Commit
•
1b7eb6a
1
Parent(s):
f025bc3
Host data files (#3)
Browse files- Host data files (7ec7ce7e729bbda330a72ffe9d8e189314918b21)
- Update loading script (6110dd4115ece376c5aa842c42904785990ba1b2)
- Update dataset card (0da59a4d3dc11ffef79598e65c2eacf1a30e74ba)
- Delete legacy metadata JSON file (d99aa99aec91e8dae2738018ec53603a5b0638da)
- README.md +8 -8
- data/full_data.csv.zip +3 -0
- data/pretrain_subset.zip +3 -0
- dataset_infos.json +0 -1
- medal.py +14 -20
README.md
CHANGED
@@ -74,14 +74,14 @@ dataset_info:
|
|
74 |
|
75 |
## Dataset Description
|
76 |
|
77 |
-
- **Homepage:** []()
|
78 |
-
- **Repository:**
|
79 |
-
- **Paper:**
|
80 |
-
- **Dataset (Kaggle):**
|
81 |
-
- **Dataset (Zenodo):**
|
82 |
-
- **Pretrained model:**
|
83 |
-
- **Leaderboard:** []()
|
84 |
-
- **Point of Contact:** []()
|
85 |
|
86 |
### Dataset Summary
|
87 |
|
|
|
74 |
|
75 |
## Dataset Description
|
76 |
|
77 |
+
- **Homepage:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
78 |
+
- **Repository:** https://github.com/BruceWen120/medal
|
79 |
+
- **Paper:** https://www.aclweb.org/anthology/2020.clinicalnlp-1.15/
|
80 |
+
- **Dataset (Kaggle):** https://www.kaggle.com/xhlulu/medal-emnlp
|
81 |
+
- **Dataset (Zenodo):** https://zenodo.org/record/4265632
|
82 |
+
- **Pretrained model:** https://huggingface.co/xhlu/electra-medal
|
83 |
+
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
84 |
+
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
85 |
|
86 |
### Dataset Summary
|
87 |
|
data/full_data.csv.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af62700124185523a390f6099bf9e9de411913bd15588d980031b82fa2e4af36
|
3 |
+
size 5228583309
|
data/pretrain_subset.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8907785cfc21267f0f96e5b2206fdaf9582dd32fe0fe92b675dbfc939f4ce802
|
3 |
+
size 2068022776
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate\n", "citation": "@inproceedings{wen-etal-2020-medal,\n title = \"{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining\",\n author = \"Wen, Zhi and\n Lu, Xing Han and\n Reddy, Siva\",\n booktitle = \"Proceedings of the 3rd Clinical Natural Language Processing Workshop\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.clinicalnlp-1.15\",\n pages = \"130--135\",\n abstract = \"One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.\",\n}", "homepage": "https://github.com/BruceWen120/medal", "license": "", "features": {"abstract_id": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "location": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "label": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "medal", "config_name": "default", "version": {"version_str": "4.0.0", "description": null, "major": 4, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3573399948, "num_examples": 3000000, "dataset_name": "medal"}, "test": {"name": "test", "num_bytes": 1190766821, "num_examples": 1000000, "dataset_name": "medal"}, "validation": {"name": "validation", "num_bytes": 1191410723, "num_examples": 1000000, "dataset_name": "medal"}, "full": {"name": "full", "num_bytes": 15536883723, "num_examples": 14393619, "dataset_name": "medal"}}, "download_checksums": {"https://zenodo.org/record/4482922/files/train.csv": {"num_bytes": 3541556520, "checksum": "c5fef2feebd1ecd35b4fe7a0aec266b631c0ac511d4d6b685835328b1ffbf32d"}, "https://zenodo.org/record/4482922/files/test.csv": {"num_bytes": 1180152075, "checksum": "ad391a63449c2bbbdbdf8d1827da4c053607a8586f4162174ba4ccf13efd8f86"}, "https://zenodo.org/record/4482922/files/valid.csv": {"num_bytes": 1180795804, "checksum": "08a0a6c2ee40747744ec15675ab5dc1e2b04491ca951b14c15d8d7bf9d33694d"}, "https://zenodo.org/record/4482922/files/full_data.csv": {"num_bytes": 15158424679, "checksum": "70f1ad891bdf98a42395a8907b48284457ae36d17fcc5a0a9c65c0b6b45ecf8d"}}, "download_size": 21060929078, "post_processing_size": null, "dataset_size": 21492461215, "size_in_bytes": 42553390293}}
|
|
|
|
medal.py
CHANGED
@@ -18,13 +18,11 @@
|
|
18 |
|
19 |
|
20 |
import csv
|
|
|
21 |
|
22 |
import datasets
|
23 |
|
24 |
|
25 |
-
logger = datasets.logging.get_logger(__name__)
|
26 |
-
|
27 |
-
|
28 |
_CITATION = """\
|
29 |
@inproceedings{wen-etal-2020-medal,
|
30 |
title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining",
|
@@ -45,12 +43,15 @@ _DESCRIPTION = """\
|
|
45 |
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
|
46 |
"""
|
47 |
|
48 |
-
_URL = "https://zenodo.org/record/4482922/files/"
|
49 |
_URLS = {
|
50 |
-
"
|
51 |
-
"
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
}
|
55 |
|
56 |
|
@@ -86,35 +87,28 @@ class Medal(datasets.GeneratorBasedBuilder):
|
|
86 |
"""Returns SplitGenerators."""
|
87 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
88 |
# download and extract URLs
|
89 |
-
|
90 |
-
try:
|
91 |
-
dl_dir = dl_manager.download_and_extract(urls_to_dl)
|
92 |
-
except Exception:
|
93 |
-
logger.warning(
|
94 |
-
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue"
|
95 |
-
)
|
96 |
-
raise
|
97 |
|
98 |
return [
|
99 |
datasets.SplitGenerator(
|
100 |
name=datasets.Split.TRAIN,
|
101 |
# These kwargs will be passed to _generate_examples
|
102 |
-
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
103 |
),
|
104 |
datasets.SplitGenerator(
|
105 |
name=datasets.Split.TEST,
|
106 |
# These kwargs will be passed to _generate_examples
|
107 |
-
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
108 |
),
|
109 |
datasets.SplitGenerator(
|
110 |
name=datasets.Split.VALIDATION,
|
111 |
# These kwargs will be passed to _generate_examples
|
112 |
-
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"},
|
113 |
),
|
114 |
datasets.SplitGenerator(
|
115 |
name="full",
|
116 |
# These kwargs will be passed to _generate_examples
|
117 |
-
gen_kwargs={"filepath": dl_dir["full"], "split": "full"},
|
118 |
),
|
119 |
]
|
120 |
|
|
|
18 |
|
19 |
|
20 |
import csv
|
21 |
+
import os.path
|
22 |
|
23 |
import datasets
|
24 |
|
25 |
|
|
|
|
|
|
|
26 |
_CITATION = """\
|
27 |
@inproceedings{wen-etal-2020-medal,
|
28 |
title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining",
|
|
|
43 |
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
|
44 |
"""
|
45 |
|
|
|
46 |
_URLS = {
|
47 |
+
"pretrain": "data/pretrain_subset.zip",
|
48 |
+
"full": "data/full_data.csv.zip"
|
49 |
+
}
|
50 |
+
_FILENAMES = {
|
51 |
+
"train": "train.csv",
|
52 |
+
"test": "test.csv",
|
53 |
+
"valid": "valid.csv",
|
54 |
+
"full": "full_data.csv",
|
55 |
}
|
56 |
|
57 |
|
|
|
87 |
"""Returns SplitGenerators."""
|
88 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
89 |
# download and extract URLs
|
90 |
+
dl_dir = dl_manager.download_and_extract(_URLS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
return [
|
93 |
datasets.SplitGenerator(
|
94 |
name=datasets.Split.TRAIN,
|
95 |
# These kwargs will be passed to _generate_examples
|
96 |
+
gen_kwargs={"filepath": os.path.join(dl_dir["pretrain"], _FILENAMES["train"]), "split": "train"},
|
97 |
),
|
98 |
datasets.SplitGenerator(
|
99 |
name=datasets.Split.TEST,
|
100 |
# These kwargs will be passed to _generate_examples
|
101 |
+
gen_kwargs={"filepath": os.path.join(dl_dir["pretrain"], _FILENAMES["test"]), "split": "test"},
|
102 |
),
|
103 |
datasets.SplitGenerator(
|
104 |
name=datasets.Split.VALIDATION,
|
105 |
# These kwargs will be passed to _generate_examples
|
106 |
+
gen_kwargs={"filepath": os.path.join(dl_dir["pretrain"], _FILENAMES["valid"]), "split": "val"},
|
107 |
),
|
108 |
datasets.SplitGenerator(
|
109 |
name="full",
|
110 |
# These kwargs will be passed to _generate_examples
|
111 |
+
gen_kwargs={"filepath": os.path.join(dl_dir["full"], _FILENAMES["full"]), "split": "full"},
|
112 |
),
|
113 |
]
|
114 |
|