Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,403 Bytes
6f590b8
035424f
 
2fe7624
035424f
 
2fe7624
 
 
13b914e
59eb068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b914e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59eb068
 
 
 
 
 
 
 
13b914e
 
 
 
 
 
6f590b8
 
 
035424f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52c23e
 
b3c20ae
 
 
 
 
a52c23e
035424f
 
 
 
 
 
 
 
 
 
db9b72a
e932468
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- en
license: mit
size_categories:
- 1K<n<10K
task_categories:
- text-generation
- question-answering
dataset_info:
- config_name: default
  features:
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  splits:
  - name: train
    num_bytes: 5176237.798340693
    num_examples: 7273
  - name: validation
    num_bytes: 142341.20165930683
    num_examples: 200
  - name: test
    num_bytes: 957406
    num_examples: 1319
  download_size: 2958009
  dataset_size: 6275985.0
- config_name: original-splits
  features:
  - name: question
    dtype: string
  - name: chain
    dtype: string
  - name: result
    dtype: string
  - name: result_float
    dtype: float64
  splits:
  - name: train
    num_bytes: 5318579
    num_examples: 7473
  - name: test
    num_bytes: 957406
    num_examples: 1319
  download_size: 2949137
  dataset_size: 6275985
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: original-splits
  data_files:
  - split: train
    path: original-splits/train-*
  - split: test
    path: original-splits/test-*
---
# Dataset Card for "Calc-gsm8k"


## Summary

This dataset is an instance of gsm8k dataset, converted to a simple html-like language that can be easily parsed (e.g. by BeautifulSoup). The data contains 3 types of tags:
- gadget: A tag whose content is intended to be evaluated by calling an external tool (sympy-based calculator in this case)
- output: An output of the external tool
- result: The final answer of the mathematical problem (a number)


## Supported Tasks

The dataset is intended for training Chain-of-Thought reasoning **models able to use external tools** to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can out-source the computations in the reasoning chain to a calculator.


## Construction Process

The answers in the original dataset was in in a structured but non-standard format. So, the answers were parsed, all arithmetical expressions
were evaluated using a sympy-based calculator, the outputs were checked to be consistent with the intermediate results and finally exported
into a simple html-like language that BeautifulSoup can parse.


## Content and Data splits

Content corresponds to the original gsm8k dataset.

In this version, we created validation set by sampling 200 random examples from the original train split. The original data splits can be downloaded using:

```
datasets.load_dataset("MU-NLPC/Calc-gsm8k", "original-splits")
```

See [gsm8k HF dataset](https://huggingface.co/datasets/gsm8k) and [official repository](https://github.com/openai/grade-school-math) for more info.


## Licence

MIT, consistently with the original dataset.


## Cite

If you use this version of dataset in research, please cite the [original GSM8K paper](https://arxiv.org/abs/2110.14168) and our report as follows:

```bibtex
@article{kadlcik2023calcx,
         title={Calc-X: Enriching Arithmetical Chain-of-Thoughts Datasets by Interaction with Symbolic Systems}, 
         author={Marek Kadlčík and Michal Štefánik},
         year={2023},
         eprint={2305.15017},
         archivePrefix={arXiv},
         primaryClass={cs.LG}
}
```