
demo_notebook

September 10, 2024

1 Example Jupyter notebook to work with the data

2 Read in and plot the Apollo 12 Grade A catalog

[1]: # Import libraries
import numpy as np
import pandas as pd
from obspy import read
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import os

Let’s take a look at the training data for the lunar dataset. In addition to the data itself, we
include a catalog that will tell you which events happen when in the data. The catalog includes
the name of the file, the absolute time, the relative time in seconds (relative to the start of the
file), the event ID (evid), and the type of moonquake. The types of moonquakes include impacts,
deep moonquakes, and shallow moonquakes. You do not have to worry about predicting the type
of moonquakes, that’s just fun information for you to know!

Note: For your prediction, feel free to include either the absolute time or relative time, just make
sure to mark it using the same header in the CSV file so we can easily score it!

[2]: cat_directory = './data/lunar/training/catalogs/'
cat_file = cat_directory + 'apollo12_catalog_GradeA_final.csv'
cat = pd.read_csv(cat_file)
cat

[2]: filename time_abs(%Y-%m-%dT%H:%M:%S.%f) \
0 xa.s12.00.mhz.1970-01-19HR00_evid00002 1970-01-19T20:25:00.000000
1 xa.s12.00.mhz.1970-03-25HR00_evid00003 1970-03-25T03:32:00.000000
2 xa.s12.00.mhz.1970-03-26HR00_evid00004 1970-03-26T20:17:00.000000
3 xa.s12.00.mhz.1970-04-25HR00_evid00006 1970-04-25T01:14:00.000000
4 xa.s12.00.mhz.1970-04-26HR00_evid00007 1970-04-26T14:29:00.000000
.. … …
71 xa.s12.00.mhz.1974-10-14HR00_evid00156 1974-10-14T17:43:00.000000
72 xa.s12.00.mhz.1975-04-12HR00_evid00191 1975-04-12T18:15:00.000000
73 xa.s12.00.mhz.1975-05-04HR00_evid00192 1975-05-04T10:05:00.000000
74 xa.s12.00.mhz.1975-06-24HR00_evid00196 1975-06-24T16:03:00.000000

1

75 xa.s12.00.mhz.1975-06-26HR00_evid00198 1975-06-26T03:24:00.000000

time_rel(sec) evid mq_type
0 73500.0 evid00002 impact_mq
1 12720.0 evid00003 impact_mq
2 73020.0 evid00004 impact_mq
3 4440.0 evid00006 impact_mq
4 52140.0 evid00007 deep_mq
.. … … …
71 63780.0 evid00156 impact_mq
72 65700.0 evid00191 impact_mq
73 36300.0 evid00192 impact_mq
74 57780.0 evid00196 impact_mq
75 12240.0 evid00198 impact_mq

[76 rows x 5 columns]

2.1 Select a detection
Let’s pick the first seismic event in the catalog and let’s take a look at the absolute time data. The
way we show it here is by using pandas .iloc and datetime .strptime. We are going to keep the
format shown in the absolute time header, which is '%Y-%m-%dT%H:%M:%S.%f'

[3]: row = cat.iloc[6]
arrival_time = datetime.strptime(row['time_abs(%Y-%m-%dT%H:%M:%S.

↪%f)'],'%Y-%m-%dT%H:%M:%S.%f')
arrival_time

[3]: datetime.datetime(1970, 6, 26, 20, 1)

[4]: # If we want the value of relative time, we don't need to use datetime
arrival_time_rel = row['time_rel(sec)']
arrival_time_rel

[4]: 72060.0

[5]: # Let's also get the name of the file
test_filename = row.filename
test_filename

[5]: 'xa.s12.00.mhz.1970-06-26HR00_evid00009'

2.2 Read the CSV file corresponding to that detection
We will now find the csv data file corresponding to that time and plot it!

[6]: data_directory = './data/lunar/training/data/S12_GradeA/'
csv_file = f'{data_directory}{test_filename}.csv'

2

data_cat = pd.read_csv(csv_file)
data_cat

[6]: time_abs(%Y-%m-%dT%H:%M:%S.%f) time_rel(sec) velocity(m/s)
0 1970-06-26T00:00:00.116000 0.000000 -6.727977e-16
1 1970-06-26T00:00:00.266943 0.150943 -8.646711e-16
2 1970-06-26T00:00:00.417887 0.301887 -9.298738e-16
3 1970-06-26T00:00:00.568830 0.452830 -8.589095e-16
4 1970-06-26T00:00:00.719774 0.603774 -7.139047e-16
… … … …
572418 1970-06-27T00:00:02.832981 86402.716981 5.039820e-17
572419 1970-06-27T00:00:02.983925 86402.867925 -9.191068e-18
572420 1970-06-27T00:00:03.134868 86403.018868 -2.796955e-17
572421 1970-06-27T00:00:03.285811 86403.169811 -9.037156e-17
572422 1970-06-27T00:00:03.436755 86403.320755 -2.439395e-16

[572423 rows x 3 columns]

[7]: # Read in time steps and velocities
csv_times = np.array(data_cat['time_rel(sec)'].tolist())
csv_data = np.array(data_cat['velocity(m/s)'].tolist())

Plot the trace!
fig,ax = plt.subplots(1,1,figsize=(10,3))
ax.plot(csv_times,csv_data)

Make the plot pretty
ax.set_xlim([min(csv_times),max(csv_times)])
ax.set_ylabel('Velocity (m/s)')
ax.set_xlabel('Time (s)')
ax.set_title(f'{test_filename}', fontweight='bold')

Plot where the arrival time is
arrival_line = ax.axvline(x=arrival_time_rel, c='red', label='Rel. Arrival')
ax.legend(handles=[arrival_line])

[7]: <matplotlib.legend.Legend at 0x27b41dbca30>

3

What if you wanted to plot in absolute time instead? The operations are very similar, just with a
little extra datetime. It takes a bit longer, so we recommend working in relative time to start with!

[8]: # Read in time steps and velocities
csv_times_dt = []
for absval_str in data_cat['time_abs(%Y-%m-%dT%H:%M:%S.%f)'].values:

csv_times_dt.append(datetime.strptime(absval_str,'%Y-%m-%dT%H:%M:%S.%f'))

csv_data = np.array(data_cat['velocity(m/s)'].tolist())

Plot the trace!
fig,ax = plt.subplots(1,1,figsize=(10,3))
ax.plot(csv_times_dt,csv_data)

Make the plot pretty
ax.set_xlim((np.min(csv_times_dt),np.max(csv_times_dt)))
ax.set_ylabel('Velocity (m/s)')
ax.set_xlabel('Time (month-day hour)')
ax.set_title(f'{test_filename}', fontweight='bold')

Plot where the arrival time is
arrival_line = ax.axvline(x=arrival_time, c='red', label='Abs. Arrival')
ax.legend(handles=[arrival_line])

[8]: <matplotlib.legend.Legend at 0x27b47983ee0>

4

2.2.1 Alternatively: read the miniseed file corresponding to that detection

Same procedure as above, just using the miniseed file.

[9]: data_directory = './data/lunar/training/data/S12_GradeA/'
mseed_file = f'{data_directory}{test_filename}.mseed'
st = read(mseed_file)
st

[9]: 1 Trace(s) in Stream:
XA.S12.00.MHZ | 1970-06-26T00:00:00.116000Z - 1970-06-27T00:00:03.436755Z | 6.6
Hz, 572423 samples

[10]: # The stream file also contains some useful header information
st[0].stats

[10]: network: XA
station: S12
location: 00
channel: MHZ

starttime: 1970-06-26T00:00:00.116000Z
endtime: 1970-06-27T00:00:03.436755Z

sampling_rate: 6.625
delta: 0.1509433962264151
npts: 572423
calib: 1.0

_format: MSEED
mseed: AttribDict({'dataquality': 'D', 'number_of_records': 1136,

'encoding': 'FLOAT64', 'byteorder': '>', 'record_length': 4096, 'filesize':
4653056})

[11]: # This is how you get the data and the time, which is in seconds
tr = st.traces[0].copy()

5

tr_times = tr.times()
tr_data = tr.data

Start time of trace (another way to get the relative arrival time using␣
↪datetime)

starttime = tr.stats.starttime.datetime
arrival = (arrival_time - starttime).total_seconds()
arrival

[11]: 72059.884

2.2.2 Plot the trace and mark the arrival!

Use a similar method to plot the miniseed data and seismic arrival.

[12]: # Initialize figure
fig,ax = plt.subplots(1,1,figsize=(10,3))

Plot trace
ax.plot(tr_times,tr_data)

Mark detection
ax.axvline(x = arrival, color='red',label='Rel. Arrival')
ax.legend(loc='upper left')

Make the plot pretty
ax.set_xlim([min(tr_times),max(tr_times)])
ax.set_ylabel('Velocity (m/s)')
ax.set_xlabel('Time (s)')
ax.set_title(f'{test_filename}', fontweight='bold')

[12]: Text(0.5, 1.0, 'xa.s12.00.mhz.1970-06-26HR00_evid00009')

6

There are multiple ways that we can do the absolute time using datetime, here is a simple way
using the .timedelta method

[13]: # Create a vector for the absolute time
tr_times_dt = []
for tr_val in tr_times:

tr_times_dt.append(starttime + timedelta(seconds=tr_val))

Plot the absolute result
fig,ax = plt.subplots(1,1,figsize=(10,3))

Plot trace
ax.plot(tr_times_dt,tr_data)

Mark detection
arrival_line = ax.axvline(x=arrival_time, c='red', label='Abs. Arrival')
ax.legend(handles=[arrival_line])

Make the plot pretty
ax.set_xlim([min(tr_times_dt),max(tr_times_dt)])
ax.set_ylabel('Velocity (m/s)')
ax.set_xlabel('Time (s)')
ax.set_title(f'{test_filename}', fontweight='bold')

[13]: Text(0.5, 1.0, 'xa.s12.00.mhz.1970-06-26HR00_evid00009')

It’s completely up to you whether to work with the CSV file or the miniseed files. We recommend
working with the miniseed file as it’s a bit faster to run.

2.3 Let’s filter the trace
Sometimes, it’s useful to filter the trace to bring out particular frequencies. This will change the
shape of the data and make it easier to see certain parts of the signal. In this example, we will
filter the data using a bandpass filter between 0.01 Hz to 0.5 Hz.

7

[14]: # Set the minimum frequency
minfreq = 0.5
maxfreq = 1.0

Going to create a separate trace for the filter data
st_filt = st.copy()
st_filt.filter('bandpass',freqmin=minfreq,freqmax=maxfreq)
tr_filt = st_filt.traces[0].copy()
tr_times_filt = tr_filt.times()
tr_data_filt = tr_filt.data

[15]: # To better see the patterns, we will create a spectrogram using the scipy␣
↪function

It requires the sampling rate, which we can get from the miniseed header as␣
↪shown a few cells above

from scipy import signal
from matplotlib import cm
f, t, sxx = signal.spectrogram(tr_data_filt, tr_filt.stats.sampling_rate)

[16]: # Plot the time series and spectrogram
fig = plt.figure(figsize=(10, 10))
ax = plt.subplot(2, 1, 1)
Plot trace
ax.plot(tr_times_filt,tr_data_filt)

Mark detection
ax.axvline(x = arrival, color='red',label='Detection')
ax.legend(loc='upper left')

Make the plot pretty
ax.set_xlim([min(tr_times_filt),max(tr_times_filt)])
ax.set_ylabel('Velocity (m/s)')
ax.set_xlabel('Time (s)')

ax2 = plt.subplot(2, 1, 2)
vals = ax2.pcolormesh(t, f, sxx, cmap=cm.jet, vmax=5e-17)
ax2.set_xlim([min(tr_times_filt),max(tr_times_filt)])
ax2.set_xlabel(f'Time (Day Hour:Minute)', fontweight='bold')
ax2.set_ylabel('Frequency (Hz)', fontweight='bold')
ax2.axvline(x=arrival, c='red')
cbar = plt.colorbar(vals, orientation='horizontal')
cbar.set_label('Power ((m/s)^2/sqrt(Hz))', fontweight='bold')

8

3 Sample short-term average / long-term average (STA/LTA) de-
tection algorithm

A STA/LTA algorithm moves two time windows of two lengths (one short, one long) across the
seismic data. The algorithm calculates the average amplitude in both windows, and calculates the
ratio between them. If the data contains an earthquake, then the short-term window containing
the earthquake will be much larger than the long-term window – resulting in a detection.

[17]: from obspy.signal.invsim import cosine_taper
from obspy.signal.filter import highpass
from obspy.signal.trigger import classic_sta_lta, plot_trigger, trigger_onset

Sampling frequency of our trace

9

df = tr.stats.sampling_rate

How long should the short-term and long-term window be, in seconds?
sta_len = 120
lta_len = 600

Run Obspy's STA/LTA to obtain a characteristic function
This function basically calculates the ratio of amplitude between the␣

↪short-term
and long-term windows, moving consecutively in time across the data
cft = classic_sta_lta(tr_data, int(sta_len * df), int(lta_len * df))

Plot characteristic function
fig,ax = plt.subplots(1,1,figsize=(12,3))
ax.plot(tr_times,cft)
ax.set_xlim([min(tr_times),max(tr_times)])
ax.set_xlabel('Time (s)')
ax.set_ylabel('Characteristic function')

[17]: Text(0, 0.5, 'Characteristic function')

Next, we define the values of the characteristic function (i.e. amplitude ratio between short-term
and long-term windows) where we flag a seismic detection. These values are called triggers. There
are two types of triggers – “on” and “off”, defined as follows:

1. “on” : If the characteristic function is above this value, then a seismic event begins.
2. “off” : If the characteristic function falls below this value (after an “on” trigger), than a

seismic event ends.

[18]: # Play around with the on and off triggers, based on values in the␣
↪characteristic function

thr_on = 4
thr_off = 1.5
on_off = np.array(trigger_onset(cft, thr_on, thr_off))
The first column contains the indices where the trigger is turned "on".

10

The second column contains the indices where the trigger is turned "off".

Plot on and off triggers
fig,ax = plt.subplots(1,1,figsize=(12,3))
for i in np.arange(0,len(on_off)):

triggers = on_off[i]
ax.axvline(x = tr_times[triggers[0]], color='red', label='Trig. On')
ax.axvline(x = tr_times[triggers[1]], color='purple', label='Trig. Off')

Plot seismogram
ax.plot(tr_times,tr_data)
ax.set_xlim([min(tr_times),max(tr_times)])
ax.legend()

[18]: <matplotlib.legend.Legend at 0x27b01c16a60>

Note: You do not have to worry about marking the end of the seismic trace (as you can see, even
for us it’s not very accurate!). For this challenge, all we care about is the start of the seismic
waveform.

3.1 Sample detection export into a catalog!
There are many ways to do this, but we’ll show a way to do it using pandas.

[19]: # File name and start time of trace
fname = row.filename
starttime = tr.stats.starttime.datetime

Iterate through detection times and compile them
detection_times = []
fnames = []
for i in np.arange(0,len(on_off)):

triggers = on_off[i]
on_time = starttime + timedelta(seconds = tr_times[triggers[0]])
on_time_str = datetime.strftime(on_time,'%Y-%m-%dT%H:%M:%S.%f')

11

detection_times.append(on_time_str)
fnames.append(fname)

Compile dataframe of detections
detect_df = pd.DataFrame(data = {'filename':fnames, 'time_abs(%Y-%m-%dT%H:%M:%S.

↪%f)':detection_times, 'time_rel(sec)':tr_times[triggers[0]]})
detect_df.head()

[19]: filename time_abs(%Y-%m-%dT%H:%M:%S.%f) \
0 xa.s12.00.mhz.1970-06-26HR00_evid00009 1970-06-26T20:03:21.323547

time_rel(sec)
0 72201.207547

This can then be exported to a csv using:

detect_df.to_csv('output/path/catalog.csv', index=False)

4 Download additional data from Earth-based stations
You may find that you need to download additional data from Earth stations to supplement your
models and algorithms. We recommend that you download any events from IRIS (Incorporated
Research Institutations for Seismology).

https://www.iris.edu/hq/

Note: The organization has been recently renamed to SAGE (Seismological Facility for the Ad-
vancement of Geoscience), but all the previous links should still work.

They maintain and curate data from seismic stations all around the world. There are many different
ways to get data from them, but I recommend using the utility PyWeed:

https://ds.iris.edu/ds/nodes/dmc/software/downloads/pyweed/

We can use the utility to select seismic stations and the earthquake data (or events) recorded at
those stations.

For this test case, let’s download all of the earthquakes magnitude 3 and above that are within
1 degree distance (approximately 110 km) from a site called PFO (Pinon Flat Observatory) in
California. Location is a number designating the instrument at a particular site (sites may have
multiple instruments), and channel is an IRIS code that specifies instrument information.

In short, the first latter refers to the samplerate of the instrument (how many data points it
records per second), the second to the type of instrument (certain types of seismometers are better
at recording nearby earthquakes while others are more suited for distant earthquakes), and the
last to the directional component being recored (most seismometers will record motion across two
horizontal directions and the vertical). We will pick the channel HHZ, which refers to a (H) high-
samplerate (100 samples per second) (H) strong-motion accelerometer (best resolution for nearby
strong earthquakes) recording in the (Z) vertical direction. Once you’ve selected all the earthquakes,
you can download the traces.

12

An earthquake is composed of the following types of waves (in order): pressure (P-wave), shear
(S-wave), and surface (Rayleigh and Love). For our challenge, we are only interested in identifying
the start of the earthquake. The IRIS dataset contains P-wave arrivals (onset of the P-wave at the
seismometer) for each earthquake. In order to get noise prior to the earthquake arrival, we pick
our data traces to span 101 seconds before to 60 seconds past the P-wave arrival:

As you can see from the output list, some of the earthquakes don’t record any earthquake data (3.4
Ml 2005-08-31) and others have an incorrect P-wave arrival time (4.0 Ml 2005-08-31). Make sure
to go through the earthquakes and remove those types of events from the waveform preview prior
to download. For output file type, choose miniseed to match the planetary data (SAC is probably
fine too, but the file sizes tend to be a bit bigger).

4.1 Thank you very much for being a part of this challenge! Good luck!!!

13

	Example Jupyter notebook to work with the data
	Read in and plot the Apollo 12 Grade A catalog
	Select a detection
	Read the CSV file corresponding to that detection
	Alternatively: read the miniseed file corresponding to that detection
	Plot the trace and mark the arrival!

	Let's filter the trace

	Sample short-term average / long-term average (STA/LTA) detection algorithm
	Sample detection export into a catalog!

	Download additional data from Earth-based stations
	Thank you very much for being a part of this challenge! Good luck!!!

