--- language: - en --- # 360°-Motion Dataset [Project page](http://fuxiao0719.github.io/projects/3dtrajmaster) | [Paper](https://drive.google.com/file/d/111Z5CMJZupkmg-xWpV4Tl4Nb7SRFcoWx/view) ![image/png](imgs/dataset.png) ### News - [2024-12] We release the V1 dataset (50 entities and 36,000 videos). ### Data structure ``` ├── 360Motion-Dataset Video Number Cam-Obj Distance (m) ├── Desert (`desert`) 18,000 ├── location_data.json ├── HDRI [3.43, 13.01] ├── loc1 (`snowy street`) 3,600 ├── loc2 (`park`) 3,600 ├── loc3 (`indoor open space`) 3,600 ├── loc11 (`gymnastics room`) 3,600 ├── loc13 (`autumn forest`) 3,600 ├── location_data.json ├── RefPic ├── CharacterInfo.json ├── Hemi12_transforms.json ``` > **(1) Released Dataset Information** | Argument | Description |Argument | Description | |-------------------------|-------------|-------------------------|-------------| | **Video Resolution** | 480×720 | **Frames/Duration/FPS** | 99/3.3s/30 | | **UE Scenes** | 6 (1 desert+5 HDRIs) | **Video Samples** | 36,000 | | **Hemi12_transforms.json** | 12 surrounding cameras | **CharacterInfo.json** | entity prompts | | **RefPic** | 50 animals | **1/2/3 Trajectory Templates** | 36/60/35 (121 in total) | | **{D/N}_{locX}** | {Day/Night}_{LocationX} | **{C}_ {XX}_{35mm}** | {Close-Up Shot}_{Cam. Index(1-12)} _{Focal Length}| > **(2) Difference with the Dataset to Train on Our Internal Video Diffusion Model** The release of the full dataset regarding more entities and UE scenes is 1) still under our internal license check, 2) awaiting the paper decision. | Argument | Released Dataset | Our Internal Dataset| |-------------------------|-------------|-------------------------| | **Video Resolution** | 480×720 (re-rendered) | 384×672 | | **Entities** | 50 (all animals) | 70 (20 humans+50 animals) | | **Video Samples** | 36,000 | 54,000 | | **Scenes** | 6 | 9 (+city, forest, asian town) | | **Trajectory Templates** | 121 | 96 | > **(3) Load Dataset Sample** 1. Change root path to `dataset`. We provide a script to load our dataset (video & entity & pose sequence) as follows. It will generate the sampled video for visualization in the same folder path. ```bash python load_dataset.py ``` 2. Visualize the 6DoF pose sequence via Open3D as follows. ```bash python vis_trajecotry.py ``` After running the visualization script, you will get an interactive window like this.