File size: 7,112 Bytes
75a50cf 62a0480 75a50cf 1e3f036 75a50cf 42126c7 33090b3 1e3f036 75a50cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import json
import datasets
_AMAZON_REVIEW_2023_DESCRIPTION = """\
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset.
This dataset mainly includes reviews (ratings, text) and item metadata (desc-
riptions, category information, price, brand, and images). Compared to the pre-
vious versions, the 2023 version features larger size, newer reviews (up to Sep
2023), richer and cleaner meta data, and finer-grained timestamps (from day to
milli-second).
"""
class RawMetaAmazonReview2023Config(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(RawMetaAmazonReview2023Config, self).__init__(**kwargs)
self.suffix = 'jsonl'
self.domain = self.name[len(f'raw_meta_'):]
self.description = f'This is a subset for items in domain: {self.domain}.'
self.data_dir = f'raw/meta_categories/meta_{self.domain}.jsonl'
class AmazonReview2023(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
# Raw item metadata
RawMetaAmazonReview2023Config(name='raw_meta_All_Beauty'),
RawMetaAmazonReview2023Config(name='raw_meta_Toys_and_Games'),
RawMetaAmazonReview2023Config(name='raw_meta_Cell_Phones_and_Accessories'),
RawMetaAmazonReview2023Config(name='raw_meta_Industrial_and_Scientific'),
RawMetaAmazonReview2023Config(name='raw_meta_Gift_Cards'),
RawMetaAmazonReview2023Config(name='raw_meta_Musical_Instruments'),
RawMetaAmazonReview2023Config(name='raw_meta_Electronics'),
RawMetaAmazonReview2023Config(name='raw_meta_Handmade_Products'),
RawMetaAmazonReview2023Config(name='raw_meta_Arts_Crafts_and_Sewing'),
RawMetaAmazonReview2023Config(name='raw_meta_Baby_Products'),
RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Household'),
RawMetaAmazonReview2023Config(name='raw_meta_Office_Products'),
RawMetaAmazonReview2023Config(name='raw_meta_Digital_Music'),
RawMetaAmazonReview2023Config(name='raw_meta_Grocery_and_Gourmet_Food'),
RawMetaAmazonReview2023Config(name='raw_meta_Sports_and_Outdoors'),
RawMetaAmazonReview2023Config(name='raw_meta_Home_and_Kitchen'),
RawMetaAmazonReview2023Config(name='raw_meta_Subscription_Boxes'),
RawMetaAmazonReview2023Config(name='raw_meta_Tools_and_Home_Improvement'),
RawMetaAmazonReview2023Config(name='raw_meta_Pet_Supplies'),
RawMetaAmazonReview2023Config(name='raw_meta_Video_Games'),
RawMetaAmazonReview2023Config(name='raw_meta_Kindle_Store'),
RawMetaAmazonReview2023Config(name='raw_meta_Clothing_Shoes_and_Jewelry'),
RawMetaAmazonReview2023Config(name='raw_meta_Patio_Lawn_and_Garden'),
RawMetaAmazonReview2023Config(name='raw_meta_Unknown'),
RawMetaAmazonReview2023Config(name='raw_meta_Books'),
RawMetaAmazonReview2023Config(name='raw_meta_Automotive'),
RawMetaAmazonReview2023Config(name='raw_meta_CDs_and_Vinyl'),
RawMetaAmazonReview2023Config(name='raw_meta_Beauty_and_Personal_Care'),
RawMetaAmazonReview2023Config(name='raw_meta_Amazon_Fashion'),
RawMetaAmazonReview2023Config(name='raw_meta_Magazine_Subscriptions'),
RawMetaAmazonReview2023Config(name='raw_meta_Software'),
RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Personal_Care'),
RawMetaAmazonReview2023Config(name='raw_meta_Appliances'),
RawMetaAmazonReview2023Config(name='raw_meta_Movies_and_TV'),
]
def _info(self):
return datasets.DatasetInfo(
description=_AMAZON_REVIEW_2023_DESCRIPTION + self.config.description,
features=datasets.Features({
'main_category': datasets.Value('string'),
'title': datasets.Value('string'),
'average_rating': datasets.Value(dtype='float64'),
'rating_number': datasets.Value(dtype='int64'),
'features': datasets.Sequence(datasets.Value('string')),
'description': datasets.Sequence(datasets.Value('string')),
'price': datasets.Value('string'),
'images': datasets.Sequence({
'hi_res': datasets.Value('string'),
'large': datasets.Value('string'),
'thumb': datasets.Value('string'),
'variant': datasets.Value('string')
}),
'videos': datasets.Sequence({
'title': datasets.Value('string'),
'url': datasets.Value('string'),
'user_id': datasets.Value('string')
}),
'store': datasets.Value('string'),
'categories': datasets.Sequence(datasets.Value('string')),
'details': datasets.Value('string'),
'parent_asin': datasets.Value('string'),
'bought_together': datasets.Value(dtype='null', id=None),
'subtitle': datasets.Value('string'),
'author': datasets.Value('string')
})
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name='full',
gen_kwargs={"filepath": dl_dir}
)
]
def _generate_examples(self, filepath):
with open(filepath, 'r', encoding='utf-8') as file:
for idx, line in enumerate(file):
if self.config.suffix == 'jsonl':
try:
dp = json.loads(line)
"""
For item metadata, 'details' is free-form structured data
Here we dump it to string to make huggingface datasets easy
to store.
"""
if isinstance(self.config, RawMetaAmazonReview2023Config):
if 'details' in dp:
dp['details'] = json.dumps(dp['details'])
if 'price' in dp:
dp['price'] = str(dp['price'])
for optional_key in ['subtitle', 'author']:
if optional_key not in dp:
dp[optional_key] = None
for i in range(len(dp['images'])):
for k in ['hi_res', 'large', 'thumb', 'variant']:
if k not in dp['images'][i]:
dp['images'][i][k] = None
for i in range(len(dp['videos'])):
for k in ['title', 'url', 'user_id']:
if k not in dp['videos'][i]:
dp['videos'][i][k] = None
except:
continue
else:
raise ValueError(f'Unknown suffix {self.config.suffix}.')
yield idx, dp
|