File size: 1,728 Bytes
e59a27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import sys
if __name__ == "__main__":
    from train import *
else:  # relative import
    from .train import *
from torchvision.datasets import CIFAR10
from torchvision import transforms




try:
    test_item = sys.argv[1]
except IndexError:
    assert __name__ == "__main__"
    test_item = "./generated"
test_items = []
if os.path.isdir(test_item):
    for item in os.listdir(test_item):
        item = os.path.join(test_item, item)
        test_items.append(item)
elif os.path.isfile(test_item):
    test_items.append(test_item)




original_dataset = CIFAR10(
    root=config["dataset_root"],
    train=False,
    download=True,
    transform=transforms.Compose([
        transforms.Resize(224),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
)
original_targets = [original_dataset[i][1] for i in range(len(original_dataset))]
original_targets = torch.tensor(original_targets, dtype=torch.long)




for item in test_items:
    state = torch.load(item, map_location="cpu", weights_only=True)
    model.load_state_dict({key: value.to(torch.float32).to(device) for key, value in state.items()})
    loss, acc, all_targets, all_predicts = test(model=model)
    all_targets, all_predicts = torch.tensor(all_targets), torch.tensor(all_predicts)

    for class_idx in range(10):
        class_mask = torch.where(original_targets == class_idx, 1, 0)
        total_number = torch.sum(class_mask)
        correct = torch.where(all_targets == all_predicts, 1, 0)
        class_correct = class_mask * correct
        correct_number = torch.sum(class_correct)
        class_acc = correct_number.item() / total_number.item()
        print(f"class{class_idx}:", class_acc)