File size: 9,188 Bytes
b707341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41409d
b707341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e9157
b707341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea827e
e41409d
 
 
 
 
 
 
 
 
 
b707341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e41409d
 
b707341
 
 
c1e9157
 
6d8566e
 
b707341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e9157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3

from pathlib import Path
import json
import os

import datasets
from datasets.tasks import AutomaticSpeechRecognition


_DESCRIPTION = """\
This database was created by Nordic Language Technology for the development of automatic speech recognition and dictation in Swedish. In this updated version, the organization of the data have been altered to improve the usefulness of the database.

In the original version of the material, the files were organized in a specific folder structure where the folder names were meaningful. However, the file names were not meaningful, and there were also cases of files with identical names in different folders. This proved to be impractical, since users had to keep the original folder structure in order to use the data. The files have been renamed, such that the file names are unique and meaningful regardless of the folder structure. The original metadata files were in spl format. These have been converted to JSON format. The converted metadata files are also anonymized and the text encoding has been converted from ANSI to UTF-8.
"""

_URL = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-56/"


_JSON_URL = "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/ADB_SWE_0467.tar.gz"


_AUDIO_URLS = [
    "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/lydfiler_16_1.tar.gz",
    "https://www.nb.no/sbfil/talegjenkjenning/16kHz_2020/se_2020/lydfiler_16_2.tar.gz"
]


_REGIONS = [
    "Dalarna med omnejd",
    "Göteborg med omnejd",
    "Mellansverige",
    "Norrland",
    "Östergötland",
    "Östra sydsverige",
    "Stockholm med omnejd",
    "Västergötland",
    "Västra sydsverige",
    "Västsverige",
    "Unspecified"
]

_SEX = [
    "Male",
    "Female",
    "Unspecified"
]

class NSTDataset(datasets.GeneratorBasedBuilder):
    """NST Dataset for ASR"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="speech", version=VERSION, description="Data for speech recognition"),
        datasets.BuilderConfig(name="speech_no_norm", version=VERSION, description="Data with original text (no normalisation)"),
#        datasets.BuilderConfig(name="dialects", version=VERSION, description="Data for dialect classification"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "speaker_id": datasets.Value("string"),
                "age": datasets.Value("string"),
                "gender": datasets.ClassLabel(names=_SEX),
                "region_of_birth": datasets.ClassLabel(names=_REGIONS),
                "region_of_youth": datasets.ClassLabel(names=_REGIONS),
                "text": datasets.Value("string"),
                "path": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000)
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_URL,
            task_templates=[
                AutomaticSpeechRecognition(audio_file_path_column="path", transcription_column="text")
            ],
        )

    # split is hardcoded to 'train' for now; there is a test set, but
    # it has not been modernised
    def _split_generators(self, dl_manager):
        if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None:
            data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
            JSON_FILE = _JSON_URL.split("/")[-1]
            AUDIO_FILES = [
                os.path.join(data_dir, a.split("/")[-1]) for a in _AUDIO_URLS
            ]
            json_dir = dl_manager.extract(os.path.join(data_dir, JSON_FILE))
            audio_dirs = dl_manager.extract(AUDIO_FILES)
        else:
            json_dir = dl_manager.download_and_extract(_JSON_URL)
            audio_dirs = dl_manager.download_and_extract(_AUDIO_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                    "json_dir": json_dir,
                    "audio_dirs": audio_dirs,
                },
            ),
        ]

    def _generate_examples(
        self, split, json_dir, audio_dirs
    ):
        """Yields examples as (key, example) tuples. """
        json_path = Path(json_dir)
        for json_filename in json_path.glob("*.json"):
            with open(json_filename) as json_file:
                data = json.load(json_file)
                speaker_data = _get_speaker_data(data["info"])
                pid = data["pid"]
                if "val_recordings" not in data:
                    continue
                for recording in data["val_recordings"]:
                    bare_path = recording['file'].replace(".wav", "")
                    text = recording["text"]
                    if self.config.name != "speech_no_norm":
                        text = normalise(text)
                        if text is None or text == "":
                            continue
                    lang_part = pid[0:2]
                    for num in ["1", "2"]:
                        tar_path = f"{lang_part}/{pid}/{pid}_{bare_path}-{num}.wav"
                        for adir in audio_dirs:
                            fpath = Path(adir) / tar_path
                            if fpath.exists():
                                with open(fpath, "rb") as audiofile:
                                    yield str(fpath), {
                                        "speaker_id": speaker_data["speaker_id"],
                                        "age": speaker_data["age"],
                                        "gender": speaker_data["gender"],
                                        "region_of_birth": speaker_data["region_of_birth"],
                                        "region_of_youth": speaker_data["region_of_youth"],
                                        "text": text,
                                        "path": str(fpath),
                                        "audio": {
                                            "path": str(fpath),
                                            "bytes": audiofile.read()
                                        }
                                    }


def _get_speaker_data(data):
    out = {}
    if "Age" in data:
        if data["Age"] == "":
            out["age"] = "Unspecified"
        else:
            out["age"] = data["Age"]
    else:
        out["age"] = "Unspecified"

    if "Region_of_Birth" in data:
        if data["Region_of_Birth"] == "":
            out["region_of_birth"] = "Unspecified"
        elif data["Region_of_Birth"] not in _REGIONS:
            print("Unknown option for Region_of_Birth: " + data["Region_of_Birth"])
            out["region_of_birth"] = "Unspecified"
        else:
            out["region_of_birth"] = data["Region_of_Birth"]
    else:
        out["region_of_birth"] = "Unspecified"

    if "Region_of_Youth" in data:
        if data["Region_of_Youth"] == "":
            out["region_of_youth"] = "Unspecified"
        elif data["Region_of_Youth"] not in _REGIONS:
            print("Unknown option for Region_of_Youth: " + data["Region_of_Youth"])
            out["region_of_youth"] = "Unspecified"
        else:
            out["region_of_youth"] = data["Region_of_Youth"]
    else:
        out["region_of_youth"] = "Unspecified"

    if "Speaker_ID" in data:
        if data["Speaker_ID"] == "":
            out["speaker_id"] = "Unspecified"
        else:
            out["speaker_id"] = data["Speaker_ID"]
    else:
        out["speaker_id"] = "Unspecified"

    if 'Sex' in data:
        if data["Sex"] == "":
            out["gender"] = "Unspecified"
        elif data["Sex"] not in _SEX:
            print("Unknown option for Sex: " + data["Sex"])
            out["gender"] = "Unspecified"
        else:
            out["gender"] = data["Sex"]
    else:
        out["gender"] = "Unspecified"

    return out


def normalise(text: str) -> str:
    MARKERS = ["[fil]", "[int]", "[spk]", "[sta]"]
    text = text.lower()
    for mark in MARKERS:
        text = text.replace(mark, "")
    outtext = ""
    last_char = ""
    for char in text:
        if char in "abcdefghijklmnopqrstuvwxyzåäö: ":
            if char == " " and last_char == " ":
                continue
            else:
                outtext = outtext + char
            last_char = char
    return outtext