File size: 2,514 Bytes
dd659f1
 
8f73636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4293cd4
 
 
 
 
 
dd659f1
4293cd4
 
 
 
1b41766
 
4293cd4
 
 
1b41766
4293cd4
 
 
 
1b41766
4293cd4
1b41766
 
 
4293cd4
 
 
1b41766
 
 
 
 
 
 
 
 
 
4293cd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
dataset_info:
  features:
  - name: pmid
    dtype: int64
  - name: journal
    dtype: string
  - name: title
    dtype: string
  - name: abstract
    dtype: string
  - name: keywords
    dtype: string
  - name: pub_type
    dtype: string
  - name: authors
    dtype: string
  - name: doi
    dtype: string
  - name: label
    sequence: int64
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 85014595
    num_examples: 24960
  - name: validation
    num_bytes: 9075648
    num_examples: 2500
  - name: test
    num_bytes: 21408810
    num_examples: 6239
  download_size: 63244210
  dataset_size: 115499053
task_categories:
- text-classification
language:
- en
size_categories:
- 10K<n<100K
---
# Dataset Card for Dataset Name

## Dataset Description

- **Homepage:** [BioCreative VII LitCovid Track](https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/)
- **Paper:** [Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428574/)

### Dataset Summary

Topic annotation in LitCovid is a multi-label document classification task that assigns one or more labels to each article. There are 7 topic labels used in LitCovid: Treatment, Diagnosis, Prevention, Mechanism, Transmission, Epidemic Forecasting, and Case Report. These topics have been demonstrated to be effective for information retrieval and have also been used in many downstream applications related to COVID-19. 


## Dataset Structure

### Data Instances and Data Splits

- the training set contains 24,960 articles from LitCovid;
- the validation set contains 6,239 articles from LitCovid;
- the test set contains 2,500 articles from LitCovid;

### Data Fields

with the following fields retrieved from PubMed/LitCovid:
• pmid: PubMed Identifier
• journal: journal name
• title: article title
• abstract: article abstract
• keywords: author-provided keywords
• pub_type: article type, e.g., journal article
• authors: author names
• doi: Digital Object Identifier
• label: annotated topics in list format indicating absence or presence of labels in the order 'Treatment,Diagnosis,Prevention,Mechanism,Transmission,Epidemic Forecasting,Case Report'