--- task_categories: - text-classification language: - en dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: sa dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 141506555 num_examples: 1613790 - name: test num_bytes: 39317936 num_examples: 448276 - name: dev num_bytes: 15759601 num_examples: 179310 download_size: 108306225 dataset_size: 196584092 --- The Moji dataset (Blodgett et al., 2016) (http://slanglab.cs.umass.edu/TwitterAAE/) contains tweets used for sentiment analysis (either positive or negative sentiment), with additional information on the type of English used in the tweets which is a sensitive attribute considered in fairness-aware approaches (African-American English (AAE) or Standard-American English (SAE)). The type of language is determined thanks to a supervised model. Only the data where the sensitive attribute is predicted with a certainty rate above a given threshold are kept. Based on this principle we make available two versions of the Moji dataset, respectively with a threshold of 80% and of 90%. The dataset's distributions are presented below. ### Dataset with 80% threshold | | Positive sentiment | Negative Sentiment | Total | |---|---|---|---| AAE | 73 013 | 44 023 | 117 036 | SAE | 1 471 427 | 652 913 | 2 124 340 | Total | 1 544 440 | 696 936 | 2 241 376 | To load this dataset, use the following code : ```python dataset = load_dataset("LabHC/moji", revision='moji_conf_08') ``` or by default the version is the dataset with 80% threshold ```python dataset = load_dataset("LabHC/moji") ``` ### Dataset with 90% threshold | | Positive sentiment | Negative Sentiment | Total | |---|---|---|---| AAE | 30 827 | 18 409 | 49 236 | SAE | 793 867 | 351 600 | 1 145 467 | Total | 824 694 | 370 009 | 1 194 703 | To load this dataset, use the following code : ```python dataset = load_dataset("LabHC/moji", revision='moji_conf_09') ``` ---- [Demographic Dialectal Variation in Social Media: A Case Study of African-American English](https://aclanthology.org/D16-1120) (Blodgett et al., EMNLP 2016)