Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
DOI:
Libraries:
Datasets
Dask
File size: 7,611 Bytes
37277ef
 
 
 
 
 
 
 
cd46688
 
37277ef
 
e63dba6
37277ef
9951196
 
e63dba6
 
022a33b
e63dba6
b288281
ef02b55
 
b288281
d0fb77a
 
77958ab
d0fb77a
 
 
 
e63dba6
37277ef
364dfd0
 
37277ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4c33b
 
 
 
 
 
 
 
 
 
 
 
 
 
37277ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d8faa8
 
e2fc77d
8d8faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb20a70
a7047a4
37277ef
 
 
 
 
 
 
 
 
 
 
 
b288281
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
task_categories:
- question-answering
language:
- en
tags:
- medical
pretty_name: Med_data
size_categories:
- 100K<n<1M
---

# Complete Dataset

Data shown below is complete Medical dataset

Access the complete dataset using the link below:

[Download Dataset](https://fp2s.short.gy/Med_datasets)

# Support Us on Product Hunt and X!

| [<a href="https://www.producthunt.com/posts/medical_datasets?embed=true&utm_source=badge-featured&utm_medium=badge&utm_souce=badge-medical&#0095;datasets" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=754666&theme=light&t=1738501085565" alt="Medical&#0095;Datasets - Empowering&#0032;healthcare&#0032;innovation&#0032;with&#0032;data&#0045;driven&#0032;insights | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a>](https://www.producthunt.com/posts/medical_datasets) | [<img src="https://upload.wikimedia.org/wikipedia/commons/2/2d/Twitter_X.png" width="40">](https://x.com/PitchdeckEngine) |

# Connect with Me on Happenstance  

Join me on Happenstance!  
[Click here to add me as a friend](https://happenstance.ai/invite/friend/y5OCIMc4sLNjSuMCFyyVtLxAoYU)  

Looking forward to connecting!

For more information or assistance, feel free to contact us at **[email protected]**.

![Medical Dataset Screenshot](./Medical_datasets/Image.png)

short_description: Medical datasets for healthcare model training.
---

# **Medical Datasets**

This Medical dataset is crafted as a versatile resource for enthusiasts of data science, machine learning, and data analysis. It replicates the characteristics of real-world healthcare data, offering users a platform to practice, refine, and showcase their data manipulation and analytical skills within the healthcare domain.

## **Potential Uses**
- Building and testing predictive models specific to healthcare.
- Practicing techniques for data cleaning, transformation, and analysis.
- Designing visualizations to uncover insights into healthcare trends.
- Learning and teaching data science and machine learning concepts in a healthcare setting.

## **Acknowledgments**
- This dataset is entirely synthetic, created with a focus on respecting healthcare data privacy and security. It contains no real patient information and complies with privacy regulations.
- The goal is to support advancements in data science and healthcare analytics while inspiring innovative ideas.

## Directory Structure

β”œβ”€β”€ evaluation-medical-instruction-datasets/
β”‚   β”œβ”€β”€ evaluation-medical-instruction-dataset.json
β”‚   β”œβ”€β”€ medmcqa-train-instruction-dataset.json
β”‚   β”œβ”€β”€ medqa-train-instruction-dataset.json
β”‚   └── pubmedqa-train-instruction-train.json
β”œβ”€β”€ general-medical-instruction-datasets/
β”‚   β”œβ”€β”€ general-medical-instruction-dataset.json
β”‚   β”œβ”€β”€ GenMedGPT-5k.json
β”‚   β”œβ”€β”€ HealthCareMagic-100k.json
β”‚   β”œβ”€β”€ medical_meadow_wikidoc_medical_flashcards.json
β”‚   β”œβ”€β”€ medical_meadow_wikidoc_patient_info.json
β”‚   └── medicationqa.json
β”œβ”€β”€ medical-preference-data.json
└── medical-pretraining-datasets/

## **Dataset Contents**

### **Evaluation Medical Instruction Datasets**
Contains datasets used for evaluating medical instruction models:
- `evaluation-medical-instruction-dataset.json`
- `medmcqa-train-instruction-dataset.json`
- `medial-train-instruction-dataset.json`
- `pubmedqa-train-instruction-train.json`

### **General Medical Instruction Datasets**
Contains general medical instruction datasets:
- `general-medical-instruction-dataset.json`
- `GenMedGPT-5k.json`
- `HealthCareMagic-100k.json`
- `medical_meadow_wikidoc_medical_flashcards.json`
- `medical_meadow_wikidoc_patient_info.json`
- `medicationqa.json`

### **Medical Preference Data**
- `medical-preference-data.json`: Contains data related to medical preferences.

### **Medical Pretraining Datasets**
Contains datasets used for pretraining medical models.

### **quality_report**

| Total        | Missing Data (%) | Duplicate Rows (%) | Duplicate Rate (%) | Outlier Count | File Name                                      | Error |
|--------------|------------------|--------------------|--------------------|---------------|-----------------------------------------------|-------|
| 2,000,000    | 0                | 114                | 0.03              | 0             | evaluation-medical-instruction-dataset.json    | NaN   |
| 1,400,000    | 0                | 379                | 1.3               | 0             | general-medical-instruction-dataset.json       | NaN   |
| 27,000       | 0                | 0                  | 0                 | 0             | GenMedGPT-5k.json                              | NaN   |
| 560,000      | 0                | 0                  | 0                 | 0             | HealthCareMagic-100k.json                      | NaN   |
| 169,000      | 0                | 427                | 1.26              | 0             | medical_meadow_wikidoc_medical_flashcards.json | NaN   |
| 29,000       | 0                | 92                 | 1.55              | 0             | medical_meadow_wikidoc_patient_info.json       | NaN   |
| 50,000       | 0                | 0                  | 0                 | 0             | medical_meadow_wikidoc.json                    | NaN   |
| 120,000      | 0                | 0                  | 0                 | 0             | medical-preference-data.json                   | NaN   |
| 2,700        | 0                | 0                  | 0                 | 0             | medicationqa.json                              | NaN   |
| 910,000      | 0                | 0                  | 0                 | 0             | medmcqa-train-instruction-dataset.json         | NaN   |
| 50,000       | 0                | 0                  | 0                 | 0             | medqa-train-instruction-dataset.json           | NaN   |
| 120,000      | 0                | 0                  | 0                 | 0             | open-platypus.json                             | NaN   |
| 400,000      | NaN              | NaN                | NaN               | NaN           | pmc_and_guidelines_and_pubmedqa_train.txt      | NaN   |
| 200,000      | NaN              | NaN                | NaN               | NaN           | pmc_and_guidelines.txt                         | NaN   |
| 1,000,000    | 0                | 114                | 0.5               | 0             | pubmedqa-train-instruction-train.json          | NaN   |
| 250,000      | 0                | 320                | 6.55              | 0             | umls_relation.json                             | NaN   |
| 240,000      | 0                | 0                  | 0                 | 0             | umls.json                                      | NaN   |


![Chart1.png](./Medical_datasets/chart1.png)

## **Usage**
These datasets can be used to train and evaluate models for medical question answering and other related tasks. Each dataset is provided in **JSON** and **TXT** formats and contains various medical instructions, inputs, and outputs.

## Example

Here is an example entry from the `medicationqa.json` dataset:

```json
{
    "instruction": "Your role as a doctor requires you to answer the medical questions taking into account the patient's description.",
    "input": "how fast does the medication take to work amlodipine",
    "output": "After oral administration of therapeutic doses of amlodipine besylate, absorption produces peak plasma concentrations between 6 and 12 hours."
}