File size: 7,112 Bytes
75a50cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62a0480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a50cf
 
 
 
1e3f036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a50cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42126c7
 
 
 
 
33090b3
 
1e3f036
 
 
 
 
 
 
 
 
75a50cf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json

import datasets


_AMAZON_REVIEW_2023_DESCRIPTION = """\
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset.
This dataset mainly includes reviews (ratings, text) and item metadata (desc-
riptions, category information, price, brand, and images). Compared to the pre-
vious versions, the 2023 version features larger size, newer reviews (up to Sep
2023), richer and cleaner meta data, and finer-grained timestamps (from day to 
milli-second).

"""


class RawMetaAmazonReview2023Config(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(RawMetaAmazonReview2023Config, self).__init__(**kwargs)

        self.suffix = 'jsonl'
        self.domain = self.name[len(f'raw_meta_'):]
        self.description = f'This is a subset for items in domain: {self.domain}.'
        self.data_dir = f'raw/meta_categories/meta_{self.domain}.jsonl'


class AmazonReview2023(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        # Raw item metadata
        RawMetaAmazonReview2023Config(name='raw_meta_All_Beauty'),
        RawMetaAmazonReview2023Config(name='raw_meta_Toys_and_Games'),
        RawMetaAmazonReview2023Config(name='raw_meta_Cell_Phones_and_Accessories'),
        RawMetaAmazonReview2023Config(name='raw_meta_Industrial_and_Scientific'),
        RawMetaAmazonReview2023Config(name='raw_meta_Gift_Cards'),
        RawMetaAmazonReview2023Config(name='raw_meta_Musical_Instruments'),
        RawMetaAmazonReview2023Config(name='raw_meta_Electronics'),
        RawMetaAmazonReview2023Config(name='raw_meta_Handmade_Products'),
        RawMetaAmazonReview2023Config(name='raw_meta_Arts_Crafts_and_Sewing'),
        RawMetaAmazonReview2023Config(name='raw_meta_Baby_Products'),
        RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Household'),
        RawMetaAmazonReview2023Config(name='raw_meta_Office_Products'),
        RawMetaAmazonReview2023Config(name='raw_meta_Digital_Music'),
        RawMetaAmazonReview2023Config(name='raw_meta_Grocery_and_Gourmet_Food'),
        RawMetaAmazonReview2023Config(name='raw_meta_Sports_and_Outdoors'),
        RawMetaAmazonReview2023Config(name='raw_meta_Home_and_Kitchen'),
        RawMetaAmazonReview2023Config(name='raw_meta_Subscription_Boxes'),
        RawMetaAmazonReview2023Config(name='raw_meta_Tools_and_Home_Improvement'),
        RawMetaAmazonReview2023Config(name='raw_meta_Pet_Supplies'),
        RawMetaAmazonReview2023Config(name='raw_meta_Video_Games'),
        RawMetaAmazonReview2023Config(name='raw_meta_Kindle_Store'),
        RawMetaAmazonReview2023Config(name='raw_meta_Clothing_Shoes_and_Jewelry'),
        RawMetaAmazonReview2023Config(name='raw_meta_Patio_Lawn_and_Garden'),
        RawMetaAmazonReview2023Config(name='raw_meta_Unknown'),
        RawMetaAmazonReview2023Config(name='raw_meta_Books'),
        RawMetaAmazonReview2023Config(name='raw_meta_Automotive'),
        RawMetaAmazonReview2023Config(name='raw_meta_CDs_and_Vinyl'),
        RawMetaAmazonReview2023Config(name='raw_meta_Beauty_and_Personal_Care'),
        RawMetaAmazonReview2023Config(name='raw_meta_Amazon_Fashion'),
        RawMetaAmazonReview2023Config(name='raw_meta_Magazine_Subscriptions'),
        RawMetaAmazonReview2023Config(name='raw_meta_Software'),
        RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Personal_Care'),
        RawMetaAmazonReview2023Config(name='raw_meta_Appliances'),
        RawMetaAmazonReview2023Config(name='raw_meta_Movies_and_TV'),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_AMAZON_REVIEW_2023_DESCRIPTION + self.config.description,
            features=datasets.Features({
                'main_category': datasets.Value('string'),
                'title': datasets.Value('string'),
                'average_rating': datasets.Value(dtype='float64'),
                'rating_number': datasets.Value(dtype='int64'),
                'features': datasets.Sequence(datasets.Value('string')),
                'description': datasets.Sequence(datasets.Value('string')),
                'price': datasets.Value('string'),
                'images': datasets.Sequence({
                    'hi_res': datasets.Value('string'),
                    'large': datasets.Value('string'),
                    'thumb': datasets.Value('string'),
                    'variant': datasets.Value('string')
                }),
                'videos': datasets.Sequence({
                    'title': datasets.Value('string'),
                    'url': datasets.Value('string'),
                    'user_id': datasets.Value('string')
                }),
                'store': datasets.Value('string'),
                'categories': datasets.Sequence(datasets.Value('string')),
                'details': datasets.Value('string'),
                'parent_asin': datasets.Value('string'),
                'bought_together': datasets.Value(dtype='null', id=None),
                'subtitle': datasets.Value('string'),
                'author': datasets.Value('string')
            })
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_dir)
        return [
            datasets.SplitGenerator(
                name='full',
                gen_kwargs={"filepath": dl_dir}
            )
        ]

    def _generate_examples(self, filepath):
        with open(filepath, 'r', encoding='utf-8') as file:
            for idx, line in enumerate(file):
                if self.config.suffix == 'jsonl':
                    try:
                        dp = json.loads(line)
                        """
                        For item metadata, 'details' is free-form structured data
                        Here we dump it to string to make huggingface datasets easy
                        to store.
                        """
                        if isinstance(self.config, RawMetaAmazonReview2023Config):
                            if 'details' in dp:
                                dp['details'] = json.dumps(dp['details'])
                            if 'price' in dp:
                                dp['price'] = str(dp['price'])
                            for optional_key in ['subtitle', 'author']:
                                if optional_key not in dp:
                                    dp[optional_key] = None
                            for i in range(len(dp['images'])):
                                for k in ['hi_res', 'large', 'thumb', 'variant']:
                                    if k not in dp['images'][i]:
                                        dp['images'][i][k] = None
                            for i in range(len(dp['videos'])):
                                for k in ['title', 'url', 'user_id']:
                                    if k not in dp['videos'][i]:
                                        dp['videos'][i][k] = None
                    except:
                        continue
                else:
                    raise ValueError(f'Unknown suffix {self.config.suffix}.')
                yield idx, dp