thibaudltn commited on
Commit
514e7af
·
1 Parent(s): 366258f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - text-classification
4
+ language:
5
+ - en
6
+ ---
7
+
8
+ The Moji dataset (Blodgett et al., 2016) (http://slanglab.cs.umass.edu/TwitterAAE/) contains tweets used for sentiment analysis (either positive or negative sentiment), with additional information on the type of English used in the tweets which is a sensitive attribute considered in fairness-aware approaches (African-American English (AAE) or Standard-American English (SAE)).
9
+
10
+ The type of language is determined thanks to a supervised model. Only the data
11
+ where the sensitive attribute is predicted with a certainty rate above a given threshold are kept.
12
+
13
+ Based on this principle we make available two versions of the Moji dataset,
14
+ respectively with a threshold of 80% and of 90%. The dataset's distributions are presented below.
15
+
16
+
17
+ ### Dataset with 80% threshold
18
+
19
+ | | Positive sentiment | Negative Sentiment | Total |
20
+ |---|---|---|---|
21
+ AAE | 73 013 | 44 023 | 117 036 |
22
+ SAE | 1 471 427 | 652 913 | 2 124 340 |
23
+ Total | 1 544 440 | 696 936 | 2 241 376 |
24
+
25
+
26
+ ### Dataset with 90% threshold
27
+
28
+ | | Positive sentiment | Negative Sentiment | Total |
29
+ |---|---|---|---|
30
+ AAE | 30 827 | 18 409 | 49 236 |
31
+ SAE | 793 867 | 351 600 | 1 145 467 |
32
+ Total | 824 694 | 370 009 | 1 194 703 |
33
+
34
+ ----
35
+ [Demographic Dialectal Variation in Social Media: A Case Study of African-American English](https://aclanthology.org/D16-1120) (Blodgett et al., EMNLP 2016)