.7537), (0.1647, 0.7752, 0.7752), (0.2157, 1.0000, 1.0000), (0.2588, 0.9804, 0.9804), (0.2706, 0.9804, 0.9804), (0.3176, 1.0000, 1.0000), (0.3686, 0.8081, 0.8081), (0.4275, 1.0000, 1.0000), (0.5216, 1.0000, 1.0000), (0.6314, 0.7292, 0.7292), (0.6863, 0.2796, 0.2796), (0.7451, 0.0000, 0.0000), (0.7922, 0.0000, 0.0000), (0.8431, 0.1753, 0.1753), (0.8980, 0.5000, 0.5000), (1.0000, 0.9725, 0.9725), ), 'blue': ( (0.0, 0.5020, 0.5020), (0.0510, 0.0222, 0.0222), (0.1098, 1.0000, 1.0000), (0.2039, 1.0000, 1.0000), (0.2627, 0.6145, 0.6145), (0.3216, 0.0000, 0.0000), (0.4157, 0.0000, 0.0000), (0.4745, 0.2342, 0.2342), (0.5333, 0.0000, 0.0000), (0.5804, 0.0000, 0.0000), (0.6314, 0.0549, 0.0549), (0.6902, 0.0000, 0.0000), (0.7373, 0.0000, 0.0000), (0.7922, 0.9738, 0.9738), (0.8000, 1.0000, 1.0000), (0.8431, 1.0000, 1.0000), (0.8980, 0.9341, 0.9341), (1.0000, 0.9961, 0.9961), )} _gist_rainbow_data = ( (0.000, (1.00, 0.00, 0.16)), (0.030, (1.00, 0.00, 0.00)), (0.215, (1.00, 1.00, 0.00)), (0.400, (0.00, 1.00, 0.00)), (0.586, (0.00, 1.00, 1.00)), (0.770, (0.00, 0.00, 1.00)), (0.954, (1.00, 0.00, 1.00)), (1.000, (1.00, 0.00, 0.75)) ) _gist_stern_data = { 'red': ( (0.000, 0.000, 0.000), (0.0547, 1.000, 1.000), (0.250, 0.027, 0.250), # (0.2500, 0.250, 0.250), (1.000, 1.000, 1.000)), 'green': ((0, 0, 0), (1, 1, 1)), 'blue': ( (0.000, 0.000, 0.000), (0.500, 1.000, 1.000), (0.735, 0.000, 0.000), (1.000, 1.000, 1.000)) } _gist_yarg_data = { 'red': lambda x: 1 - x, 'green': lambda x: 1 - x, 'blue': lambda x: 1 - x, } # This bipolar color map was generated from CoolWarmFloat33.csv of # "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland. # <http://www.cs.unm.edu/~kmorel/documents/ColorMaps/> _coolwarm_data = { 'red': [ (0.0, 0.2298057, 0.2298057), (0.03125, 0.26623388, 0.26623388), (0.0625, 0.30386891, 0.30386891), (0.09375, 0.342804478, 0.342804478), (0.125, 0.38301334, 0.38301334), (0.15625, 0.424369608, 0.424369608), (0.1875, 0.46666708, 0.46666708), (0.21875, 0.509635204, 0.509635204), (0.25, 0.552953156, 0.552953156), (0.28125, 0.596262162, 0.596262162), (0.3125, 0.639176211, 0.639176211), (0.34375, 0.681291281, 0.681291281), (0.375, 0.722193294, 0.722193294), (0.40625, 0.761464949, 0.761464949), (0.4375, 0.798691636, 0.798691636), (0.46875, 0.833466556, 0.833466556), (0.5, 0.865395197, 0.865395197), (0.53125, 0.897787179, 0.897787179), (0.5625, 0.924127593, 0.924127593), (0.59375, 0.944468518, 0.944468518), (0.625, 0.958852946, 0.958852946), (0.65625, 0.96732803, 0.96732803), (0.6875, 0.969954137, 0.969954137), (0.71875, 0.966811177, 0.966811177), (0.75, 0.958003065, 0.958003065), (0.78125, 0.943660866, 0.943660866), (0.8125, 0.923944917, 0.923944917), (0.84375, 0.89904617, 0.89904617), (0.875, 0.869186849, 0.869186849), (0.90625, 0.834620542, 0.834620542), (0.9375, 0.795631745, 0.795631745), (0.96875, 0.752534934, 0.752534934), (1.0, 0.705673158, 0.705673158)], 'green': [ (0.0, 0.298717966, 0.298717966), (0.03125, 0.353094838, 0.353094838), (0.0625, 0.406535296, 0.406535296), (0.09375, 0.458757618, 0.458757618), (0.125, 0.50941904, 0.50941904), (0.15625, 0.558148092, 0.558148092), (0.1875, 0.604562568, 0.604562568), (0.21875, 0.648280772, 0.648280772), (0.25, 0.688929332, 0.688929332), (0.28125, 0.726149107, 0.726149107), (0.3125, 0.759599947, 0.759599947), (0.34375, 0.788964712, 0.788964712), (0.375, 0.813952739, 0.813952739), (0.40625, 0.834302879, 0.834302879), (0.4375, 0.849786142, 0.849786142), (0.46875, 0.860207984, 0.860207984), (0.5, 0.86541021, 0.86541021), (0.53125, 0.848937047, 0.848937047), (0.5625, 0.827384882, 0.827384882), (0.59375, 0.800927443, 0.800927443), (0.625, 0.769767752, 0.769767752), (0.65625, 0.734132809, 0.734132809), (0.6875, 0.694266682, 0.694266682), (0.71875, 0.650421156, 0.650421156), (0.75, 0.602842431, 0.602842431), (0.78125, 0.551750968, 0.551750968), (0.8125, 0.49730856, 0.49730856), (0.84375, 0.439559467, 0.439559467), (0.875, 0.378313092, 0.378313092), (0.90625, 0.312874446, 0.312874446), (0.9375, 0.24128379, 0.24128379), (0.96875, 0.157246067, 0.157246067), (1.0, 0.01555616, 0.01555616)], 'blue': [ (0.0, 0.753683153, 0.753683153), (0.03125, 0.801466763, 0.801466763), (0.0625, 0.84495867, 0.84495867), (0.09375, 0.883725899, 0.883725899), (0.125, 0.917387822, 0.917387822), (0.15625, 0.945619588, 0.945619588), (0.1875, 0.968154911, 0.968154911), (0.21875, 0.98478814, 0.98478814), (0.25, 0.995375608, 0.995375608), (0.28125, 0.999836203, 0.999836203), (0.3125, 0.998151185, 0.998151185), (0.34375, 0.990363227, 0.990363227), (0.375, 0.976574709, 0.976574709), (0.40625, 0.956945269, 0.956945269), (0.4375, 0.931688648, 0.931688648), (0.46875, 0.901068838, 0.901068838), (0.5, 0.865395561, 0.865395561), (0.53125, 0.820880546, 0.820880546), (0.5625, 0.774508472, 0.774508472), (0.59375, 0.726736146, 0.726736146), (0.625, 0.678007945, 0.678007945), (0.65625, 0.628751763, 0.628751763), (0.6875, 0.579375448, 0.579375448), (0.71875, 0.530263762, 0.530263762), (0.75, 0.481775914, 0.481775914), (0.78125, 0.434243684, 0.434243684), (0.8125, 0.387970225, 0.387970225), (0.84375, 0.343229596, 0.343229596), (0.875, 0.300267182, 0.300267182), (0.90625, 0.259301199, 0.259301199), (0.9375, 0.220525627, 0.220525627), (0.96875, 0.184115123, 0.184115123), (1.0, 0.150232812, 0.150232812)] } # Implementation of Carey Rappaport's CMRmap. # See `A Color Map for Effective Black-and-White Rendering of Color-Scale # Images' by Carey Rappaport # http://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m _CMRmap_data = {'red': ((0.000, 0.00, 0.00), (0.125, 0.15, 0.15), (0.250, 0.30, 0.30), (0.375, 0.60, 0.60), (0.500, 1.00, 1.00), (0.625, 0.90, 0.90), (0.750, 0.90, 0.90), (0.875, 0.90, 0.90), (1.000, 1.00, 1.00)), 'green': ((0.000, 0.00, 0.00), (0.125, 0.15, 0.15), (0.250, 0.15, 0.15), (0.375, 0.20, 0.20), (0.500, 0.25, 0.25), (0.625, 0.50, 0.50), (0.750, 0.75, 0.75), (0.875, 0.90, 0.90), (1.000, 1.00, 1.00)), 'blue': ((0.000, 0.00, 0.00), (0.125, 0.50, 0.50), (0.250, 0.75, 0.75), (0.375, 0.50, 0.50), (0.500, 0.15, 0.15), (0.625, 0.00, 0.00), (0.750, 0.10, 0.10), (0.875, 0.50, 0.50), (1.000, 1.00, 1.00))} # An MIT licensed, colorblind-friendly heatmap from Wistia: # https://github.com/wistia/heatmap-palette # http://wistia.com/blog/heatmaps-for-colorblindness # # >>> import matplotlib.colors as c # >>> colors = ["#e4ff7a", "#ffe81a", "#ffbd00", "#ffa000", "#fc7f00"] # >>> cm = c.LinearSegmentedColormap.from_list('wistia', colors) # >>> _wistia_data = cm._segmentdata # >>> del _wistia_data['alpha'] # _wistia_data = { 'red': [(0.0, 0.8941176470588236, 0.8941176470588236), (0.25, 1.0, 1.0), (0.5, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.9882352941176471, 0.9882352941176471)], 'green': [(0.0, 1.0, 1.0), (0.25, 0.9098039215686274, 0.9098039215686274), (0.5, 0.7411764705882353, 0.7411764705882353), (0.75, 0.6274509803921569, 0.6274509803921569), (1.0, 0.4980392156862745, 0.4980392156862745)], 'blue': [(0.0, 0.47843137254901963, 0.47843137254901963), (0.25, 0.10196078431372549, 0.10196078431372549), (0.5, 0.0, 0.0), (0.75, 0.0, 0.0), (1.0, 0.0, 0.0)], } datad = { 'afmhot': _afmhot_data, 'autumn': _autumn_data, 'bone': _bone_data, 'binary': _binary_data, 'bwr': _bwr_data, 'brg': _brg_data, 'CMRmap': _CMRmap_data, 'cool': _cool_data, 'copper': _copper_data, 'cubehelix': _cubehelix_data, 'flag': _flag_data, 'gnuplot': _gnuplot_data, 'gnuplot2': _gnuplot2_data, 'gray': _gray_data, 'hot': _hot_data, 'hsv': _hsv_data, 'jet': _jet_data, 'ocean': _ocean_data, 'pink': _pink_data, 'prism': _prism_data, 'rainbow': _rainbow_data, 'seismic': _seismic_data, 'spring': _spring_data, 'summer': _summer_data, 'terrain': _terrain_data, 'winter': _winter_data, 'nipy_spectral': _nipy_spectral_data, 'spectral': _nipy_spectral_data, # alias for backward compatibility } datad['Accent'] = _Accent_data datad['Blues'] = _Blues_data datad['BrBG'] = _BrBG_data datad['BuGn'] = _BuGn_data datad['BuPu'] = _BuPu_data datad['Dark2'] = _Dark2_data datad['GnBu'] = _GnBu_data datad['Greens'] = _Greens_data datad['Greys'] = _Greys_data datad['Oranges'] = _Oranges_data datad['OrRd'] = _OrRd_data datad['Paired'] = _Paired_data datad['Pastel1'] = _Pastel1_data datad['Pastel2'] = _Pastel2_data datad['PiYG'] = _PiYG_data datad['PRGn'] = _PRGn_data datad['PuBu'] = _PuBu_data datad['PuBuGn'] = _PuBuGn_data datad['PuOr'] = _PuOr_data datad['PuRd'] = _PuRd_data datad['Purples'] = _Purples_data datad['RdBu'] = _RdBu_data datad['RdGy'] = _RdGy_data datad['RdPu'] = _RdPu_data datad['RdYlBu'] = _RdYlBu_data datad['RdYlGn'] = _RdYlGn_data datad['Reds'] = _Reds_data datad['Set1'] = _Set1_data datad['Set2'] = _Set2_data datad['Set3'] = _Set3_data datad['Spectral'] = _Spectral_data datad['YlGn'] = _YlGn_data datad['YlGnBu'] = _YlGnBu_data datad['YlOrBr'] = _YlOrBr_data datad['YlOrRd'] = _YlOrRd_data datad['gist_earth'] = _gist_earth_data datad['gist_gray'] = _gist_gray_data datad['gist_heat'] = _gist_heat_data datad['gist_ncar'] = _gist_ncar_data datad['gist_rainbow'] = _gist_rainbow_data datad['gist_stern'] = _gist_stern_data datad['gist_yarg'] = _gist_yarg_data datad['coolwarm'] = _coolwarm_data datad['Wistia'] = _wistia_data
mit
quantopian/pyfolio
pyfolio/timeseries.py
2
37350
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from collections import OrderedDict from functools import partial import empyrical as ep import numpy as np import pandas as pd import scipy as sp import scipy.stats as stats from sklearn import linear_model from .deprecate import deprecated from .interesting_periods import PERIODS from .txn import get_turnover from .utils import APPROX_BDAYS_PER_MONTH, APPROX_BDAYS_PER_YEAR from .utils import DAILY DEPRECATION_WARNING = ("Risk functions in pyfolio.timeseries are deprecated " "and will be removed in a future release. Please " "install the empyrical package instead.") def var_cov_var_normal(P, c, mu=0, sigma=1): """ Variance-covariance calculation of daily Value-at-Risk in a portfolio. Parameters ---------- P : float Portfolio value. c : float Confidence level. mu : float, optional Mean. Returns ------- float Variance-covariance. """ alpha = sp.stats.norm.ppf(1 - c, mu, sigma) return P - P * (alpha + 1) @deprecated(msg=DEPRECATION_WARNING) def max_drawdown(returns): """ Determines the maximum drawdown of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. Returns ------- float Maximum drawdown. Note ----- See https://en.wikipedia.org/wiki/Drawdown_(economics) for more details. """ return ep.max_drawdown(returns) @deprecated(msg=DEPRECATION_WARNING) def annual_return(returns, period=DAILY): """ Determines the mean annual growth rate of returns. Parameters ---------- returns : pd.Series Periodic returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing. Can be 'monthly', 'weekly', or 'daily'. - Defaults to 'daily'. Returns ------- float Annual Return as CAGR (Compounded Annual Growth Rate). """ return ep.annual_return(returns, period=period) @deprecated(msg=DEPRECATION_WARNING) def annual_volatility(returns, period=DAILY): """ Determines the annual volatility of a strategy. Parameters ---------- returns : pd.Series Periodic returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing volatility. Can be 'monthly' or 'weekly' or 'daily'. - Defaults to 'daily'. Returns ------- float Annual volatility. """ return ep.annual_volatility(returns, period=period) @deprecated(msg=DEPRECATION_WARNING) def calmar_ratio(returns, period=DAILY): """ Determines the Calmar ratio, or drawdown ratio, of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing. Can be 'monthly', 'weekly', or 'daily'. - Defaults to 'daily'. Returns ------- float Calmar ratio (drawdown ratio) as float. Returns np.nan if there is no calmar ratio. Note ----- See https://en.wikipedia.org/wiki/Calmar_ratio for more details. """ return ep.calmar_ratio(returns, period=period) @deprecated(msg=DEPRECATION_WARNING) def omega_ratio(returns, annual_return_threshhold=0.0): """ Determines the Omega ratio of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. annual_return_threshold : float, optional Minimum acceptable return of the investor. Annual threshold over which returns are considered positive or negative. It is converted to a value appropriate for the period of the returns for this ratio. E.g. An annual minimum acceptable return of 100 translates to a daily minimum acceptable return of 0.01848. (1 + 100) ** (1. / 252) - 1 = 0.01848 Daily returns must exceed this value to be considered positive. The daily return yields the desired annual return when compounded over the average number of business days in a year. (1 + 0.01848) ** 252 - 1 = 99.93 - Defaults to 0.0 Returns ------- float Omega ratio. Note ----- See https://en.wikipedia.org/wiki/Omega_ratio for more details. """ return ep.omega_ratio(returns, required_return=annual_return_threshhold) @deprecated(msg=DEPRECATION_WARNING) def sortino_ratio(returns, required_return=0, period=DAILY): """ Determines the Sortino ratio of a strategy. Parameters ---------- returns : pd.Series or pd.DataFrame Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. required_return: float / series minimum acceptable return period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing. Can be 'monthly', 'weekly', or 'daily'. - Defaults to 'daily'. Returns ------- depends on input type series ==> float DataFrame ==> np.array Annualized Sortino ratio. """ return ep.sortino_ratio(returns, required_return=required_return) @deprecated(msg=DEPRECATION_WARNING) def downside_risk(returns, required_return=0, period=DAILY): """ Determines the downside deviation below a threshold Parameters ---------- returns : pd.Series or pd.DataFrame Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. required_return: float / series minimum acceptable return period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing. Can be 'monthly', 'weekly', or 'daily'. - Defaults to 'daily'. Returns ------- depends on input type series ==> float DataFrame ==> np.array Annualized downside deviation """ return ep.downside_risk(returns, required_return=required_return, period=period) @deprecated(msg=DEPRECATION_WARNING) def sharpe_ratio(returns, risk_free=0, period=DAILY): """ Determines the Sharpe ratio of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. risk_free : int, float Constant risk-free return throughout the period. period : str, optional Defines the periodicity of the 'returns' data for purposes of annualizing. Can be 'monthly', 'weekly', or 'daily'. - Defaults to 'daily'. Returns ------- float Sharpe ratio. np.nan If insufficient length of returns or if if adjusted returns are 0. Note ----- See https://en.wikipedia.org/wiki/Sharpe_ratio for more details. """ return ep.sharpe_ratio(returns, risk_free=risk_free, period=period) @deprecated(msg=DEPRECATION_WARNING) def alpha_beta(returns, factor_returns): """ Calculates both alpha and beta. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. factor_returns : pd.Series Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. Returns ------- float Alpha. float Beta. """ return ep.alpha_beta(returns, factor_returns=factor_returns) @deprecated(msg=DEPRECATION_WARNING) def alpha(returns, factor_returns): """ Calculates annualized alpha. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. factor_returns : pd.Series Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. Returns ------- float Alpha. """ return ep.alpha(returns, factor_returns=factor_returns) @deprecated(msg=DEPRECATION_WARNING) def beta(returns, factor_returns): """ Calculates beta. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. factor_returns : pd.Series Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. Returns ------- float Beta. """ return ep.beta(returns, factor_returns) @deprecated(msg=DEPRECATION_WARNING) def stability_of_timeseries(returns): """ Determines R-squared of a linear fit to the cumulative log returns. Computes an ordinary least squares linear fit, and returns R-squared. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. Returns ------- float R-squared. """ return ep.stability_of_timeseries(returns) @deprecated(msg=DEPRECATION_WARNING) def tail_ratio(returns): """ Determines the ratio between the right (95%) and left tail (5%). For example, a ratio of 0.25 means that losses are four times as bad as profits. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. Returns ------- float tail ratio """ return ep.tail_ratio(returns) def common_sense_ratio(returns): """ Common sense ratio is the multiplication of the tail ratio and the Gain-to-Pain-Ratio -- sum(profits) / sum(losses). See http://bit.ly/1ORzGBk for more information on motivation of this metric. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. Returns ------- float common sense ratio """ return ep.tail_ratio(returns) * \ (1 + ep.annual_return(returns)) def normalize(returns, starting_value=1): """ Normalizes a returns timeseries based on the first value. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. starting_value : float, optional The starting returns (default 1). Returns ------- pd.Series Normalized returns. """ return starting_value * (returns / returns.iloc[0]) @deprecated(msg=DEPRECATION_WARNING) def cum_returns(returns, starting_value=0): """ Compute cumulative returns from simple returns. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. starting_value : float, optional The starting returns (default 1). Returns ------- pandas.Series Series of cumulative returns. Notes ----- For increased numerical accuracy, convert input to log returns where it is possible to sum instead of multiplying. """ return ep.cum_returns(returns, starting_value=starting_value) @deprecated(msg=DEPRECATION_WARNING) def aggregate_returns(returns, convert_to): """ Aggregates returns by week, month, or year. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. convert_to : str Can be 'weekly', 'monthly', or 'yearly'. Returns ------- pd.Series Aggregated returns. """ return ep.aggregate_returns(returns, convert_to=convert_to) def rolling_beta(returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 6): """ Determines the rolling beta of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series or pd.DataFrame Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - If DataFrame is passed, computes rolling beta for each column. - This is in the same style as returns. rolling_window : int, optional The size of the rolling window, in days, over which to compute beta (default 6 months). Returns ------- pd.Series Rolling beta. Note ----- See https://en.wikipedia.org/wiki/Beta_(finance) for more details. """ if factor_returns.ndim > 1: # Apply column-wise return factor_returns.apply(partial(rolling_beta, returns), rolling_window=rolling_window) else: out = pd.Series(index=returns.index) for beg, end in zip(returns.index[0:-rolling_window], returns.index[rolling_window:]): out.loc[end] = ep.beta( returns.loc[beg:end], factor_returns.loc[beg:end]) return out def rolling_regression(returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 6, nan_threshold=0.1): """ Computes rolling factor betas using a multivariate linear regression (separate linear regressions is problematic because the factors may be confounded). Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.DataFrame Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - Computes rolling beta for each column. - This is in the same style as returns. rolling_window : int, optional The days window over which to compute the beta. Defaults to 6 months. nan_threshold : float, optional If there are more than this fraction of NaNs, the rolling regression for the given date will be skipped. Returns ------- pandas.DataFrame DataFrame containing rolling beta coefficients to SMB, HML and UMD """ # We need to drop NaNs to regress ret_no_na = returns.dropna() columns = ['alpha'] + factor_returns.columns.tolist() rolling_risk = pd.DataFrame(columns=columns, index=ret_no_na.index) rolling_risk.index.name = 'dt' for beg, end in zip(ret_no_na.index[:-rolling_window], ret_no_na.index[rolling_window:]): returns_period = ret_no_na[beg:end] factor_returns_period = factor_returns.loc[returns_period.index] if np.all(factor_returns_period.isnull().mean()) < nan_threshold: factor_returns_period_dnan = factor_returns_period.dropna() reg = linear_model.LinearRegression(fit_intercept=True).fit( factor_returns_period_dnan, returns_period.loc[factor_returns_period_dnan.index]) rolling_risk.loc[end, factor_returns.columns] = reg.coef_ rolling_risk.loc[end, 'alpha'] = reg.intercept_ return rolling_risk def gross_lev(positions): """ Calculates the gross leverage of a strategy. Parameters ---------- positions : pd.DataFrame Daily net position values. - See full explanation in tears.create_full_tear_sheet. Returns ------- pd.Series Gross leverage. """ exposure = positions.drop('cash', axis=1).abs().sum(axis=1) return exposure / positions.sum(axis=1) def value_at_risk(returns, period=None, sigma=2.0): """ Get value at risk (VaR). Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. period : str, optional Period over which to calculate VaR. Set to 'weekly', 'monthly', or 'yearly', otherwise defaults to period of returns (typically daily). sigma : float, optional Standard deviations of VaR, default 2. """ if period is not None: returns_agg = ep.aggregate_returns(returns, period) else: returns_agg = returns.copy() value_at_risk = returns_agg.mean() - sigma * returns_agg.std() return value_at_risk SIMPLE_STAT_FUNCS = [ ep.annual_return, ep.cum_returns_final, ep.annual_volatility, ep.sharpe_ratio, ep.calmar_ratio, ep.stability_of_timeseries, ep.max_drawdown, ep.omega_ratio, ep.sortino_ratio, stats.skew, stats.kurtosis, ep.tail_ratio, value_at_risk ] FACTOR_STAT_FUNCS = [ ep.alpha, ep.beta, ] STAT_FUNC_NAMES = { 'annual_return': 'Annual return', 'cum_returns_final': 'Cumulative returns', 'annual_volatility': 'Annual volatility', 'sharpe_ratio': 'Sharpe ratio', 'calmar_ratio': 'Calmar ratio', 'stability_of_timeseries': 'Stability', 'max_drawdown': 'Max drawdown', 'omega_ratio': 'Omega ratio', 'sortino_ratio': 'Sortino ratio', 'skew': 'Skew', 'kurtosis': 'Kurtosis', 'tail_ratio': 'Tail ratio', 'common_sense_ratio': 'Common sense ratio', 'value_at_risk': 'Daily value at risk', 'alpha': 'Alpha', 'beta': 'Beta', } def perf_stats(returns, factor_returns=None, positions=None, transactions=None, turnover_denom='AGB'): """ Calculates various performance metrics of a strategy, for use in plotting.show_perf_stats. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series, optional Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. - If None, do not compute alpha, beta, and information ratio. positions : pd.DataFrame Daily net position values. - See full explanation in tears.create_full_tear_sheet. transactions : pd.DataFrame Prices and amounts of executed trades. One row per trade. - See full explanation in tears.create_full_tear_sheet. turnover_denom : str Either AGB or portfolio_value, default AGB. - See full explanation in txn.get_turnover. Returns ------- pd.Series Performance metrics. """ stats = pd.Series() for stat_func in SIMPLE_STAT_FUNCS: stats[STAT_FUNC_NAMES[stat_func.__name__]] = stat_func(returns) if positions is not None: stats['Gross leverage'] = gross_lev(positions).mean() if transactions is not None: stats['Daily turnover'] = get_turnover(positions, transactions, turnover_denom).mean() if factor_returns is not None: for stat_func in FACTOR_STAT_FUNCS: res = stat_func(returns, factor_returns) stats[STAT_FUNC_NAMES[stat_func.__name__]] = res return stats def perf_stats_bootstrap(returns, factor_returns=None, return_stats=True, **kwargs): """Calculates various bootstrapped performance metrics of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series, optional Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. - If None, do not compute alpha, beta, and information ratio. return_stats : boolean (optional) If True, returns a DataFrame of mean, median, 5 and 95 percentiles for each perf metric. If False, returns a DataFrame with the bootstrap samples for each perf metric. Returns ------- pd.DataFrame if return_stats is True: - Distributional statistics of bootstrapped sampling distribution of performance metrics. if return_stats is False: - Bootstrap samples for each performance metric. """ bootstrap_values = OrderedDict() for stat_func in SIMPLE_STAT_FUNCS: stat_name = STAT_FUNC_NAMES[stat_func.__name__] bootstrap_values[stat_name] = calc_bootstrap(stat_func, returns) if factor_returns is not None: for stat_func in FACTOR_STAT_FUNCS: stat_name = STAT_FUNC_NAMES[stat_func.__name__] bootstrap_values[stat_name] = calc_bootstrap( stat_func, returns, factor_returns=factor_returns) bootstrap_values = pd.DataFrame(bootstrap_values) if return_stats: stats = bootstrap_values.apply(calc_distribution_stats) return stats.T[['mean', 'median', '5%', '95%']] else: return bootstrap_values def calc_bootstrap(func, returns, *args, **kwargs): """Performs a bootstrap analysis on a user-defined function returning a summary statistic. Parameters ---------- func : function Function that either takes a single array (commonly returns) or two arrays (commonly returns and factor returns) and returns a single value (commonly a summary statistic). Additional args and kwargs are passed as well. returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series, optional Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. n_samples : int, optional Number of bootstrap samples to draw. Default is 1000. Increasing this will lead to more stable / accurate estimates. Returns ------- numpy.ndarray Bootstrapped sampling distribution of passed in func. """ n_samples = kwargs.pop('n_samples', 1000) out = np.empty(n_samples) factor_returns = kwargs.pop('factor_returns', None) for i in range(n_samples): idx = np.random.randint(len(returns), size=len(returns)) returns_i = returns.iloc[idx].reset_index(drop=True) if factor_returns is not None: factor_returns_i = factor_returns.iloc[idx].reset_index(drop=True) out[i] = func(returns_i, factor_returns_i, *args, **kwargs) else: out[i] = func(returns_i, *args, **kwargs) return out def calc_distribution_stats(x): """Calculate various summary statistics of data. Parameters ---------- x : numpy.ndarray or pandas.Series Array to compute summary statistics for. Returns ------- pandas.Series Series containing mean, median, std, as well as 5, 25, 75 and 95 percentiles of passed in values. """ return pd.Series({'mean': np.mean(x), 'median': np.median(x), 'std': np.std(x), '5%': np.percentile(x, 5), '25%': np.percentile(x, 25), '75%': np.percentile(x, 75), '95%': np.percentile(x, 95), 'IQR': np.subtract.reduce( np.percentile(x, [75, 25])), }) def get_max_drawdown_underwater(underwater): """ Determines peak, valley, and recovery dates given an 'underwater' DataFrame. An underwater DataFrame is a DataFrame that has precomputed rolling drawdown. Parameters ---------- underwater : pd.Series Underwater returns (rolling drawdown) of a strategy. Returns ------- peak : datetime The maximum drawdown's peak. valley : datetime The maximum drawdown's valley. recovery : datetime The maximum drawdown's recovery. """ valley = underwater.idxmin() # end of the period # Find first 0 peak = underwater[:valley][underwater[:valley] == 0].index[-1] # Find last 0 try: recovery = underwater[valley:][underwater[valley:] == 0].index[0] except IndexError: recovery = np.nan # drawdown not recovered return peak, valley, recovery def get_max_drawdown(returns): """ Determines the maximum drawdown of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in :func:`~pyfolio.timeseries.cum_returns`. Returns ------- float Maximum drawdown. Note ----- See https://en.wikipedia.org/wiki/Drawdown_(economics) for more details. """ returns = returns.copy() df_cum = cum_returns(returns, 1.0) running_max = np.maximum.accumulate(df_cum) underwater = df_cum / running_max - 1 return get_max_drawdown_underwater(underwater) def get_top_drawdowns(returns, top=10): """ Finds top drawdowns, sorted by drawdown amount. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. top : int, optional The amount of top drawdowns to find (default 10). Returns ------- drawdowns : list List of drawdown peaks, valleys, and recoveries. See get_max_drawdown. """ returns = returns.copy() df_cum = ep.cum_returns(returns, 1.0) running_max = np.maximum.accumulate(df_cum) underwater = df_cum / running_max - 1 drawdowns = [] for _ in range(top): peak, valley, recovery = get_max_drawdown_underwater(underwater) # Slice out draw-down period if not pd.isnull(recovery): underwater.drop(underwater[peak: recovery].index[1:-1], inplace=True) else: # drawdown has not ended yet underwater = underwater.loc[:peak] drawdowns.append((peak, valley, recovery)) if ((len(returns) == 0) or (len(underwater) == 0) or (np.min(underwater) == 0)): break return drawdowns def gen_drawdown_table(returns, top=10): """ Places top drawdowns in a table. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. top : int, optional The amount of top drawdowns to find (default 10). Returns ------- df_drawdowns : pd.DataFrame Information about top drawdowns. """ df_cum = ep.cum_returns(returns, 1.0) drawdown_periods = get_top_drawdowns(returns, top=top) df_drawdowns = pd.DataFrame(index=list(range(top)), columns=['Net drawdown in %', 'Peak date', 'Valley date', 'Recovery date', 'Duration']) for i, (peak, valley, recovery) in enumerate(drawdown_periods): if pd.isnull(recovery): df_drawdowns.loc[i, 'Duration'] = np.nan else: df_drawdowns.loc[i, 'Duration'] = len(pd.date_range(peak, recovery, freq='B')) df_drawdowns.loc[i, 'Peak date'] = (peak.to_pydatetime() .strftime('%Y-%m-%d')) df_drawdowns.loc[i, 'Valley date'] = (valley.to_pydatetime() .strftime('%Y-%m-%d')) if isinstance(recovery, float): df_drawdowns.loc[i, 'Recovery date'] = recovery else: df_drawdowns.loc[i, 'Recovery date'] = (recovery.to_pydatetime() .strftime('%Y-%m-%d')) df_drawdowns.loc[i, 'Net drawdown in %'] = ( (df_cum.loc[peak] - df_cum.loc[valley]) / df_cum.loc[peak]) * 100 df_drawdowns['Peak date'] = pd.to_datetime(df_drawdowns['Peak date']) df_drawdowns['Valley date'] = pd.to_datetime(df_drawdowns['Valley date']) df_drawdowns['Recovery date'] = pd.to_datetime( df_drawdowns['Recovery date']) return df_drawdowns def rolling_volatility(returns, rolling_vol_window): """ Determines the rolling volatility of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. rolling_vol_window : int Length of rolling window, in days, over which to compute. Returns ------- pd.Series Rolling volatility. """ return returns.rolling(rolling_vol_window).std() \ * np.sqrt(APPROX_BDAYS_PER_YEAR) def rolling_sharpe(returns, rolling_sharpe_window): """ Determines the rolling Sharpe ratio of a strategy. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. rolling_sharpe_window : int Length of rolling window, in days, over which to compute. Returns ------- pd.Series Rolling Sharpe ratio. Note ----- See https://en.wikipedia.org/wiki/Sharpe_ratio for more details. """ return returns.rolling(rolling_sharpe_window).mean() \ / returns.rolling(rolling_sharpe_window).std() \ * np.sqrt(APPROX_BDAYS_PER_YEAR) def simulate_paths(is_returns, num_days, starting_value=1, num_samples=1000, random_seed=None): """ Gnerate alternate paths using available values from in-sample returns. Parameters ---------- is_returns : pandas.core.frame.DataFrame Non-cumulative in-sample returns. num_days : int Number of days to project the probability cone forward. starting_value : int or float Starting value of the out of sample period. num_samples : int Number of samples to draw from the in-sample daily returns. Each sample will be an array with length num_days. A higher number of samples will generate a more accurate bootstrap cone. random_seed : int Seed for the pseudorandom number generator used by the pandas sample method. Returns ------- samples : numpy.ndarray """ samples = np.empty((num_samples, num_days)) seed = np.random.RandomState(seed=random_seed) for i in range(num_samples): samples[i, :] = is_returns.sample(num_days, replace=True, random_state=seed) return samples def summarize_paths(samples, cone_std=(1., 1.5, 2.), starting_value=1.): """ Gnerate the upper and lower bounds of an n standard deviation cone of forecasted cumulative returns. Parameters ---------- samples : numpy.ndarray Alternative paths, or series of possible outcomes. cone_std : list of int/float Number of standard devations to use in the boundaries of the cone. If multiple values are passed, cone bounds will be generated for each value. Returns ------- samples : pandas.core.frame.DataFrame """ cum_samples = ep.cum_returns(samples.T, starting_value=starting_value).T cum_mean = cum_samples.mean(axis=0) cum_std = cum_samples.std(axis=0) if isinstance(cone_std, (float, int)): cone_std = [cone_std] cone_bounds = pd.DataFrame(columns=pd.Float64Index([])) for num_std in cone_std: cone_bounds.loc[:, float(num_std)] = cum_mean + cum_std * num_std cone_bounds.loc[:, float(-num_std)] = cum_mean - cum_std * num_std return cone_bounds def forecast_cone_bootstrap(is_returns, num_days, cone_std=(1., 1.5, 2.), starting_value=1, num_samples=1000, random_seed=None): """ Determines the upper and lower bounds of an n standard deviation cone of forecasted cumulative returns. Future cumulative mean and standard devation are computed by repeatedly sampling from the in-sample daily returns (i.e. bootstrap). This cone is non-parametric, meaning it does not assume that returns are normally distributed. Parameters ---------- is_returns : pd.Series In-sample daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. num_days : int Number of days to project the probability cone forward. cone_std : int, float, or list of int/float Number of standard devations to use in the boundaries of the cone. If multiple values are passed, cone bounds will be generated for each value. starting_value : int or float Starting value of the out of sample period. num_samples : int Number of samples to draw from the in-sample daily returns. Each sample will be an array with length num_days. A higher number of samples will generate a more accurate bootstrap cone. random_seed : int Seed for the pseudorandom number generator used by the pandas sample method. Returns ------- pd.DataFrame Contains upper and lower cone boundaries. Column names are strings corresponding to the number of standard devations above (positive) or below (negative) the projected mean cumulative returns. """ samples = simulate_paths( is_returns=is_returns, num_days=num_days, starting_value=starting_value, num_samples=num_samples, random_seed=random_seed ) cone_bounds = summarize_paths( samples=samples, cone_std=cone_std, starting_value=starting_value ) return cone_bounds def extract_interesting_date_ranges(returns, periods=None): """ Extracts returns based on interesting events. See gen_date_range_interesting. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. Returns ------- ranges : OrderedDict Date ranges, with returns, of all valid events. """ if periods is None: periods = PERIODS returns_dupe = returns.copy() returns_dupe.index = returns_dupe.index.map(pd.Timestamp) ranges = OrderedDict() for name, (start, end) in periods.items(): try: period = returns_dupe.loc[start:end] if len(period) == 0: continue ranges[name] = period except BaseException: continue return ranges
apache-2.0
CroatianMeteorNetwork/RMS
Utils/ShowThresholdLevels.py
2
3363
""" The script will open all FF files in the given folder and plot color-coded images where the color represents the threshold needed to detect individual feacutres on the image. """ from __future__ import print_function, division, absolute_import import os import argparse import numpy as np import matplotlib.pyplot as plt from RMS.Formats.FFfile import validFFName from RMS.Formats.FFfile import read as readFF if __name__ == "__main__": import RMS.ConfigReader as cr ### PARSE INPUT ARGUMENTS ### # Init the command line arguments parser arg_parser = argparse.ArgumentParser(description=""" Show threshold levels needed to detect certain meteors. """) arg_parser.add_argument('dir_path', type=str, help="Path to the folder with FF files.") arg_parser.add_argument('-f', '--fireball', action="store_true", help="""Estimate threshold for fireball detection, not meteor detection. """) arg_parser.add_argument('-c', '--config', nargs=1, metavar='CONFIG_PATH', type=str, \ help="Path to a config file which will be used instead of the default one.") ############################# # Parse the command line arguments cml_args = arg_parser.parse_args() if cml_args.fireball: print('FireballDetection') else: print('MeteorDetection') # Load the config file config = cr.loadConfigFromDirectory(cml_args.config, cml_args.dir_path) if not os.path.exists(cml_args.dir_path): print('{:s} directory does not exist!'.format(cml_args.dir_path)) # Load all FF files in the given directory for file_name in os.listdir(cml_args.dir_path): # Check if the file is an FF file if validFFName(file_name): # Read the FF file ff = readFF(cml_args.dir_path, file_name) # Skip the file if it is corruped if ff is None: continue # Use the fireball thresholding if cml_args.fireball: k1 = config.k1 j1 = config.j1 # Meteor detection else: k1 = config.k1_det j1 = config.j1_det # Compute the threshold value k1_vals = (ff.maxpixel.astype(np.float64) - ff.avepixel.astype(np.float64) \ - j1)/ff.stdpixel.astype(np.float64) fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) # Plot the threshold map k1map = ax1.imshow(k1_vals, cmap='inferno', vmin=1, vmax=6, aspect='auto') # Plot file name ax1.text(0, 0, "{:s}".format(file_name), color='white', verticalalignment='top') cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) if cml_args.fireball: plt.colorbar(k1map, cax=cbar_ax, label='Top plot: k1') else: plt.colorbar(k1map, cax=cbar_ax, label='Top plot: k1_det') # Plot thresholded image threshld = ff.maxpixel > ff.avepixel + k1*ff.stdpixel + j1 ax2.imshow(threshld, cmap='gray', aspect='auto') ax2.text(0, 0, "k1 = {:.2f}, j1 = {:.2f}".format(k1, j1), color='red', verticalalignment='top', weight='bold') fig.subplots_adjust(right=0.8, hspace=0) plt.show()
gpl-3.0
RoxanneYang/TestCase
WindAdapter/api.py
1
5083
# -*- coding: utf-8 -*- import os import datetime import pandas as pd from toolz import merge from argcheck import expect_types from WindAdapter.factor_loader import FactorLoader from WindAdapter.utils import save_data_to_file from WindAdapter.utils import print_table from WindAdapter.utils import handle_wind_query_exception from WindAdapter.custom_logger import CustomLogger from WindAdapter.data_provider import WindDataProvider from WindAdapter.helper import WindQueryHelper from WindAdapter.enums import OutputFormat LOGGER = CustomLogger() WIND_DATA_PRODIVER = WindDataProvider() WIND_QUERY_HELPER = WindQueryHelper() def reset_log_level(log_level): """ :param log_level: enum, 可选择'info', 'critical' 'notset' :return: 设置WindAdapter函数输出信息的等级, 项目默认为'info'等级 """ LOGGER.critical('Reset path of data dict to {0}'.format(log_level)) LOGGER.set_level(log_level) def reset_data_dict_path(path, path_type_abs): """ :param path: str, 自定义的data_dict 路径 :param path_type_abs: str, True: 路径为绝对路径, False: 路径为相对路径 :return: data_dict的路径被修改 """ LOGGER.critical('Reset path of data dict to {0}'.format(path)) os.environ['DATA_DICT_PATH'] = path os.environ['DATA_DICT_PATH_TYPE_ABS'] = str(path_type_abs) return @handle_wind_query_exception(LOGGER) def get_universe(index_id, date=None, output_weight=False): """ :param index_id: str, 可以为指数代码或者'fullA'(指全市场股票),不区分大小写 :param date: str, optional, YYYYMMDD/YYYY-MM-DD,默认为None,即返回最近交易日的成分股列表 :param output_weight: bool, optional, 是否返回对应的个股权重 :return: 如果output_weight=False, 返回list, 成分股列表 如果output_weight=True, 返回DataFrame """ LOGGER.info('Loading the constituent stocks of index {0} at date {1}'. format(index_id, datetime.date.today() if date is None else date)) ret = WindDataProvider.get_universe(index_id, date, output_weight) LOGGER.info('Number of the loaded constituent stocks is {0}'.format(len(ret))) return ret @handle_wind_query_exception(LOGGER) @expect_types(factor_name=(str, list)) def factor_load(start_date, end_date, factor_name, save_file=None, **kwargs): """ :param start_date: str, 读取因子数据的开始日期 :param end_date: str, 读取因子数据的结束日期 :param factor_name: str, 因子名称,不区分大小写 :param save_file: str, optional, 保存数据的文件名,可写成 '*.csv' 或者 '*.pkl' :param kwargs: dict, optional freq: str, optional, 因子数据的频率, 可选'M', 'W', 'Q', 'S', 'Y', 参见enums.py - FreqType tenor: str, optional, 因子数据的周期, 对于截面数据(如换手率,收益率),需要给定数据区间(向前), 可选数字+FreqType, 如'1Q' sec_id, str/list, optional, 股票代码或者是指数代码 output_data_format: enum, optional, 参见enums.py - FreqType MULTI_INDEX_DF: multi-index DataFrame, index=[date, secID], value = factor PITVOT_TABLE_DF: DataFrame, index=date, columns = secID is_index: bool, optional, True: 输入的sec_id是指数,实际需要读取的是该指数成分股的因子数据, False: 直接读取sec_id的因子数据 :return: pd.DataFrame 整理好的因子数据 """ if isinstance(factor_name, list): kwargs = merge(kwargs, {'output_data_format': OutputFormat.MULTI_INDEX_DF}) factor_names = factor_name else: factor_names = [factor_name] ret = pd.DataFrame() for factor_name in factor_names: LOGGER.info('Loading factor data {0}'.format(factor_name)) factor_loader = FactorLoader(start_date=start_date, end_date=end_date, factor_name=factor_name, **kwargs) factor_data = factor_loader.load_data() LOGGER.info('factor data {0} is loaded '.format(factor_name)) ret = pd.concat([ret, factor_data], axis=1) if kwargs.get('reset_col_names'): ret.columns = factor_names if save_file: save_data_to_file(ret, save_file) LOGGER.critical('Data saved in {0}'.format(save_file)) return ret def factor_help(): """ :return: 返回定义的数据字典(简易版) """ LOGGER.info('Factors that are available to query') data_dict = WIND_QUERY_HELPER.data_dict print_table(data_dict['explanation'], name='Data_Dict') return def factor_details_help(): """ :return: 返回定义的数据字典(详细版) """ LOGGER.info('Factors(details) that are available to query') data_dict = WIND_QUERY_HELPER.data_dict print_table(data_dict, name='Data_Dict') return
mit
muxiaobai/CourseExercises
python/kaggle/data-visual/plot%26seaborn.py
1
2005
# coding: utf-8 # In[1]: import pandas as pd import matplotlib.pyplot as plt import numpy as np from pandas import Series,DataFrame import seaborn as sns # In[2]: #https://www.kaggle.com/residentmario/bivariate-plotting-with-pandas/data reviews = pd.read_csv("winemag-data_first150k.csv", index_col=0) reviews.head() # ### sns.countplot() sns.kdeplot() 核密度估计 sns.jointplot() sns.boxplot() sns.violinplot() # In[4]: sns.countplot(reviews['points']) #reviews['points'].value_counts().sort_index().plot.bar() plt.show() # In[5]: sns.kdeplot(reviews.query('price < 200').price) #reviews[reviews['price'] < 200]['price'].value_counts().sort_index().plot.line() plt.show() # In[6]: # 出现锯齿状 reviews[reviews['price'] < 200]['price'].value_counts().sort_index().plot.line() plt.show() # In[7]: #两个类别的关系 sns.kdeplot(reviews[reviews['price'] < 200].loc[:, ['price', 'points']].dropna().sample(5000)) plt.show() # In[8]: sns.distplot(reviews['points'], bins=10, kde=False) #reviews[reviews['price'] < 200]['price'].plot.hist() 对应直方图 plt.show() # ### jointplot 对应 kind=scatter/reg/hex/kde # In[12]: sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100]) plt.show() # In[10]: sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100], kind='hex', gridsize=20) plt.show() # In[15]: sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100], kind='reg') plt.show() # In[16]: sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100], kind='kde', gridsize=20) plt.show() # In[19]: df = reviews[reviews.variety.isin(reviews.variety.value_counts().head(5).index)] sns.boxplot(x='variety', y='points', data=df) plt.show() # #### Red Blend 比Chardonnay variety得分更高一点 # In[20]: sns.violinplot( x='variety',y='points',data=reviews[reviews.variety.isin(reviews.variety.value_counts()[:5].index)]) plt.show()
gpl-2.0
airanmehr/bio
Scripts/Plasmodium/Plot.py
1
15347
''' Copyleft Oct 10, 2015 Arya Iranmehr, PhD Student, Bafna's Lab, UC San Diego, Email: [email protected] ''' import re import pandas as pd import pylab as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.cm import * from sklearn import decomposition from Scripts.Plasmodium import Data numGenerations=int(53000*8765.81 /48) numGenerations=int(53000*2) # print 'Num Generation= {:.0e}'.format(numGenerations) numBP=21647181.0 class Plot: # @staticmethod def __init__(self,param): self.titleSize=50 self.titleSizeSup=34 self.figsize,self.dpi=(30,10),100 mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':26}) ; mpl.rc('text', usetex=True) self.pdf= PdfPages(param['plotpath']+'{}.{}.{}.{}.pdf'.format(param['Region'],param['dsname'],param['filter'],param['HWcutoff'])) self.fignumber=1 @staticmethod def plotDepth(meta,param): from scipy.stats import ks_2samp mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size':26}) ; mpl.rc('text', usetex=True) with PdfPages(param['plotpath']+'Depth.{}.{}.pdf'.format(param['Region'],param['dsname'])) as pdf: fig=plt.figure(figsize=(30,10), dpi=100);plt.ioff() plt.subplot(1,2,0) from Run import computeFws computeFws(meta, param).plot(kind='bar');plt.title('Average Fws over {} sites'.format(meta.shape[0])); plt.subplot(1,2,1) meta['hetero'].value_counts().sort_index().plot(kind='bar');plt.ylabel('Number of Sites');plt.xlabel('Number of Heterozygotes');plt.title('Heterozygote Histogram of {} sites'.format(meta.shape[0])) pdf.savefig(fig) tt=[ks_2samp(meta[meta[n+'minrc']>0][n+'minrc'].values,meta[meta[n+'minrc']>0][n+'majrc'].values) for n in param['names']] fig=plt.figure(figsize=(30,10), dpi=100);plt.ioff() plt.subplot(1,2,0) pd.Series(map(lambda x: x[0],tt), index=param['names']).plot(kind='bar');plt.title('KS-statistic') plt.subplot(1,2,1) np.log(pd.Series(map(lambda x: x[1],tt), index=param['names'])).plot(kind='bar');plt.title('log-Pval') plt.suptitle('Comparison of Minor and Major read counts in Hetero sites (using KS test)') pdf.savefig(fig) for n in param['names']: fig=plt.figure(figsize=(30,10), dpi=100);plt.ioff() # plt.subplot(1,3,0) ind=meta[[n, n+'majrc',n+'minrc']] homo=(ind[n]=='0/0') | (ind[n]=='1/1') hetero=~homo rc= pd.DataFrame([meta[n+'rc'].value_counts().sort_index().iloc[:100], meta[homo][n+'rc'].value_counts().sort_index().iloc[:100],meta[hetero][n+'rc'].value_counts().sort_index().iloc[:100]],index=['AllSites','HomozygoteSites','HeteroygoteSites']).fillna(0).T means=[meta[n+'rc'].mean(), meta[homo][n+'rc'].mean(),meta[hetero][n+'rc'].mean()] rc= rc[rc.index<50] index, bar_width = rc.index.values,0.25 for i in range(rc.shape[1]): plt.bar(index + i*bar_width, rc.icol(i).values/rc.icol(i).sum(), bar_width, color=mpl.cm.jet(1.*i/rc.shape[1]), label='{} (mean depth={:.2f})'.format(rc.columns[i],means[i])) plt.ylabel('fraction of sites');plt.xlabel('depth');plt.title('Depth of distribution of {}'.format(n));plt.legend() # plt.subplot(1,3,1) # minrc=meta.ix[hetero,n+'minrc'] # minrc[minrc>20]=20 # minrc.value_counts().sort_index().plot(kind='bar');plt.title('Depth of minor allele in {} heterozygote sites'.format(hetero.sum()));plt.xlabel('Depth');plt.ylabel('Number of sites') # r=meta[n+'minrc']/meta[n+'majrc'] # plt.subplot(1,3,2) # r[r>0].hist();plt.title('Soft AFS of Heterozygote sites '); plt.xlabel('minrc/majrc') # plt.suptitle(n) pdf.savefig(fig) def plotOne(self,x,ys,ynames,title,chromOffset,ylim=None): fig=plt.figure(figsize=(100,10), dpi=300);plt.ioff() for y,yname in zip(ys,ynames): plt.plot(x,y,label=yname) # plt.ylim([0,theta.max()]) plt.xlim([0,x[-1]]) if ylim: plt.ylim(ylim) plt.xlabel('Position') self.plotChromBorders(chromOffset) plt.legend() plt.grid() plt.title('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSize); self.pdf.savefig(fig);self.fignumber+=1 def plotSpectrum(self,spectrum,title): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() index, bar_width = spectrum.index.values,0.2 for i in range(spectrum.shape[1]): plt.bar(index + i*bar_width, spectrum.icol(i).values, bar_width, color=mpl.cm.jet(1.*i/spectrum.shape[1]), label=spectrum.columns[i]) plt.xlabel('Allele') ;plt.xticks(index + 3*bar_width, index) ;plt.legend(); plt.title('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSize); self.pdf.savefig(fig);self.fignumber+=1 def subsample(self,decay): w=100 r=np.arange(0,10000,w) r[0]=1 for s in r: decay.loc[s:s+w,'meanRho2']=np.mean(decay.iloc[s:s+w].meanRho2.values) decay.loc[s:s+w,'l']=np.mean(decay.iloc[s:s+w].l.values) return decay.iloc[r[:-1]+w/2] def plotDecay(self,decay,title): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() decay=self.subsample(decay.copy()) plt.plot(decay.index,decay.meanRho2); plt.xlabel('Distance (BP)'); plt.ylabel(r'$\rho^2$'); plt.xlim([-100,decay.meanRho2.index.max()]);plt.grid(); plt.title('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSize); self.pdf.savefig(fig);self.fignumber+=1 def getPvalTitle(self,p): if p>=0: title= ' larger than {} '.format(p) else: title= ' less than {} '.format(-p) if not p: title+='(all)' if p==1: title+='(exactly at HWE)' return title def plot(self,param): hw=pd.read_pickle(param['outpath'] +'meta.df') spectrum=pd.read_pickle(param['outpath'] +'afs.df') SNP=pd.read_pickle(param['outpath'] +'snp.df') SNP.loc['Reference0']=np.zeros(SNP.shape[1],dtype=int) foldedSpec=self.getFoldedSpectrum(spectrum.copy()) NumSeg=SNP.shape[1] mu=NumSeg/(2*numGenerations*numBP) theta=pd.read_pickle(param['outpath'] +'theta.df') chromOffset= Data.getChromOffset(theta) x= chromOffset.loc[theta[theta.parameter=='Theta']['#CHROM'].values].values +theta[theta.parameter=='Theta'].start.values +param['windowSize']/2 theta, pi, pis,pin, S, tajimaD = theta[theta.parameter=='Theta'].estimate.values, theta[theta.parameter=='Pi'].estimate.values, theta[theta.parameter=='PiS'].estimate.values, theta[theta.parameter=='PiN'].estimate.values, theta[theta.parameter=='S'].estimate.values, theta[theta.parameter=='TajimaD'].estimate.fillna(0).values Ne,thetaBar=theta/(np.log(11)*mu*2*param['windowSize']),np.mean(theta)/param['windowSize'] # self.plotPval(hw, r'HW: {} sites with pval {} are used in this analysis.'.format(sum(hw.pval>=param['HWcutoff']), self.getPvalTitle(param['HWcutoff']))) if param['filter']=='homo': PCAD=self.plotGenotype(hw,SNP, r'Genotypes of {} variants ({})'.format(NumSeg, ('All','Filtered by Elizabeth paper')[param['dsname']=='winzeler'] )) self.plotGeometry(SNP,PCAD, 'Geometry of Haplotypes') self.plotSpectrum(spectrum/spectrum.sum(), r'Allele Spectrum Frequency ($\xi_i$) of {} sites'.format(SNP.shape[1])) self.plotSpectrum(pd.DataFrame(spectrum.SYNONYMOUS/spectrum.NONSYNONYMOUS,columns=['SYNONYMOUS/NONSYNONYMOUS']), 'Ratio Between Syn and Nonsyn') spectrum=spectrum.apply(lambda x: x*spectrum.index.values, axis=0) self.plotSpectrum(spectrum/spectrum.sum(), r'Scaled Allele Spectrum Frequency ($i\xi_i$)') # self.plotSpectrum(foldedSpec, 'Folded Allele Spectrum Counts') self.plotSpectrum(foldedSpec/foldedSpec.sum(), r'Folded Allele Spectrum Frequency ($\xi_i$)') # foldedSpec=foldedSpec.apply(lambda x: x*foldedSpec.index.values, axis=0) # self.plotSpectrum(foldedSpec/foldedSpec.sum() , r'Scaled Folded Allele Spectrum Frequency ($i\xi_i \propto \theta$)') # self.plotTajima(tajimaD, pi) # if param['filter']=='homo': # decay=pd.read_pickle(param['outpath'] +'decay.df') # rho=pd.read_pickle(param['outpath'] +'rho.df') # self.plotDecay(decay,r'(Average on the Genome) Decay of $\rho^2$ relative to examining site') # self.plotOne(rho.POSGlobal.values, [rho.rho.values], r'$\rho^2$', r'$\rho^2$ for all {} sites. (for each site avereged over windowSize=3k)'.format(NumSeg), chromOffset) # # self.plotOne(x, [S,pi,pis,pin, theta], [r'$S_n$',r'$\pi$',r'$\pi_S$',r'$\pi_N$',r'$\theta$'], title=r'Scaled Mutation Rate Estimates for Window size of {}'.format( param['windowSize']), chromOffset=chromOffset, ylim=[0,50]) # self.plotOne(x, [tajimaD], [r'$D$'], title='Tajimas D for Window size of {}'.format( param['windowSize']), chromOffset=chromOffset) # self.plotOne(x, [Ne], [r'$N_e$'], title=r'$ N_e = \frac{\theta}{2\mu}$ Estimates for windowSize='+'{}'.format( param['windowSize'] ) + r' ($\mu=\frac{S}{2t\ell}$='+'{:.1e}, $S=${}, $t$={:.0e}, $\ell$={:.0e})'.format(mu,NumSeg,numGenerations,numBP) +r'($\bar\theta$={:.0e}'.format(thetaBar) + r'$\Rightarrow \bar N_e$={:.0e})'.format(thetaBar/(2*mu) ), chromOffset=chromOffset,ylim=[0,50000]) self.pdf.close() def plotGenotype(self,hw,SNP,title): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() ax=fig.add_subplot(1, 2, 1, projection='3d') ax.view_init(elev=48, azim=134) pca = decomposition.PCA(n_components=3) pca.fit(SNP.values) X = pca.transform(SNP.values) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=map(lambda x: int(re.search(r'\d+', x).group()), SNP.index), cmap=plt.cm.spectral, s=100*np.ones(12)) for i in range(SNP.shape[0]): ax.text3D(X[i, 0]+ 5, X[i, 1] , X[i, 2], SNP.index.values[i].replace('mdio',''),horizontalalignment='center',bbox=dict(alpha=.2, edgecolor='w', facecolor='w'),fontsize=20) ax.set_xlabel('Principle Component 1'); ax.set_ylabel('Principle Component 2');ax.set_zlabel('Principle Component 3');plt.title('Representation via PCA') D=pd.DataFrame(None,index=SNP.index,columns=SNP.index) for i,iname in enumerate(SNP.index): for j,jname in enumerate(SNP.index): D.loc[iname,jname]= np.linalg.norm(X[i,:]-X[j,:]) # pd.Series.plot(hw[['0/0','0/1','0/2','1/1','1/2','2/2']].sum(),kind='bar',color=[mpl.cm.jet(1.*i/6) for i in range(6)],title='All Genotype') plt.subplot(1,2,0) a=hw[['0/0','0/1','1/1']] pd.Series.plot(a[(a.icol(0)!=6 )&(a.icol(2)!=6 )].sum(),kind='bar',color=[mpl.cm.jet(1.*i/3) for i in range(3)],title='Bi-allelic Genptype (only polymorphyic sites)') plt.suptitle('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSizeSup); self.pdf.savefig(fig);self.fignumber+=1 return D def plotTajima(self,tajimaD,pi): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() plt.subplot(1,2,1) plt.hist(pi, bins=50, normed=True) plt.title('$\pi$') plt.subplot(1,2,0) plt.hist(tajimaD, bins=50, normed=True) plt.title('Tajima D') plt.suptitle('Figure {}. {}'.format(self.fignumber, 'Histogram of Tajima Statistics'),fontsize=self.titleSizeSup); self.pdf.savefig(fig);self.fignumber+=1 def plotPval(self,meta,title): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() plt.subplot(1,2,1) pd.Series.plot(meta.f.round(2).value_counts().sort_index(),kind='bar',color=[mpl.cm.jet(1.*i/meta.f.value_counts().shape[0]) for i in range(meta.f.value_counts().shape[0])],title=r'$F$ Inbreeding (Negative F = Deficit of Homozygotes! )') plt.xlabel(r'$F$'); plt.ylabel('Number of Sites') plt.subplot(1,2,0) pd.Series.plot(meta.pval.round(2).value_counts().sort_index(),kind='bar',color=[mpl.cm.jet(1.*i/meta.pval.value_counts().shape[0]) for i in range(meta.pval.value_counts().shape[0])],title=r'$\mathcal{X}^2$ p-value of HWE') plt.xlabel(r'P=value'); plt.ylabel('Number of Sites') plt.suptitle('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSizeSup); self.pdf.savefig(fig);self.fignumber+=1 def plotChromBorders(self,chromOffset): min_y,max_y=plt.ylim() ypos=max_y - (max_y-min_y)*0.1 for k,v in chromOffset.iteritems(): plt.plot([v ,v],[min_y,max_y],'k-.',lw=1) if k != chromOffset.index.max() : plt.annotate('CH{}'.format(k),xy=(v, ypos) ) plt.xticks(chromOffset.values) def getFoldedSpectrum(self,spectrum): for i in range(1,spectrum.shape[0]/2+1): spectrum.loc[i]+=spectrum.loc[spectrum.index.max() +1 - i] spectrum=spectrum.iloc[:spectrum.shape[0]/2+1] return spectrum def plotGeometry(self,SNP,PCAD,title): fig=plt.figure(figsize=self.figsize, dpi=self.dpi);plt.ioff() SNP.loc['Reference0']=np.zeros(SNP.shape[1],dtype=int) plt.subplot(1,2,1) D=pd.DataFrame(None,index=SNP.index,columns=SNP.index) for i in SNP.index: for j in SNP.index: D.loc[i,j]= sum(np.logical_xor(SNP.loc[i],SNP.loc[j])) D=D.astype(float) im=plt.imshow(D,interpolation='nearest',cmap='Reds') plt.gca().xaxis.tick_top() x=np.arange(D.index.shape[0]) plt.yticks(x,map(lambda x: x.replace('mdio','') ,D.index.values)) plt.xticks(x,map(lambda x: x.replace('mdio','') ,D.columns)) plt.colorbar(im) plt.gca().tick_params(axis='both', which='major', labelsize=10) plt.title('Pairwise Hamming Distance',y=1.03) plt.subplot(1,2,0) D=PCAD.astype(float) im=plt.imshow(D,interpolation='nearest',cmap='Reds') plt.gca().xaxis.tick_top() x=np.arange(D.index.shape[0]) plt.yticks(x,map(lambda x: x.replace('mdio','') ,D.index.values)) plt.xticks(x,map(lambda x: x.replace('mdio','') ,D.columns)) plt.colorbar(im) plt.gca().tick_params(axis='both', which='major', labelsize=10) plt.title('Euclidean Distance in PC3',y=1.03) plt.suptitle('Figure {}. {}'.format(self.fignumber, title),fontsize=self.titleSizeSup); self.pdf.savefig(fig);self.fignumber+=1 def figureWithMargin(self): plt.figure(figsize=(10,20));plt.axes([0.0, 0.0, 1, 0.7]);plt.plot(np.random.rand(2));
mit
xavierwu/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
Dih5/xpecgen
xpecgen/xpecgen.py
1
33042
#!/usr/bin/env python # -*- coding: UTF-8 -*- """xpecgen.py: A module to calculate x-ray spectra generated in tungsten anodes.""" from __future__ import print_function import math from bisect import bisect_left import os from glob import glob import warnings import csv import numpy as np from scipy import interpolate, integrate, optimize import xlsxwriter try: import matplotlib.pyplot as plt plt.ion() plot_available = True except ImportError: warnings.warn("Unable to import matplotlib. Plotting will be disabled.") plot_available = False __author__ = 'Dih5' __version__ = "1.3.0" data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") # --------------------General purpose functions-------------------------# def log_interp_1d(xx, yy, kind='linear'): """ Perform interpolation in log-log scale. Args: xx (List[float]): x-coordinates of the points. yy (List[float]): y-coordinates of the points. kind (str or int, optional): The kind of interpolation in the log-log domain. This is passed to scipy.interpolate.interp1d. Returns: A function whose call method uses interpolation in log-log scale to find the value at a given point. """ log_x = np.log(xx) log_y = np.log(yy) # No big difference in efficiency was found when replacing interp1d by # UnivariateSpline lin_interp = interpolate.interp1d(log_x, log_y, kind=kind) return lambda zz: np.exp(lin_interp(np.log(zz))) # This custom implementation of dblquad is based in the one in numpy # (Cf. https://github.com/scipy/scipy/blob/v0.16.1/scipy/integrate/quadpack.py#L449 ) # It was modified to work only in rectangular regions (no g(x) nor h(x)) # to set the inner integral epsrel # and to increase the limit of points taken def _infunc(x, func, c, d, more_args, epsrel): myargs = (x,) + more_args return integrate.quad(func, c, d, args=myargs, epsrel=epsrel, limit=2000)[0] def custom_dblquad(func, a, b, c, d, args=(), epsabs=1.49e-8, epsrel=1.49e-8, maxp1=50, limit=2000): """ A wrapper around numpy's dblquad to restrict it to a rectangular region and to pass arguments to the 'inner' integral. Args: func: The integrand function f(y,x). a (float): The lower bound of the second argument in the integrand function. b (float): The upper bound of the second argument in the integrand function. c (float): The lower bound of the first argument in the integrand function. d (float): The upper bound of the first argument in the integrand function. args (sequence, optional): extra arguments to pass to func. epsabs (float, optional): Absolute tolerance passed directly to the inner 1-D quadrature integration. epsrel (float, optional): Relative tolerance of the inner 1-D integrals. Default is 1.49e-8. maxp1 (float or int, optional): An upper bound on the number of Chebyshev moments. limit (int, optional): Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting and an infinite end-point. Returns: (tuple): tuple containing: y (float): The resultant integral. abserr (float): An estimate of the error. """ return integrate.quad(_infunc, a, b, (func, c, d, args, epsrel), epsabs=epsabs, epsrel=epsrel, maxp1=maxp1, limit=limit) def triangle(x, loc=0, size=0.5, area=1): """ The triangle window function centered in loc, of given size and area, evaluated at a point. Args: x: The point where the function is evaluated. loc: The position of the peak. size: The total. area: The area below the function. Returns: The value of the function. """ # t=abs((x-loc)/size) # return 0 if t>1 else (1-t)*abs(area/size) return 0 if abs((x - loc) / size) > 1 else (1 - abs((x - loc) / size)) * abs(area / size) # --------------------Spectrum model functionality----------------------# class Spectrum: """ Set of 2D points and discrete components representing a spectrum. A Spectrum can be multiplied by a scalar (int, float...) to increase its counts in such a factor. Two spectra can be added if they share their x axes and their discrete component positions. Note: When two spectrum are added it is not checked it that addition makes sense. It is the user's responsibility to do so. Attributes: x (:obj:`numpy.ndarray`): x coordinates (energy) describing the continuum part of the spectrum. y (:obj:`numpy.ndarray`): y coordinates (pdf) describing the continuum part of the spectrum. discrete (List[List[float]]): discrete components of the spectrum, each of the form [x, num, rel_x] where: * x is the mean position of the peak. * num is the number of particles in the peak. * rel_x is a characteristic distance where it should extend. The exact meaning depends on the windows function. """ def __init__(self): """ Create an empty spectrum. """ self.x = [] self.y = [] self.discrete = [] def clone(self): """ Return a new Spectrum object cloning itself Returns: :obj:`Spectrum`: The new Spectrum. """ s = Spectrum() s.x = list(self.x) s.y = self.y[:] s.discrete = [] for a in self.discrete: s.discrete.append(a[:]) return s def get_continuous_function(self): """ Get a function representing the continuous part of the spectrum. Returns: An interpolation function representing the continuous part of the spectrum. """ return interpolate.interp1d(self.x, self.y, bounds_error=False, fill_value=0) def get_points(self, peak_shape=triangle, num_discrete=10): """ Returns two lists of coordinates x y representing the whole spectrum, both the continuous and discrete components. The mesh is chosen by extending x to include details of the discrete peaks. Args: peak_shape: The window function used to calculate the peaks. See :obj:`triangle` for an example. num_discrete: Number of points that are added to mesh in each peak. Returns: (tuple): tuple containing: x2 (List[float]): The list of x coordinates (energy) in the whole spectrum. y2 (List[float]): The list of y coordinates (density) in the whole spectrum. """ if peak_shape is None or self.discrete == []: return self.x[:], self.y[:] # A mesh for each discrete component: discrete_mesh = np.concatenate(list(map(lambda x: np.linspace( x[0] - x[2], x[0] + x[2], num=num_discrete, endpoint=True), self.discrete))) x2 = sorted(np.concatenate((discrete_mesh, self.x))) f = self.get_continuous_function() peak = np.vectorize(peak_shape) def g(x): t = 0 for l in self.discrete: t += peak(x, loc=l[0], size=l[2]) * l[1] return t y2 = [f(x) + g(x) for x in x2] return x2, y2 def get_plot(self, place, show_mesh=True, prepare_format=True, peak_shape=triangle): """ Prepare a plot of the data in the given place Args: place: The class whose method plot is called to produce the plot (e.g., matplotlib.pyplot). show_mesh (bool): Whether to plot the points over the continuous line as circles. prepare_format (bool): Whether to include ticks and labels in the plot. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. """ if prepare_format: place.tick_params(axis='both', which='major', labelsize=10) place.tick_params(axis='both', which='minor', labelsize=8) place.set_xlabel('E', fontsize=10, fontweight='bold') place.set_ylabel('f(E)', fontsize=10, fontweight='bold') x2, y2 = self.get_points(peak_shape=peak_shape) if show_mesh: place.plot(self.x, self.y, 'bo', x2, y2, 'b-') else: place.plot(x2, y2, 'b-') def show_plot(self, show_mesh=True, block=True): """ Prepare the plot of the data and show it in matplotlib window. Args: show_mesh (bool): Whether to plot the points over the continuous line as circles. block (bool): Whether the plot is blocking or non blocking. """ if plot_available: plt.clf() self.get_plot(plt, show_mesh=show_mesh, prepare_format=False) plt.xlabel("E") plt.ylabel("f(E)") plt.gcf().canvas.set_window_title("".join(('xpecgen v', __version__))) plt.show(block=block) else: warnings.warn("Asked for a plot but matplotlib could not be imported.") def export_csv(self, route="a.csv", peak_shape=triangle, transpose=False): """ Export the data to a csv file (comma-separated values). Args: route (str): The route where the file will be saved. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. transpose (bool): True to write in two columns, False in two rows. """ x2, y2 = self.get_points(peak_shape=peak_shape) with open(route, 'w') as csvfile: w = csv.writer(csvfile, dialect='excel') if transpose: w.writerows([list(a) for a in zip(*[x2, y2])]) else: w.writerow(x2) w.writerow(y2) def export_xlsx(self, route="a.xlsx", peak_shape=triangle, markers=False): """ Export the data to a xlsx file (Excel format). Args: route (str): The route where the file will be saved. peak_shape: The window function used to plot the peaks. See :obj:`triangle` for an example. markers (bool): Whether to use markers or a continuous line in the plot in the file. """ x2, y2 = self.get_points(peak_shape=peak_shape) workbook = xlsxwriter.Workbook(route) worksheet = workbook.add_worksheet() bold = workbook.add_format({'bold': 1}) worksheet.write(0, 0, "Energy (keV)", bold) worksheet.write(0, 1, "Photon density (1/keV)", bold) worksheet.write_column('A2', x2) worksheet.write_column('B2', y2) # Add a plot if markers: chart = workbook.add_chart( {'type': 'scatter', 'subtype': 'straight_with_markers'}) else: chart = workbook.add_chart( {'type': 'scatter', 'subtype': 'straight'}) chart.add_series({ 'name': '=Sheet1!$B$1', 'categories': '=Sheet1!$A$2:$A$' + str(len(x2) + 1), 'values': '=Sheet1!$B$2:$B$' + str(len(y2) + 1), }) chart.set_title({'name': 'Emission spectrum'}) chart.set_x_axis( {'name': 'Energy (keV)', 'min': 0, 'max': str(x2[-1])}) chart.set_y_axis({'name': 'Photon density (1/keV)'}) chart.set_legend({'position': 'none'}) chart.set_style(11) worksheet.insert_chart('D3', chart, {'x_offset': 25, 'y_offset': 10}) workbook.close() def get_norm(self, weight=None): """ Return the norm of the spectrum using a weighting function. Args: weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] Returns: (float): The calculated norm. """ if weight is None: w = lambda x: 1 else: w = weight y2 = list(map(lambda x, y: w(x) * y, self.x, self.y)) return integrate.simps(y2, x=self.x) + sum([w(a[0]) * a[1] for a in self.discrete]) def set_norm(self, value=1, weight=None): """ Set the norm of the spectrum using a weighting function. Args: value (float): The norm of the modified spectrum in the given convention. weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] """ norm = self.get_norm(weight=weight) / value self.y = [a / norm for a in self.y] self.discrete = [[a[0], a[1] / norm, a[2]] for a in self.discrete] def hvl(self, value=0.5, weight=lambda x: 1, mu=lambda x: 1, energy_min=0): """ Calculate a generalized half-value-layer. This method calculates the depth of a material needed for a certain dosimetric magnitude to decrease in a given factor. Args: value (float): The factor the desired magnitude is decreased. Must be in [0, 1]. weight: A function used as a weight to calculate the norm. Typical examples are: * weight(E)=1 [Photon number] * weight(E)=E [Energy] * weight(E)=fluence2Dose(E) [Dose] mu: The energy absorption coefficient as a function of energy. energy_min (float): A low-energy cutoff to use in the calculation. Returns: (float): The generalized hvl in cm. """ # TODO: (?) Cut characteristic if below cutoff. However, such a high cutoff # would probably make no sense # Use low-energy cutoff low_index = bisect_left(self.x, energy_min) x = self.x[low_index:] y = self.y[low_index:] # Normalize to 1 with weighting function y2 = list(map(lambda a, b: weight(a) * b, x, y)) discrete2 = [weight(a[0]) * a[1] for a in self.discrete] n2 = integrate.simps(y2, x=x) + sum(discrete2) y3 = [a / n2 for a in y2] discrete3 = [[a[0], weight(a[0]) * a[1] / n2] for a in self.discrete] # Now we only need to add attenuation as a function of depth f = lambda t: integrate.simps(list(map(lambda a, b: b * math.exp(-mu(a) * t), x, y3)), x=x) + sum( [c[1] * math.exp(-mu(c[0]) * t) for c in discrete3]) - value # Search the order of magnitude of the root (using the fact that f is # monotonically decreasing) a = 1.0 if f(a) > 0: while f(a) > 0: a *= 10.0 # Now f(a)<=0 and f(a*0.1)>0 return optimize.brentq(f, a * 0.1, a) else: while f(a) < 0: a *= 0.1 # Now f(a)>=0 and f(a*10)<0 return optimize.brentq(f, a, a * 10.0) def attenuate(self, depth=1, mu=lambda x: 1): """ Attenuate the spectrum as if it passed thorough a given depth of material with attenuation described by a given attenuation coefficient. Consistent units should be used. Args: depth: The amount of material (typically in cm). mu: The energy-dependent absorption coefficient (typically in cm^-1). """ self.y = list( map(lambda x, y: y * math.exp(-mu(x) * depth), self.x, self.y)) self.discrete = list( map(lambda l: [l[0], l[1] * math.exp(-mu(l[0]) * depth), l[2]], self.discrete)) def __add__(self, other): """Add two instances, assuming that makes sense.""" if not isinstance(other, Spectrum): # so s+0=s and sum([s1, s2,...]) makes sense return self s = Spectrum() s.x = self.x s.y = [a + b for a, b in zip(self.y, other.y)] s.discrete = [[a[0], a[1] + b[1], a[2]] for a, b in zip(self.discrete, other.discrete)] return s def __radd__(self, other): return self.__add__(other) def __mul__(self, other): """Multiply the counts by an scalar.""" s2 = self.clone() s2.y = [a * other for a in self.y] s2.discrete = [[a[0], a[1] * other, a[2]] for a in self.discrete] return s2 def __rmul__(self, other): return self.__mul__(other) # --------------------Spectrum calculation functionality----------------# def get_fluence(e_0=100.0): """ Returns a function representing the electron fluence with the distance in CSDA units. Args: e_0 (float): The kinetic energy whose CSDA range is used to scale the distances. Returns: A function representing fluence(x,u) with x in CSDA units. """ # List of available energies e0_str_list = list(map(lambda x: (os.path.split(x)[1]).split(".csv")[ 0], glob(os.path.join(data_path, "fluence", "*.csv")))) e0_list = sorted(list(map(int, list(filter(str.isdigit, e0_str_list))))) e_closest = min(e0_list, key=lambda x: abs(x - e_0)) with open(os.path.join(data_path, "fluence/grid.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = np.array([float(a) for a in t[0].split(",")]) t = next(r) u = np.array([float(a) for a in t[0].split(",")]) t = [] with open(os.path.join(data_path, "fluence", "".join([str(e_closest), ".csv"])), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row in r: t.append([float(a) for a in row[0].split(",")]) t = np.array(t) f = interpolate.RectBivariateSpline(x, u, t, kx=1, ky=1) # Note f is returning numpy 1x1 arrays return f # return lambda x,u:f(x,u)[0] def get_cs(e_0=100, z=74): """ Returns a function representing the scaled bremsstrahlung cross_section. Args: e_0 (float): The electron kinetic energy, used to scale u=e_e/e_0. z (int): Atomic number of the material. Returns: A function representing cross_section(e_g,u) in mb/keV, with e_g in keV. """ # NOTE: Data is given for E0>1keV. CS values below this level should be used with caution. # The default behaviour is to keep it constant with open(os.path.join(data_path, "cs/grid.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) e_e = np.array([float(a) for a in t[0].split(",")]) log_e_e = np.log10(e_e) t = next(r) k = np.array([float(a) for a in t[0].split(",")]) t = [] with open(os.path.join(data_path, "cs/%d.csv" % z), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row in r: t.append([float(a) for a in row[0].split(",")]) t = np.array(t) scaled = interpolate.RectBivariateSpline(log_e_e, k, t, kx=3, ky=1) m_electron = 511 z2 = z * z return lambda e_g, u: (u * e_0 + m_electron) ** 2 * z2 / (u * e_0 * e_g * (u * e_0 + 2 * m_electron)) * ( scaled(np.log10(u * e_0), e_g / (u * e_0))) def get_mu(z=74): """ Returns a function representing an energy-dependent attenuation coefficient. Args: z (int or str): The identifier of the material in the data folder, typically the atomic number. Returns: The attenuation coefficient mu(E) in cm^-1 as a function of the energy measured in keV. """ with open(os.path.join(data_path, "mu", "".join([str(z), ".csv"])), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return log_interp_1d(x, y) def get_csda(z=74): """ Returns a function representing the CSDA range in tungsten. Args: z (int): Atomic number of the material. Returns: The CSDA range in cm in tungsten as a function of the electron kinetic energy in keV. """ with open(os.path.join(data_path, "csda/%d.csv" % z), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return interpolate.interp1d(x, y, kind='linear') def get_mu_csda(e_0, z=74): """ Returns a function representing the CSDA-scaled energy-dependent attenuation coefficient in tungsten. Args: e_0 (float): The electron initial kinetic energy. z (int): Atomic number of the material. Returns: The attenuation coefficient mu(E) in CSDA units as a function of the energy measured in keV. """ mu = get_mu(z) csda = get_csda(z=z)(e_0) return lambda e: mu(e) * csda def get_fluence_to_dose(): """ Returns a function representing the weighting factor which converts fluence to dose. Returns: A function representing the weighting factor which converts fluence to dose in Gy * cm^2. """ with open(os.path.join(data_path, "fluence2dose/f2d.csv"), 'r') as csvfile: r = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) t = next(r) x = [float(a) for a in t[0].split(",")] t = next(r) y = [float(a) for a in t[0].split(",")] return interpolate.interp1d(x, y, kind='linear') def get_source_function(fluence, cs, mu, theta, e_g, phi=0.0): """ Returns the attenuated source function (Eq. 2 in the paper) for the given parameters. An E_0-dependent factor (the fraction found there) is excluded. However, the E_0 dependence is removed in integrate_source. Args: fluence: The function representing the fluence. cs: The function representing the bremsstrahlung cross-section. mu: The function representing the attenuation coefficient. theta (float): The emission angle in degrees, the anode's normal being at 90º. e_g (float): The emitted photon energy in keV. phi (float): The elevation angle in degrees, the anode's normal being at 12º. Returns: The attenuated source function s(u,x). """ factor = -mu(e_g) / math.sin(math.radians(theta)) / math.cos(math.radians(phi)) return lambda u, x: fluence(x, u) * cs(e_g, u) * math.exp(factor * x) def integrate_source(fluence, cs, mu, theta, e_g, e_0, phi=0.0, x_min=0.0, x_max=0.6, epsrel=0.1, z=74): """ Find the integral of the attenuated source function. An E_0-independent factor is excluded (i.e., the E_0 dependence on get_source_function is taken into account here). Args: fluence: The function representing the fluence. cs: The function representing the bremsstrahlung cross-section. mu: The function representing the attenuation coefficient. theta (float): The emission angle in degrees, the anode's normal being at 90º. e_g: (float): The emitted photon energy in keV. e_0 (float): The electron initial kinetic energy. phi (float): The elevation angle in degrees, the anode's normal being at 12º. x_min: The lower-bound of the integral in depth, scaled by the CSDA range. x_max: The upper-bound of the integral in depth, scaled by the CSDA range. epsrel: The relative tolerance of the integral. z (int): Atomic number of the material. Returns: float: The value of the integral. """ if e_g >= e_0: return 0 f = get_source_function(fluence, cs, mu, theta, e_g, phi=phi) (y, y_err) = custom_dblquad(f, x_min, x_max, e_g / e_0, 1, epsrel=epsrel, limit=100) # The factor includes n_med, its units being 1/(mb * r_CSDA). We only take into account the r_CSDA dependence. y *= get_csda(z=z)(e_0) return y def add_char_radiation(s, method="fraction_above_poly"): """ Adds characteristic radiation to a calculated bremsstrahlung spectrum, assuming it is a tungsten-generated spectrum If a discrete component already exists in the spectrum, it is replaced. Args: s (:obj:`Spectrum`): The spectrum whose discrete component is recalculated. method (str): The method to use to calculate the discrete component. Available methods include: * 'fraction_above_linear': Use a linear relation between bremsstrahlung above the K-edge and peaks. * 'fraction_above_poly': Use polynomial fits between bremsstrahlung above the K-edge and peaks. """ s.discrete = [] if s.x[-1] < 69.51: # If under k edge, no char radiation return f = s.get_continuous_function() norm = integrate.quad(f, s.x[0], s.x[-1], limit=2000)[0] fraction_above = integrate.quad(f, 74, s.x[-1], limit=2000)[0] / norm if method == "fraction_above_linear": s.discrete.append([58.65, 0.1639 * fraction_above * norm, 1]) s.discrete.append([67.244, 0.03628 * fraction_above * norm, 1]) s.discrete.append([69.067, 0.01410 * fraction_above * norm, 1]) else: if method != "fraction_above_poly": print( "WARNING: Unknown char radiation calculation method. Using fraction_above_poly") s.discrete.append([58.65, (0.1912 * fraction_above - 0.00615 * fraction_above ** 2 - 0.1279 * fraction_above ** 3) * norm, 1]) s.discrete.append([67.244, (0.04239 * fraction_above + 0.002003 * fraction_above ** 2 - 0.02356 * fraction_above ** 3) * norm, 1]) s.discrete.append([69.067, (0.01437 * fraction_above + 0.002346 * fraction_above ** 2 - 0.009332 * fraction_above ** 3) * norm, 1]) return def console_monitor(a, b): """ Simple monitor function which can be used with :obj:`calculate_spectrum`. Prints in stdout 'a/b'. Args: a: An object representing the completed amount (e.g., a number representing a part...). b: An object representing the total amount (... of a number representing a total). """ print("Calculation: ", a, "/", b) def calculate_spectrum_mesh(e_0, theta, mesh, phi=0.0, epsrel=0.2, monitor=console_monitor, z=74): """ Calculates the x-ray spectrum for given parameters. Characteristic peaks are also calculated by add_char_radiation, which is called with the default parameters. Args: e_0 (float): Electron kinetic energy in keV theta (float): X-ray emission angle in degrees, the normal being at 90º mesh (list of float or ndarray): The photon energies where the integral will be evaluated phi (float): X-ray emission elevation angle in degrees. epsrel (float): The tolerance parameter used in numeric integration. monitor: A function to be called after each iteration with arguments finished_count, total_count. See for example :obj:`console_monitor`. z (int): Atomic number of the material. Returns: :obj:`Spectrum`: The calculated spectrum """ # Prepare spectrum s = Spectrum() s.x = mesh mesh_len = len(mesh) # Prepare integrand function fluence = get_fluence(e_0) cs = get_cs(e_0, z=z) mu = get_mu_csda(e_0, z=z) # quad may raise warnings about the numerical integration method, # which are related to the estimated accuracy. Since this is not relevant, # they are suppressed. warnings.simplefilter("ignore") for i, e_g in enumerate(s.x): s.y.append(integrate_source(fluence, cs, mu, theta, e_g, e_0, phi=phi, epsrel=epsrel, z=z)) if monitor is not None: monitor(i + 1, mesh_len) if z == 74: add_char_radiation(s) return s def calculate_spectrum(e_0, theta, e_min, num_e, phi=0.0, epsrel=0.2, monitor=console_monitor, z=74): """ Calculates the x-ray spectrum for given parameters. Characteristic peaks are also calculated by add_char_radiation, which is called with the default parameters. Args: e_0 (float): Electron kinetic energy in keV theta (float): X-ray emission angle in degrees, the normal being at 90º e_min (float): Minimum kinetic energy to calculate in the spectrum in keV num_e (int): Number of points to calculate in the spectrum phi (float): X-ray emission elevation angle in degrees. epsrel (float): The tolerance parameter used in numeric integration. monitor: A function to be called after each iteration with arguments finished_count, total_count. See for example :obj:`console_monitor`. z (int): Atomic number of the material. Returns: :obj:`Spectrum`: The calculated spectrum """ return calculate_spectrum_mesh(e_0, theta, np.linspace(e_min, e_0, num=num_e, endpoint=True), phi=phi, epsrel=epsrel, monitor=monitor, z=z) def cli(): import argparse import sys parser = argparse.ArgumentParser(description='Calculate a bremsstrahlung spectrum.') parser.add_argument('e_0', metavar='E0', type=float, help='Electron kinetic energy in keV') parser.add_argument('theta', metavar='theta', type=float, default=12, help="X-ray emission angle in degrees, the anode's normal being at 90º.") parser.add_argument('--phi', metavar='phi', type=float, default=0, help="X-ray emission altitude in degrees, the anode's normal being at 0º.") parser.add_argument('--z', metavar='z', type=int, default=74, help="Atomic number of the material (characteristic radiation is only available for z=74).") parser.add_argument('--e_min', metavar='e_min', type=float, default=3.0, help="Minimum kinetic energy in keV in the bremsstrahlung calculation.") parser.add_argument('--n_points', metavar='n_points', type=int, default=50, help="Number of points used in the bremsstrahlung calculation.") parser.add_argument('--mesh', metavar='e_i', type=float, nargs='+', help="Energy mesh where the bremsstrahlung will be calculated. " "Overrides e_min and n_points parameters.") parser.add_argument('--epsrel', metavar='tolerance', type=float, default=0.5, help="Numerical tolerance in integration.") parser.add_argument('-o', '--output', metavar='path', type=str, help="Output file. Available formats are csv, xlsx, and pkl, selected by the file extension. " "pkl appends objects using the pickle module. Note you have to import the Spectrum class " " INTO THE NAMESPACE (e.g., from xpecgen.xpecgen import Spectrum) to load them. " "If this argument is not provided, points are written to the standard output and " "calculation monitor is not displayed.") parser.add_argument('--overwrite', action="store_true", help="If this flag is set and the output is a pkl file, overwrite its content instead of " "appending.") args = parser.parse_args() if args.output is not None: if "." not in args.output: print("Output file format unknown", file=sys.stderr) exit(-1) else: ext = args.output.split(".")[-1].lower() if ext not in ["csv", "xlsx", "pkl"]: print("Output file format unknown", file=sys.stderr) exit(-1) monitor = console_monitor else: monitor = None if args.mesh is None: mesh = np.linspace(args.e_min, args.e_0, num=args.n_points, endpoint=True) else: mesh = args.mesh s = calculate_spectrum_mesh(args.e_0, args.theta, mesh, phi=args.phi, epsrel=args.epsrel, monitor=monitor, z=args.z) x2, y2 = s.get_points() if args.output is None: [print("%.6g, %.6g" % (x, y)) for x, y in zip(x2, y2)] elif ext == "csv": s.export_csv(args.output) elif ext == "xlsx": s.export_xlsx(args.output) elif ext == "pkl": import pickle print(args.overwrite) if args.overwrite: mode = "wb" else: mode = "ab" with open(args.output, mode) as output: pickle.dump(s, output, pickle.HIGHEST_PROTOCOL) if __name__ == '__main__': cli()
gpl-3.0
rempferg/espresso
samples/python/visualization.py
4
6984
# # Copyright (C) 2013,2014,2015,2016 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from __future__ import print_function import espressomd._system as es import espressomd from espressomd import thermostat from espressomd import code_info from espressomd import integrate from espressomd import visualization import numpy from matplotlib import pyplot from threading import Thread print(""" ======================================================= = lj_liquid.py = ======================================================= Program Information:""") print(code_info.features()) dev = "cpu" # System parameters ############################################################# # 10 000 Particles box_l = 10.7437 density = 0.7 # Interaction parameters (repulsive Lennard Jones) ############################################################# lj_eps = 1.0 lj_sig = 1.0 lj_cut = 1.12246 lj_cap = 20 # Integration parameters ############################################################# system = espressomd.System() system.time_step = 0.001 system.skin = 0.4 #es._espressoHandle.Tcl_Eval('thermostat langevin 1.0 1.0') system.thermostat.set_langevin(kT=1.0, gamma=1.0) # warmup integration (with capped LJ potential) warm_steps = 100 warm_n_times = 30 # do the warmup until the particles have at least the distance min__dist min_dist = 0.9 # integration int_steps = 10 int_n_times = 50000 ############################################################# # Setup System # ############################################################# # Interaction setup ############################################################# system.box_l = [box_l, box_l, box_l] system.non_bonded_inter[0, 0].lennard_jones.set_params( epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto") system.non_bonded_inter.set_force_cap(lj_cap) print("LJ-parameters:") print(system.non_bonded_inter[0, 0].lennard_jones.get_params()) # Particle setup ############################################################# volume = box_l * box_l * box_l n_part = int(volume * density) for i in range(n_part): system.part.add(id=i, pos=numpy.random.random(3) * system.box_l) system.analysis.distto(0) print("Simulate {} particles in a cubic simulation box {} at density {}." .format(n_part, box_l, density).strip()) print("Interactions:\n") act_min_dist = system.analysis.mindist() print("Start with minimal distance {}".format(act_min_dist)) system.max_num_cells = 2744 #Switch between openGl/Mayavi visualizer = visualization.mayaviLive(system) #visualizer = visualization.openGLLive(system) ############################################################# # Warmup Integration # ############################################################# # open Observable file obs_file = open("pylj_liquid.obs", "w") obs_file.write("# Time\tE_tot\tE_kin\tE_pot\n") print(""" Start warmup integration: At maximum {} times {} steps Stop if minimal distance is larger than {} """.strip().format(warm_n_times, warm_steps, min_dist)) # set LJ cap lj_cap = 20 system.non_bonded_inter.set_force_cap(lj_cap) print(system.non_bonded_inter[0, 0].lennard_jones) # Warmup Integration Loop i = 0 while (i < warm_n_times and act_min_dist < min_dist): integrate.integrate(warm_steps) # Warmup criterion act_min_dist = system.analysis.mindist() # print("\rrun %d at time=%f (LJ cap=%f) min dist = %f\r" % (i,system.time,lj_cap,act_min_dist), end=' ') i += 1 # Increase LJ cap lj_cap = lj_cap + 10 system.non_bonded_inter.set_force_cap(lj_cap) visualizer.update() # Just to see what else we may get from the c code print(""" ro variables: cell_grid {0.cell_grid} cell_size {0.cell_size} local_box_l {0.local_box_l} max_cut {0.max_cut} max_part {0.max_part} max_range {0.max_range} max_skin {0.max_skin} n_nodes {0.n_nodes} n_part {0.n_part} n_part_types {0.n_part_types} periodicity {0.periodicity} transfer_rate {0.transfer_rate} verlet_reuse {0.verlet_reuse} """.format(system)) # write parameter file set_file = open("pylj_liquid.set", "w") set_file.write("box_l %s\ntime_step %s\nskin %s\n" % (box_l, system.time_step, system.skin)) ############################################################# # Integration # ############################################################# print("\nStart integration: run %d times %d steps" % (int_n_times, int_steps)) # remove force capping lj_cap = 0 system.non_bonded_inter.set_force_cap(lj_cap) print(system.non_bonded_inter[0, 0].lennard_jones) # print initial energies energies = system.analysis.energy() print(energies) plot, = pyplot.plot([0],[energies['total']], label="total") pyplot.xlabel("Time") pyplot.ylabel("Energy") pyplot.legend() pyplot.show(block=False) j = 0 def main_loop(): global energies print("run %d at time=%f " % (i, system.time)) integrate.integrate(int_steps) visualizer.update() energies = system.analysis.energy() print(energies) plot.set_xdata(numpy.append(plot.get_xdata(), system.time)) plot.set_ydata(numpy.append(plot.get_ydata(), energies['total'])) obs_file.write('{ time %s } %s\n' % (system.time, energies)) linear_momentum = system.analysis.analyze_linear_momentum() print(linear_momentum) def main_thread(): for i in range(0, int_n_times): main_loop() last_plotted = 0 def update_plot(): global last_plotted current_time = plot.get_xdata()[-1] if last_plotted == current_time: return last_plotted = current_time pyplot.xlim(0, plot.get_xdata()[-1]) pyplot.ylim(plot.get_ydata().min(), plot.get_ydata().max()) pyplot.draw() t = Thread(target=main_thread) t.daemon = True t.start() visualizer.registerCallback(update_plot, interval=2000) visualizer.start() # write end configuration end_file = open("pylj_liquid.end", "w") end_file.write("{ time %f } \n { box_l %f }\n" % (system.time, box_l)) end_file.write("{ particles {id pos type} }") for i in range(n_part): end_file.write("%s\n" % system.part[i].pos) # id & type not working yet obs_file.close() set_file.close() end_file.close() # terminate program print("\nFinished.")
gpl-3.0
uzh-rpg/rpg_svo
svo_analysis/src/svo_analysis/analyse_trajectory.py
17
8764
#!/usr/bin/python import os import yaml import argparse import numpy as np import matplotlib.pyplot as plt import svo_analysis.tum_benchmark_tools.associate as associate import vikit_py.transformations as transformations import vikit_py.align_trajectory as align_trajectory from matplotlib import rc rc('font',**{'family':'serif','serif':['Cardo']}) rc('text', usetex=True) def plot_translation_error(timestamps, translation_error, results_dir): fig = plt.figure(figsize=(8, 2.5)) ax = fig.add_subplot(111, xlabel='time [s]', ylabel='position drift [mm]', xlim=[0,timestamps[-1]-timestamps[0]+4]) ax.plot(timestamps-timestamps[0], translation_error[:,0]*1000, 'r-', label='x') ax.plot(timestamps-timestamps[0], translation_error[:,1]*1000, 'g-', label='y') ax.plot(timestamps-timestamps[0], translation_error[:,2]*1000, 'b-', label='z') ax.legend() fig.tight_layout() fig.savefig(results_dir+'/translation_error.pdf') def plot_rotation_error(timestamps, rotation_error, results_dir): fig = plt.figure(figsize=(8, 2.5)) ax = fig.add_subplot(111, xlabel='time [s]', ylabel='orientation drift [rad]', xlim=[0,timestamps[-1]-timestamps[0]+4]) ax.plot(timestamps-timestamps[0], rotation_error[:,0], 'r-', label='yaw') ax.plot(timestamps-timestamps[0], rotation_error[:,1], 'g-', label='pitch') ax.plot(timestamps-timestamps[0], rotation_error[:,2], 'b-', label='roll') ax.legend() fig.tight_layout() fig.savefig(results_dir+'/orientation_error.pdf') def analyse_synthetic_trajectory(results_dir): data = np.loadtxt(os.path.join(results_dir, 'translation_error.txt')) timestamps = data[:,0] translation_error = data[:,1:4] plot_translation_error(timestamps, translation_error, results_dir) # plot orientation error data = np.loadtxt(os.path.join(results_dir, 'orientation_error.txt')) timestamps = data[:,0] orientation_error = data[:,1:4] plot_rotation_error(timestamps, orientation_error, results_dir) def analyse_optitrack_trajectory_with_hand_eye_calib(results_dir, params, n_align_frames = 200): print('loading hand-eye-calib') T_cm_quat = np.array([params['hand_eye_calib']['Tcm_qx'], params['hand_eye_calib']['Tcm_qy'], params['hand_eye_calib']['Tcm_qz'], params['hand_eye_calib']['Tcm_qw']]) T_cm_tran = np.array([params['hand_eye_calib']['Tcm_tx'], params['hand_eye_calib']['Tcm_ty'], params['hand_eye_calib']['Tcm_tz']]) T_cm = get_rigid_body_trafo(T_cm_quat, T_cm_tran) T_mc = transformations.inverse_matrix(T_cm) t_es, p_es, q_es, t_gt, p_gt, q_gt = load_dataset(results_dir, params['cam_delay']) # align Sim3 to get scale print('align Sim3 using '+str(n_align_frames)+' first frames.') scale,rot,trans = align_trajectory.align_sim3(p_gt[0:n_align_frames,:], p_es[0:n_align_frames,:]) print 'scale = '+str(scale) # get trafo between (v)ision and (o)ptitrack frame print q_gt[0,:] print p_gt[0,:] T_om = get_rigid_body_trafo(q_gt[0,:], p_gt[0,:]) T_vc = get_rigid_body_trafo(q_es[0,:], scale*p_es[0,:]) T_cv = transformations.inverse_matrix(T_vc) T_ov = np.dot(T_om, np.dot(T_mc, T_cv)) print 'T_ov = ' + str(T_ov) # apply transformation to estimated trajectory q_es_aligned = np.zeros(np.shape(q_es)) rpy_es_aligned = np.zeros(np.shape(p_es)) rpy_gt = np.zeros(np.shape(p_es)) p_es_aligned = np.zeros(np.shape(p_es)) for i in range(np.shape(p_es)[0]): T_vc = get_rigid_body_trafo(q_es[i,:],p_es[i,:]) T_vc[0:3,3] *= scale T_om = np.dot(T_ov, np.dot(T_vc, T_cm)) p_es_aligned[i,:] = T_om[0:3,3] q_es_aligned[i,:] = transformations.quaternion_from_matrix(T_om) rpy_es_aligned[i,:] = transformations.euler_from_quaternion(q_es_aligned[i,:], 'rzyx') rpy_gt[i,:] = transformations.euler_from_quaternion(q_gt[i,:], 'rzyx') # plot position error (drift) translation_error = (p_gt-p_es_aligned) plot_translation_error(t_es, translation_error, results_dir) # plot orientation error (drift) orientation_error = (rpy_gt - rpy_es_aligned) plot_rotation_error(t_es, orientation_error, results_dir) # plot scale drift motion_gt = np.diff(p_gt, 0) motion_es = np.diff(p_es_aligned, 0) dist_gt = np.sqrt(np.sum(np.multiply(motion_gt,motion_gt),1)) dist_es = np.sqrt(np.sum(np.multiply(motion_es,motion_es),1)) fig = plt.figure(figsize=(8,2.5)) ax = fig.add_subplot(111, xlabel='time [s]', ylabel='scale change [\%]', xlim=[0,t_es[-1]+4]) scale_drift = np.divide(dist_es,dist_gt)*100-100 ax.plot(t_es, scale_drift, 'b-') fig.tight_layout() fig.savefig(results_dir+'/scale_drift.pdf') # plot trajectory fig = plt.figure() ax = fig.add_subplot(111, title='trajectory', aspect='equal', xlabel='x [m]', ylabel='y [m]') ax.plot(p_es_aligned[:,0], p_es_aligned[:,1], 'b-', label='estimate') ax.plot(p_gt[:,0], p_gt[:,1], 'r-', label='groundtruth') ax.plot(p_es_aligned[0:n_align_frames,0], p_es_aligned[0:n_align_frames,1], 'g-', linewidth=2, label='aligned') ax.legend() fig.tight_layout() fig.savefig(results_dir+'/trajectory.pdf') def analyse_trajectory(results_dir, n_align_frames = 200, use_hand_eye_calib = True): params = yaml.load(open(os.path.join(results_dir, 'dataset_params.yaml'),'r')) if params['dataset_is_blender']: analyse_synthetic_trajectory(results_dir) elif use_hand_eye_calib: analyse_optitrack_trajectory_with_hand_eye_calib(results_dir, params, n_align_frames) else: t_es, p_es, q_es, t_gt, p_gt, q_gt = load_dataset(results_dir, params['cam_delay']) scale,rot,trans = align_trajectory.align_sim3(p_gt[0:n_align_frames,:], p_es[0:n_align_frames,:]) p_es_aligned = np.zeros(np.shape(p_es)) for i in range(np.shape(p_es)[0]): p_es_aligned[i,:] = scale*rot.dot(p_es[i,:]) + trans # plot position error (drift) translation_error = (p_gt-p_es_aligned) plot_translation_error(t_es, translation_error, results_dir) def get_rigid_body_trafo(quat,trans): T = transformations.quaternion_matrix(quat) T[0:3,3] = trans return T def load_dataset(results_dir, cam_delay): print('loading dataset in '+results_dir) print('cam_delay = '+str(cam_delay)) data_gt = open(os.path.join(results_dir, 'groundtruth.txt')).read() lines = data_gt.replace(","," ").replace("\t"," ").split("\n") data_gt = np.array([[np.float(v.strip()) for i,v in enumerate(line.split(" ")) if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]) #data_gt = np.array([[np.float(v.strip()) for i,v in enumerate(line.split(" ")) if i != 1 and v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]) data_gt = [(float(l[0]),l[1:]) for l in data_gt] data_gt = dict(data_gt) data_es = open(os.path.join(results_dir, 'traj_estimate.txt')).read() lines = data_es.replace(","," ").replace("\t"," ").split("\n") data_es = np.array([[np.float(v.strip()) for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]) data_es = [(float(l[0]),l[1:]) for l in data_es] data_es = dict(data_es) matches = associate.associate(data_gt, data_es, -cam_delay, 0.02) p_gt = np.array([[np.float(value) for value in data_gt[a][0:3]] for a,b in matches]) q_gt = np.array([[np.float(value) for value in data_gt[a][3:7]] for a,b in matches]) p_es = np.array([[np.float(value) for value in data_es[b][0:3]] for a,b in matches]) q_es = np.array([[np.float(value) for value in data_es[b][3:7]] for a,b in matches]) t_gt = np.array([np.float(a) for a,b in matches]) t_es = np.array([np.float(b) for a,b in matches]) # set start time to zero start_time = min(t_es[0], t_gt[0]) t_es -= start_time t_gt -= start_time return t_es, p_es, q_es, t_gt, p_gt, q_gt if __name__ == '__main__': # parse command line parser = argparse.ArgumentParser(description=''' Analyse trajectory ''') parser.add_argument('results_dir', help='folder with the results') parser.add_argument('--use_hand_eye_calib', help='', action='store_true') parser.add_argument('--n_align_frames', help='', default=200) args = parser.parse_args() print('analyse trajectory for dataset: '+str(args.results_dir)) analyse_trajectory(args.results_dir, n_align_frames = int(args.n_align_frames), use_hand_eye_calib = args.use_hand_eye_calib)
gpl-3.0
manub686/atomix
r2cmplr/_program_analyzer.py
1
19361
''' Atomix project, _program_analyzer.py, (TODO: summary) Copyright (c) 2015 Stanford University Released under the Apache License v2.0. See the LICENSE file for details. Author(s): Manu Bansal ''' from _db import * from _codegen_write_out import * from _util import * from collections import Counter import networkx as nx import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt DELTA = 1e-9 class ProgramConstructor: #----------------------------- # construct the data flowgraph # (atoms, fifos and wires) #----------------------------- #add all atoms in the program as nodes of the dfg def add_atoms(self, ATOM_DB): self.logger.info("adding atoms") P = self.P for row in ATOM_DB: print row atom, block, core, inp_ports, out_ports = tuple(row) inp_ports_list = [] out_ports_list = [] if inp_ports: inp_ports_list = inp_ports.split(',') if out_ports: out_ports_list = out_ports.split(',') print atom, block, inp_ports_list, out_ports_list P.add_node(atom, block=block, inp_ports=inp_ports_list, out_ports=out_ports_list) atoms = [row[0] for row in ATOM_DB] self.atoms = atoms self.ATOM_DB = ATOM_DB #add all fifos in the program as nodes of the dfg def add_fifos(self, FIFO_DB): self.logger.info("adding fifos") P = self.P for row in FIFO_DB: #print row fifo, nbufs, fifotype, core = tuple(row) print fifo, nbufs, core P.add_node(fifo, nbufs=int(nbufs)) fifos = [row[0] for row in FIFO_DB] self.fifos = fifos self.FIFO_DB = FIFO_DB #add all wires as edges going between atoms and fifos in the dfg def add_wires(self, WIRE_DB): self.logger.info("adding wires") P = self.P self.edges = [] for row in WIRE_DB: print row (wired_atom, wired_fifos),(_, orig_wired_fifos) = tuple(row) print "wired_fifos =|%s|" % wired_fifos wired_fifos = wired_fifos.split(',') orig_wired_fifos = orig_wired_fifos.split(',') print "wired_fifos =|%s|" % wired_fifos atom = P.node[wired_atom] inp_ports = atom["inp_ports"] out_ports = atom["out_ports"] ninp = len(inp_ports) nout = len(out_ports) print inp_ports, out_ports, ninp, nout wired_inps = wired_fifos[0:ninp] wired_outs = wired_fifos[ninp:] orig_wired_inps = orig_wired_fifos[0:ninp] orig_wired_outs = orig_wired_fifos[ninp:] #print wired_atom, wired_fifos, atom #print wired_atom, wired_fifos, inp_ports, out_ports, "wired_inps:", wired_inps, "wired_outs:", wired_outs print wired_atom, "wired_inps:", wired_inps, "wired_outs:", wired_outs print wired_atom, "orig_wired_inps:", orig_wired_inps, "orig_wired_outs:", orig_wired_outs #if wired_atom == 'jumpToRxDataFinish1': # raw_input() #wired_inp_fifos = [P.node[fifo] for fifo in wired_inps] #wired_out_fifos = [P.node[fifo] for fifo in wired_outs] #inp_edges = [(fifo,atom) for fifo in wired_inp_fifos] #out_edges = [(atom,fifo) for fifo in wired_out_fifos] # if wired_fifos != orig_wired_fifos: # raw_input() inp_edges = [] inp_edges_weighted = [] if wired_inps != orig_wired_inps: for fifo, orig_fifo in zip(wired_inps, orig_wired_inps): #if orig_fifo.endswith(">"): #print fifo, orig_fifo #raw_input() if fifo != orig_fifo: op = orig_fifo[-1] print "op = ", op #raw_input() if op == "+" or op == "*": inp_edges.append((fifo,wired_atom,1)) inp_edges.append((wired_atom,fifo,1)) elif op == ">": inp_edges_weighted.append((fifo,wired_atom,0.5)) #print inp_edges_weighted #raw_input() elif op == "<": inp_edges_weighted.append((fifo,wired_atom,0.5)) elif op == ")": inp_edges_weighted.append((fifo,wired_atom,0.4)) elif op == "(": inp_edges_weighted.append((fifo,wired_atom,0.6)) elif op == "[": inp_edges_weighted.append((fifo,wired_atom,0.6)) inp_edges_weighted.append((wired_atom,fifo,1)) else: print "unhandled case" sys.exit(1) else: inp_edges.append((fifo,wired_atom,1)) else: inp_edges = [(fifo,wired_atom,1) for fifo in wired_inps] out_edges = [] out_edges_weighted = [] if wired_outs != orig_wired_outs: for fifo, orig_fifo in zip(wired_outs, orig_wired_outs): if fifo != orig_fifo: op = orig_fifo[-1] print "op = ", op if op == "+" or op == "*": out_edges.append((fifo,wired_atom,1)) out_edges.append((wired_atom,fifo,1)) elif op == ">": out_edges_weighted.append((wired_atom,fifo,0.5)) elif op == "<": out_edges_weighted.append((wired_atom,fifo,0.5)) elif op == ")": out_edges_weighted.append((wired_atom,fifo,0.4)) elif op == "(": out_edges_weighted.append((wired_atom,fifo,0.6)) else: print "unhandled case" sys.exit(1) else: out_edges.append((wired_atom,fifo,1)) else: out_edges = [(wired_atom,fifo,1) for fifo in wired_outs] edges = inp_edges + out_edges weighted_edges = inp_edges_weighted + out_edges_weighted edges += weighted_edges print edges ws = [w for u,v,w in edges] #if any([w != 1 for w in ws]): # raw_input() #P.add_edges_from(edges) #P.add_weighted_edges_from(edges) #P.add_weighted_edges_from(weighted_edges) P.add_weighted_edges_from(edges) #self.edges += edges #self.weighted_edges += weighted_edges self.WIRE_DB = WIRE_DB def add_conf(self, CONF_DB): for row in CONF_DB: print row self.CONF_DB = CONF_DB #--------------------------------- # construct the control flow graph # (actions and states) #--------------------------------- #for each state, collect actions (flowgraphs) and statep's belonging to same #state --> these are the nodes of the flowgraph graphs def add_actions(self, AXN_DB): self.logger.info("adding actions") #P = self.P #for row in AXN_DB: # print row self.AXN_DB = AXN_DB adb = AXN_DB adbd = {} adbd['noaxn'] = [] for row in adb: axn, atoms = tuple(row) adbd[axn] = atoms self.AXN_DB_DICT = adbd #list all states def add_states(self, STATE_DB, initStateName): self.logger.info("adding states") for state in STATE_DB: print state, STATE_DB[state] self.STATE_DB = STATE_DB self.initStateName = initStateName #--------------------------------- # analysis methods #--------------------------------- def analyze(self): self.find_dx_atoms() #self.find_action_subgraphs() #self.find_state_subgraphs() paths = [] ### TODO: move these out into a configuration file (maybe debug.txt) ### paths.append(['staRxPktInit', 'staRxLTFProc', 'staRxPktDetect', 'staRxPLCPDecodeSpec', 'staRxContinue', 'staRxFinish']) ### paths.append(['staRxPktInit', 'staRxLTFProc', 'staRxPktDetect', 'staRxPLCPDecodeSpec', 'staRxContinue', 'staRxFinish']) #### paths.append(['staRxPktInit', 'staRxLTFProc', 'staRxPktDetect', 'staRxPLCPDecodeSpec', 'staRxDataDecode54m_setup', \ #### 'staRxDataDecode54m_c', 'staRxDataDecode54m_H', 'staRxDataDecode54m_Mp', 'staRxDataDecode54m_M', 'staRxDataDecode54m_M', \ #### 'staRxDataDecode54m_T', 'staRxDataDecode54m_f', 'staRxDataFinish', 'staTxAckInit', 'staTxAckPreambleSignal', \ #### 'staTxAck', 'staTxAckFinal', 'staRxFinish']) ### paths.append(['staRxPktInit', 'staRxLTFProc', 'staRxPktDetect', 'staRxPLCPDecodeSpec', 'staRxDataDecode54m_setup', \ ### 'staRxDataDecode54m_H', 'staRxDataDecode54m_Mp', 'staRxDataDecode54m_M', 'staRxDataDecode54m_M', \ ### 'staRxDataDecode54m_T', 'staRxDataDecode54m_f', 'staRxDataFinish', 'staTxAckInit', 'staTxAckPreambleSignal', \ ### 'staTxAck', 'staTxAckFinal', 'staRxFinish']) statepathnames = [] state_paths_index_file = "__data_conservation_state_paths_index.txt" f = open(state_paths_index_file, "w") for i, path in enumerate(paths): #state_path_name = "" f.write("%d %s\n" % (i, path)) for state in path: #state_path_name += "+%s" % state #statepathnames.append(state_path_name) state_path_name = "path_%d" % i subgraph = self.find_statepath_subgraph(path, state_path_name, True) subgraph_name = state_path_name mismatched_fifos = self.check_data_conservation(subgraph, subgraph_name) self.draw_mismatched_fifos(subgraph, subgraph_name, mismatched_fifos) f.close() def draw_mismatched_fifos(self, subgraph, subgraph_name, mismatched_fifos): for f in mismatched_fifos: g = nx.MultiDiGraph() in_edges = subgraph.in_edges(f,True,True) out_edges = subgraph.out_edges(f,True,True) edges = in_edges + out_edges print "edges:", edges g.add_edges_from(edges) print "nodes:", g.nodes() print "edges:", g.edges() g_name = "__data_conservation_" + subgraph_name + "_mismatch_" + f + ".png" self.draw_twocolor_(g, True, g_name, False, (10,10)) def check_data_conservation(self, G, subgraph_name): n = G.nodes() atoms = set(self.atoms).intersection(n) fifos = set(self.fifos).intersection(n) din_f = G.in_degree(fifos,weight='weight') dout_f = G.out_degree(fifos,weight='weight') dinout = {} #print din_f #print dout_f #print dinout outfile = "__data_conservation_%s.txt" % subgraph_name of = open(outfile, "w") mismatched_fifos = [] for f in fifos: dinout[f] = (din_f[f], dout_f[f], din_f[f] - dout_f[f]) ind,outd,diff = dinout[f] #print "%40s" % f, dinout[f] cur = "" if abs(diff) > DELTA: cur = "<<" mismatched_fifos.append(f) print "%40s %5.1f, %5.1f, %5.1f %s" % (f, ind,outd,diff,cur) of.write("%40s %5.1f, %5.1f, %5.1f %s\n" % (f, ind,outd,diff,cur)) of.close() #raw_input() return mismatched_fifos def find_atom_subgraph(self, atoms_set, count_multiplicity=False): if not count_multiplicity: return self.find_atom_subgraph_no_multiplicity(atoms_set) else: return self.find_atom_subgraph_with_multiplicity(atoms_set) def find_atom_subgraph_with_multiplicity(self, atoms_set): G = self.P #atoms = self.atoms #fifos = self.fifos print "atoms_set (with multiplicity):", atoms_set print "----------------------------------------" subgraph = nx.MultiDiGraph() for atom in atoms_set: #preds = G.predecessors(atom) #succs = G.successors(atom) #edges = [(p,atom) for p in preds] #print "edges:", edges #edges += [(atom,s) for s in succs] #print "edges:", edges #subgraph.add_edges_from(edges) in_edges = G.in_edges(atom, True, True) out_edges = G.out_edges(atom, True, True) print "in_edges:", in_edges print "out_edges:", out_edges edges = in_edges + out_edges # weights = [d['weight'] for _,_,_,d in edges] # if any([w != 1 for w in weights]): # raw_input() #if atom == "agcStateDrainer": # raw_input() #subgraph.add_weighted_edges_from(edges) #subgraph.add_edges_from(edges) weighted_edges = [(u,v,d['weight']) for u,v,_,d in edges] subgraph.add_weighted_edges_from(weighted_edges) #note: by adding (u,v,w)'s instead of edges directly gets rid of #edge identifier that nx produces. this allows us to add the same #edge from the full graph multiple times in the subgraph. if, instead, #we let the edge id stay, adding the same edge multiple times will #not replicate it as desired. print subgraph.nodes() print subgraph.edges() print '---------- printed subgraph nodes and edges -----------' return subgraph def find_atom_subgraph_no_multiplicity(self, atoms_set): G = self.P #atoms = self.atoms #fifos = self.fifos print "atoms_set (with multiplicity):", atoms_set print "----------------------------------------" preds = [] succs = [] for atom in atoms_set: preds += G.predecessors(atom) succs += G.successors(atom) expanded_atoms_set = atoms_set + preds + succs print "expanded_atoms_set:", expanded_atoms_set print "----------------------------------------" c = Counter(expanded_atoms_set) print "counts:", c print "----------------------------------------" raw_input() subgraph = G.subgraph(expanded_atoms_set) return subgraph def find_statepath_subgraph(self, path=[], state_path_name="", count_multiplicity=False): if not path: return #sdb = self.STATE_DB state_path_atoms = [] for state in path: atoms = self.find_state_atoms(state) state_path_atoms += atoms print "state_path_atoms:", state_path_atoms print "--------- printed state path atoms-----------" atoms = state_path_atoms subgraph = self.find_atom_subgraph(atoms, count_multiplicity) ## self.draw_simple_(subgraph) plotfile = "__%s.png" % state_path_name show_labels = True show = False self.draw_twocolor_(subgraph, show_labels, plotfile, show) #if state.startswith('...'): #self.draw_twocolor_(subgraph, show_labels, plotfile, show) return subgraph def find_state_atoms(self, state): adbd = self.AXN_DB_DICT sdb = self.STATE_DB v = sdb[state] sfgs_atoms = [] print state, v #state_flowgraphs sfgs_atomseqs = v.values() sfgs = [sfg for sfg,_ in sfgs_atomseqs] atomseqs = [atomseq for _,atomseq in sfgs_atomseqs] print sfgs print atomseqs for fg in sfgs: sfgs_atoms += adbd[fg] state_atoms = [] for aseq in atomseqs: state_atoms += aseq print sfgs_atoms print state_atoms all_state_atoms = sfgs_atoms + state_atoms print all_state_atoms print "----printed all state atoms--------" atoms = all_state_atoms return atoms def find_state_subgraphs(self): sdb = self.STATE_DB for state in sdb: atoms = self.find_state_atoms(state) subgraph = self.find_atom_subgraph(atoms) ## self.draw_simple_(subgraph) plotfile = "__%s.png" % state show_labels = True show = False self.draw_twocolor_(subgraph, show_labels, plotfile, show) #if state.startswith('...'): #self.draw_twocolor_(subgraph, show_labels, plotfile, show) def find_action_subgraphs(self): adb = self.AXN_DB for row in adb: print row axn, atoms = tuple(row) subgraph = self.find_atom_subgraph(atoms) #print subgraph ## self.draw_simple_(subgraph) plotfile = "__%s.png" % axn show_labels = True show = False self.draw_twocolor_(subgraph, show_labels, plotfile, show) #if axn.startswith('axnRxPLCPDecodeSpec'): #self.draw_twocolor_(subgraph, show_labels, plotfile, show) def find_dx_atoms(self): ## algorithm 1 ## #this is problematic because some decision atoms feed into ff_kk* through #transfer atoms, so they are not neighbors of ff_kk* nodes #fifos = self.fifos #kernel_fifos = [fifo for fifo in fifos if fifo.startswith("ff_kk")] #print "kernel_fifos =", kernel_fifos #dx_atoms = [] #for ff_kk in kernel_fifos: # dx_atoms += G.predecessors(ff_kk) #print dx_atoms ## algorithm 2 ## #this one could become problematic if a decision atom output void type #instead of full type Decision_t. for now, it suffices. it would be good #to impose enforcement of Decision_t type for a decision atom to quality #as a legit decision atom right in the language. G = self.P atoms = self.atoms for atom in atoms: print atom, G.node[atom] #raw_input() dx_atoms = [atom for atom in atoms if any([p.split(':')[0] == 'Decision_t' for p in G.node[atom]["out_ports"]])] print dx_atoms #raw_input() cdb = self.CONF_DB cdbd = {} for conf in cdb: k, v = tuple(conf) cdbd[k] = v for dxa in dx_atoms: print dxa, cdbd[dxa] self.dx_atoms = dx_atoms #pp = G.predecessors('jumpToRxDataFinish1') #ss = G.successors('jumpToRxDataFinish1') #print pp, ss #--------------------------------- # rendering methods #--------------------------------- def draw(self): #self.draw_simple() self.draw_twocolor() def draw_simple_(self, G): nx.draw(G) plt.show() def draw_simple(self): nx.draw(self.P) plt.savefig("__program.png") #plt.show() def flattened_edge_weights(self, G): edges_weights = {} H = nx.DiGraph() #for e in G.edges(G.nodes(), True, True): #u, v, i, d = e fifos = self.fifos for e in G.edges(): print e u, v = e d = G.get_edge_data(u, v) w = sum([vv['weight'] for vv in d.values()]) print u, v, d, w H.add_edge(u,v,weight=w) # edge_labels={(nodes[0],nodes[1]):'jj'}) edges = H.edges(H.nodes(), True) print edges edge_weights = {} for u, v, d in edges: #for e in edges: # print e e = (u, v) w = d['weight'] er = (v, u) if er in edge_weights: wr = edge_weights[er] if v in fifos: ws = "a-->f: %.1f f-->a: %s" % (w, wr) else: ws = "a-->f: %s f-->a: %.1f" % (wr, w) edge_weights[er] = ws else: edge_weights[e] = "%.1f" % w print edge_weights return edge_weights def draw_twocolor_(self, G, show_labels=False, plotfile="", show = False, figsize=(30,30)): plt.figure(figsize=figsize) nodes = G.nodes() ns = set(nodes) atoms = ns.intersection(set(self.atoms)) fifos = ns.intersection(set(self.fifos)) labels = {} if show_labels: for n in nodes: labels[n] = n #pos=nx.spring_layout(G) # positions for all nodes #pos=nx.spectral_layout(G) # positions for all nodes pos=nx.circular_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G,pos, nodelist=atoms, node_color='r', node_size=1000, alpha=0.5) nx.draw_networkx_nodes(G,pos, nodelist=fifos, node_color='b', node_size=1000, alpha=0.5) # edges nx.draw_networkx_edges(G,pos,width=1.0,alpha=0.5) # nx.draw_networkx_edges(G,pos, # edgelist=[(0,1),(1,2),(2,3),(3,0)], # width=8,alpha=0.5,edge_color='r') # nx.draw_networkx_edges(G,pos, # edgelist=[(4,5),(5,6),(6,7),(7,4)], # width=8,alpha=0.5,edge_color='b') if labels: #nx.draw_networkx_labels(G,pos,labels,font_size=16) nx.draw_networkx_labels(G,pos,labels,font_size=10) edge_labels = self.flattened_edge_weights(G) nx.draw_networkx_edge_labels(G,pos,edge_labels) # edge_labels={(nodes[0],nodes[1]):'jj'}) plt.axis('off') if plotfile: plt.savefig(plotfile) # save as png if show: plt.show() def draw_twocolor(self): G = self.P plotfile = "__program.png" self.draw_twocolor_(G, False, plotfile) #--------------------------------- # constructor #--------------------------------- def __init__(self, logger): self.logger = logger #top-level program of the app P = nx.MultiDiGraph() self.P = P class R1CodeGenerator: def gencode_r1(self, pc): #sys.exit(1) pass def __init__(self, logger): self.logger = logger
apache-2.0