import os import sys if __name__ == "__main__": from train import * else: # relative import from .train import * from torchvision.datasets import CIFAR10 from torchvision import transforms try: test_item = sys.argv[1] except IndexError: assert __name__ == "__main__" test_item = "./generated" test_items = [] if os.path.isdir(test_item): for item in os.listdir(test_item): item = os.path.join(test_item, item) test_items.append(item) elif os.path.isfile(test_item): test_items.append(test_item) original_dataset = CIFAR10( root=config["dataset_root"], train=False, download=True, transform=transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) original_targets = [original_dataset[i][1] for i in range(len(original_dataset))] original_targets = torch.tensor(original_targets, dtype=torch.long) for item in test_items: state = torch.load(item, map_location="cpu", weights_only=True) model.load_state_dict({key: value.to(torch.float32).to(device) for key, value in state.items()}) loss, acc, all_targets, all_predicts = test(model=model) all_targets, all_predicts = torch.tensor(all_targets), torch.tensor(all_predicts) for class_idx in range(10): class_mask = torch.where(original_targets == class_idx, 1, 0) total_number = torch.sum(class_mask) correct = torch.where(all_targets == all_predicts, 1, 0) class_correct = class_mask * correct correct_number = torch.sum(class_correct) class_acc = correct_number.item() / total_number.item() print(f"class{class_idx}:", class_acc)