import os import json import datasets import logging _CITATION = """Your citation here""" _DESCRIPTION = """Description of your medical QA dataset""" logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class MedQaMazeConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class MedQaMaze(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ MedQaMazeConfig(name="default", description="A default config"), MedQaMazeConfig(name="advance", description="Advanced-level test data"), MedQaMazeConfig(name="all", description="Full dataset with train and test"), MedQaMazeConfig(name="basic", description="Basic-level test data"), MedQaMazeConfig(name="challenge", description="Challenge-level test data"), ] DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "context": datasets.Value("string"), "question": datasets.Value("string"), "prerequisit": datasets.Value("string"), "groundtruth_zoo": datasets.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), }), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # Get the absolute path of the script base_path = os.path.dirname(os.path.abspath(__file__)) logger.info(f"Base path: {base_path}") config_name = self.config.name logger.info(f"Using config: {config_name}") # Define file paths if config_name == "advance": filepath = os.path.join(base_path, "advance", "test.jsonl") logger.info(f"Looking for advance test file at: {filepath}") if not os.path.exists(filepath): raise ValueError(f"File not found: {filepath}") return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": filepath} ) ] elif config_name == "all": train_path = os.path.join(base_path, "all", "train.jsonl") test_path = os.path.join(base_path, "all", "test.jsonl") logger.info(f"Looking for train file at: {train_path}") logger.info(f"Looking for test file at: {test_path}") if not os.path.exists(train_path): raise ValueError(f"Train file not found: {train_path}") if not os.path.exists(test_path): raise ValueError(f"Test file not found: {test_path}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} ) ] # ... similar checks for other configs ... def _generate_examples(self, filepath): """Yields examples.""" logger.info(f"Processing file: {filepath}") try: with open(filepath, "r", encoding="utf-8") as f: for idx, line in enumerate(f): try: data = json.loads(line.strip()) example = { "context": data.get("context", ""), "question": data.get("question", ""), "prerequisit": data.get("prerequisit", ""), "groundtruth_zoo": data.get("groundtruth_zoo", []), "answer": data.get("answer", ""), } yield idx, example except json.JSONDecodeError as e: logger.error(f"Error parsing JSON at line {idx} in {filepath}: {e}") continue except Exception as e: logger.error(f"Error reading file {filepath}: {e}") raise