--- task_categories: - text-classification language: - en --- The Moji dataset (Blodgett et al., 2016) (http://slanglab.cs.umass.edu/TwitterAAE/) contains tweets used for sentiment analysis (either positive or negative sentiment), with additional information on the type of English used in the tweets which is a sensitive attribute considered in fairness-aware approaches (African-American English (AAE) or Standard-American English (SAE)). The type of language is determined thanks to a supervised model. Only the data where the sensitive attribute is predicted with a certainty rate above a given threshold are kept. Based on this principle we make available two versions of the Moji dataset, respectively with a threshold of 80% and of 90%. The dataset's distributions are presented below. ### Dataset with 80% threshold | | Positive sentiment | Negative Sentiment | Total | |---|---|---|---| AAE | 73 013 | 44 023 | 117 036 | SAE | 1 471 427 | 652 913 | 2 124 340 | Total | 1 544 440 | 696 936 | 2 241 376 | ### Dataset with 90% threshold | | Positive sentiment | Negative Sentiment | Total | |---|---|---|---| AAE | 30 827 | 18 409 | 49 236 | SAE | 793 867 | 351 600 | 1 145 467 | Total | 824 694 | 370 009 | 1 194 703 | ---- [Demographic Dialectal Variation in Social Media: A Case Study of African-American English](https://aclanthology.org/D16-1120) (Blodgett et al., EMNLP 2016)