MedQA_Maze / MedQA_Maze.py
JesseLiu
update py
f48e76f
raw
history blame
4.34 kB
import os
import json
import datasets
import logging
_CITATION = """Your citation here"""
_DESCRIPTION = """Description of your medical QA dataset"""
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MedQaMazeConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MedQaMaze(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MedQaMazeConfig(name="default", description="A default config"),
MedQaMazeConfig(name="advance", description="Advanced-level test data"),
MedQaMazeConfig(name="all", description="Full dataset with train and test"),
MedQaMazeConfig(name="basic", description="Basic-level test data"),
MedQaMazeConfig(name="challenge", description="Challenge-level test data"),
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"prerequisit": datasets.Value("string"),
"groundtruth_zoo": datasets.Sequence(datasets.Value("string")),
"answer": datasets.Value("string"),
}),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# Get the absolute path of the script
base_path = os.path.dirname(os.path.abspath(__file__))
logger.info(f"Base path: {base_path}")
config_name = self.config.name
logger.info(f"Using config: {config_name}")
# Define file paths
if config_name == "advance":
filepath = os.path.join(base_path, "advance", "test.jsonl")
logger.info(f"Looking for advance test file at: {filepath}")
if not os.path.exists(filepath):
raise ValueError(f"File not found: {filepath}")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": filepath}
)
]
elif config_name == "all":
train_path = os.path.join(base_path, "all", "train.jsonl")
test_path = os.path.join(base_path, "all", "test.jsonl")
logger.info(f"Looking for train file at: {train_path}")
logger.info(f"Looking for test file at: {test_path}")
if not os.path.exists(train_path):
raise ValueError(f"Train file not found: {train_path}")
if not os.path.exists(test_path):
raise ValueError(f"Test file not found: {test_path}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_path}
)
]
# ... similar checks for other configs ...
def _generate_examples(self, filepath):
"""Yields examples."""
logger.info(f"Processing file: {filepath}")
try:
with open(filepath, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
try:
data = json.loads(line.strip())
example = {
"context": data.get("context", ""),
"question": data.get("question", ""),
"prerequisit": data.get("prerequisit", ""),
"groundtruth_zoo": data.get("groundtruth_zoo", []),
"answer": data.get("answer", ""),
}
yield idx, example
except json.JSONDecodeError as e:
logger.error(f"Error parsing JSON at line {idx} in {filepath}: {e}")
continue
except Exception as e:
logger.error(f"Error reading file {filepath}: {e}")
raise