File size: 6,317 Bytes
e59a27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# set global seed
import random
import numpy as np
import torch
seed = SEED = 20
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)


try:  # relative import
    from model import Model
    from dataset import BinaryClassifierDataset as Dataset
    from dataset import get_optimize_class
except ImportError:
    from .model import Model
    from .dataset import BinaryClassifierDataset as Dataset
    from .dataset import get_optimize_class

# import
import torch.nn as nn
from torch import optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.nn import functional as F
import os
import sys
import warnings
warnings.filterwarnings("ignore", category=UserWarning)

# load additional config
import json
config_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
with open(config_file, "r") as f:
    additional_config = json.load(f)




# config
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = {
    "dataset_root": "from_additional_config",
    "batch_size": 500 if __name__ == "__main__" else 50,
    "num_workers": 16,
    "pre_learning_rate": 0.01,
    "learning_rate": 1e-4,
    "pre_epochs": 2,
    "epochs": 13,
    "weight_decay": 0.1,
    "save_learning_rate": 2e-5,
    "total_save_number": 5,
    "tag": os.path.basename(os.path.dirname(__file__)),
    "optimize_class": get_optimize_class()[0],
    "optimize_class_int": get_optimize_class()[1],
}
config.update(additional_config)
print("Training:", config["optimize_class"])




# Data
dataset = Dataset(
    root=config["small_dataset_root"],
    train=True,
    optimize_class=config["optimize_class"],
)
train_loader = DataLoader(
    dataset=dataset,
    batch_size=config["batch_size"],
    num_workers=config["num_workers"],
    shuffle=True,
    drop_last=True,
    pin_memory=True,
    persistent_workers=True,
)
test_loader = DataLoader(
    dataset=Dataset(
        root=config["small_dataset_root"],
        train=False,
        optimize_class=config["optimize_class"],
    ),
    batch_size=config["batch_size"],
    num_workers=config["num_workers"],
    shuffle=False,
)

# Model
model, head = Model()
model = model.to(device)
class FocalLoss(nn.Module):
    def __init__(self, weight=None, gamma=2):
        super(FocalLoss, self).__init__()
        self.weight = weight
        self.gamma = gamma
    def forward(self, input, target):
        ce_loss = F.cross_entropy(input, target, reduction='none', weight=self.weight)
        pt = torch.exp(-ce_loss)
        focal_loss = (1 - pt) ** self.gamma * ce_loss
        return focal_loss.mean()
criterion = FocalLoss()

# Optimizer
head_optimizer = optim.AdamW(
    head.parameters(),
    lr=config["pre_learning_rate"],
    weight_decay=config["weight_decay"],
)
optimizer = optim.AdamW(
    model.parameters(),
    lr=config["learning_rate"],
    weight_decay=config["weight_decay"],
)
scheduler = lr_scheduler.CosineAnnealingLR(
    optimizer,
    T_max=config["epochs"],
    eta_min=config["save_learning_rate"],
)




# Training
def train(model=model, optimizer=optimizer, scheduler=scheduler):
    model.train()
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
    if scheduler is not None:
        scheduler.step()

# test
@torch.no_grad()
def test(model=model):
    model.eval()
    all_targets = []
    all_predicts = []
    test_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(test_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        # to logging losses
        all_targets.extend(targets.flatten().tolist())
        test_loss += loss.item()
        _, predicts = outputs.max(1)
        all_predicts.extend(predicts.flatten().tolist())
        total += targets.size(0)
        correct += predicts.eq(targets).sum().item()
    loss = test_loss / (batch_idx + 1)
    acc = correct / total
    print(f"Loss: {loss:.4f} | Acc: {acc:.4f}\n")
    model.train()
    return loss, acc, all_targets, all_predicts

# save train
def save_train(model=model, optimizer=optimizer):
    data_loader = DataLoader(
        dataset=dataset,
        batch_size=min(len(dataset) // config["total_save_number"], config["batch_size"]),
        num_workers=config["num_workers"],
        shuffle=True,
        drop_last=True,
    )
    model.train()
    for batch_idx, (inputs, targets) in enumerate(data_loader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16):
            outputs = model(inputs)
            loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        # Save checkpoint
        _, acc, _, _ = test(model=model)
        if not os.path.isdir('checkpoint'):
            os.mkdir('checkpoint')
        save_state = {key: value.cpu().to(torch.float32) for key, value in model.state_dict().items()}
        torch.save(save_state, f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_class{config['optimize_class_int']}_{config['tag']}.pth")
        print("save:", f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_class{config['optimize_class_int']}_{config['tag']}.pth")
        # exit loop
        if batch_idx+1 == config["total_save_number"]:
            break




# main
if __name__ == '__main__':
    for epoch in range(config["pre_epochs"]):
        train(model=model, optimizer=head_optimizer, scheduler=None)
        # test(model=model)
    for epoch in range(config["epochs"]):
        train(model=model, optimizer=optimizer, scheduler=scheduler)
        # test(model=model)
    save_train(model=model, optimizer=optimizer)